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SHARP ASYMPTOTICS OF THE FUNCTIONAL QUANTIZATION
PROBLEM FOR GAUSSIAN PROCESSES

BY HARALD LUSCHGY AND GILLES PAGÈS

Universität Trier and Université Paris 6

The sharp asymptotics for theL2-quantization errors of Gaussian
measures on a Hilbert space and, in particular, for Gaussian processes is
derived. The condition imposed is regular variation of the eigenvalues.

1. Introduction. The quantization of probability distributions is an old story
which starts in the late 1940s. It has been conceived in order to drastically cut
down the storage of signal data to be analyzed. For a comprehensive survey of the
theory of quantization, including its historical development, we refer to Gray and
Neuhoff (1998). For the mathematical aspects of quantization, one may consult
Graf and Luschgy (2000), and for more applied aspects in the field of information
theory and signal processing, the book of Gersho and Gray (1992) is appropriate.

However, only recently rigorous extensions to the functional quantization of
continuous-time stochastic processes have been obtained for the Gaussian case.
See Luschgy and Pagès (2002), Dereich, Fehringer, Matoussi and Scheutzow
(2003), Dereich (2003) and Graf, Luschgy and Pagès (2003). In particular, the
order of convergence to zero of the quantization error has been investigated. The
main result of this paper is the sharp asymptotics of theL2-quantization error for
a large class of Gaussian processes in a Hilbert space framework. This makes the
high-resolution theory in this setting as precise as in the finite-dimensional theory.

The framework can be stated as follows. LetX be a centered Gaussian random
vector defined on a probability space(�,A,P) taking its values in a real separable
Hilbert spaceH with scalar product〈·, ·〉 and norm‖ · ‖. The distributionPX of X

will be denoted byP to simplify notations. Forn ∈ N, theL2-quantization problem
at leveln consists in minimizing

E min
a∈α

‖X − a‖2

over all setsα ⊂ H with |α| ≤ n, where| · | is for cardinality. The minimalnth
quantization error ofP is then defined by

en = en(P ) = inf
{(

E min
a∈α

‖X − a‖2
)1/2

:α ⊂ H,1≤ |α| ≤ n

}
.(1.1)
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TheL2-error is the most common measure of the performance of a quantization or
lossy data compression system mainly for its simplicity.

Let α ⊆ H be a codebook with|α| ≤ n. One easily shows that the best
approximation ofX by anα-valued random vector is achieved by applying the rule
of the nearest neighbor which corresponds to the geometric object called Voronoi
partition. So, if

f = ∑
a∈α

a1Aa,

where{Aa :a ∈ α} is a Borel measurable partition ofH such that, for everya ∈ α,
Aa is contained in the (closed and convex) Voronoi region{

x ∈ H :‖x − a‖ = min
b∈α

‖x − b‖
}
,

then

E‖X − f (X)‖2 = E min
a∈α

‖X − a‖2.

Thus one arrives at the representation

en = inf
f

(
E‖X − f (X)‖2)1/2

,(1.2)

where the infimum is taken over alln-quantizing rulesf , that is, Borel measurable
mapsf :H → H with |f (H)| ≤ n.

We address the issue of high-resolution quantization, that is, the performance
of n-quantizers and the behavior ofen asn → ∞. Denote byKP ⊂ H the re-
producing kernel Hilbert space (Cameron–Martin space) associated toP . Observe
that supp(P ) coincides with the closure ofKP . Let λ1 ≥ λ2 ≥ · · · > 0 be the or-
dered nonzero eigenvalues of the covariance operator ofP (each written as many
times as is its multiplicity) and let{uj : j ≥ 1} be a corresponding orthonormal
basis of supp(P ) consisting of eigenvectors. Ifd := dimKP < ∞, thenen(P ) =
en(

⊗d
j=1N (0, λj )), the minimalnth quantization error of

⊗d
j=1 N (0, λj ) with

respect to thel2-norm onR
d , and thus we can read off the asymptotic behavior

of en from the high-resolution formula

lim
n→∞n1/den

(
d⊗

j=1

N (0, λj )

)
= q(d)

√
2π

(
d∏

j=1

λj

)1/2d(
d + 2

d

)(d+2)/4

,(1.3)

whereq(d) is a constant in(0,∞) depending only on the dimensiond [Zador, see
Graf and Luschgy (2000)]. Except in dimensiond = 1 andd = 2, the true value of
q(d) is unknown.

Now assume dimKP = ∞. Consider the Karhunen–Loève expansion

X =
∞∑

j=1

λ
1/2
j Zjuj ,(1.4)
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whereZj = 〈X,uj 〉/λ1/2
j , j ≥ 1, are i.i.d.N (0,1)-distributed random variables.

[It is known that the Karhunen–Loève basis is optimal for quantization of Gaussian
measures, see Luschgy and Pagès (2002).] Optimal quantization ofX at leveln
consists in approximating it by a certain finite numberd = d(n) of coefficients and
then-quantization of these coefficients. More precisely, letg :Rd → R

d denote an
n-optimal quantizer for

⊗d
j=1N (0, λj ) and set

fn(X) :=
d∑

j=1

(
g(λ

1/2
1 Z1, . . . , λ

1/2
d Zd)

)
j uj .

Then

e2
n = E‖X − fn(X)‖2 = ∑

j≥d(n)+1

λj + en

(
d(n)⊗
j=1

N (0, λj )

)2

[see Luschgy and Pagès (2002)]. The critical dimensiond(n) is small when
compared withn but otherwise unknown forn ≥ 3. [Sinced(n) ≤ n − 1, we have
d(1) = 0 andd(2) = 1.]

In this paper we improve some of the results in Luschgy and Pagès (2002) and
derive the sharp asymptotics ofen asn → ∞ analogously to the finite-dimensional
case (1.3) and with slower rates than anyn−a, of course (Theorems 2.1 and 2.2).
This is achieved for regularly varying eigenvalues. The result obtained is even
better than (1.3) since limiting constants can be evaluated.

A simple way of obtaining compression is product quantization. Here the
Karhunen–Loève coefficients are individually quantized. Thus considering

f (1)
n (X) :=

m(n)∑
j=1

λ
1/2
j gj (Zj )uj ,(1.5)

wherem = m(n) ∈ N is suitably chosen andgj :R → R arenj -optimal quantizers
for N (0,1) with optimally allocatednj ∈ N such that�m

j=1nj ≤ n, we further
show that, for regularly varying eigenvalues with index−1 (the largest possible
index i.e. the slowest possible decrease),f

(1)
n is asymptotically optimal. This

means that

lim
n

e2
n

E‖X − f
(1)
n (X)‖2

= 1.

Furthermore, one shows that(E‖X − f
(1)
n (X)‖2)1/2 does follow a sharp rate of

convergence asn → ∞ which in turn is that ofen (see Theorem 2.1). When
the eigenvalues are regularly varying with index−b < −1, it turns out that
some product quantizersf (d)

n with a similar structure but based on quantizing
d-dimensional marginal blocks are asymptotically almost optimal for some large
values ofd and provide sharp asymptotics. Furthermore, it is to be noticed that,
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in that case, the above scalar product quantizersf
(1)
n still achieve the sharp rate

of convergence. The induced loss is (asymptotically) within a sometimes small
constant multiple of the minimal quantization error. These results are stated in
Theorem 2.2.

A famous notion of information theory is Shannon’s (1949)ε-entropy (rate-
distortion function) ofP . Forε > 0, it is defined by

R(ε) = RP (ε)

= inf
{
H(Q|P ⊗ Q2) :Q probability

(1.6)
onH × H with first marginalQ1 = P

and
∫
H×H

‖x − y‖2 dQ(x, y) ≤ ε2
}
,

whereH(Q|P ⊗ Q2) denotes the relative entropy (mutual information)

H(Q|P ⊗ Q2) =
∫
H

log
(

dQ

dP ⊗ Q2

)
dQ

if Q is absolutely continuous with respect to the product of the marginalsP ⊗ Q2

and equals to∞ otherwise. The simple converse part of the source coding theorem
[cf. Berger (1971), Theorem 3.2.2, and Graf and Luschgy (2000), page 163] says
that the minimal numberN(ε) of codewords needed in a codebookα such that
E mina∈α ‖X − a‖2 ≤ ε2 satisfies

logN(ε) ≥ R(ε).

[In particular, note thatR(en) ≤ logn.] As an application we obtain that logN(ε)

is preciselyR(ε) in the small distortion regime, that is,

lim
ε→0

logN(ε)

R(ε)
= 1

(Corollary 2.4). This sharp asymptotics of the rate of logN(ε) is also touched by
Donoho (2000).

A further application concerns the small ball problem and its relation to
Shannon’sε-entropy.

The paper is organized as follows. In the next section we state the results
outlined above. Section 3 contains a collection of examples. Section 4 is devoted
to the proofs.

Throughout, all logarithms are natural logarithms and[x] denotes the integer
part of the real numberx.
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2. Statement of results. Now we formulate sharp asymptotic results for
thenth quantization errorsen = en(P ) and determine the asymptotic behavior of

the optimal product quantizersf (1)
n asn → ∞ for centered Gaussian measuresP

with dimKP = ∞. It is convenient to use the symbols∼ and�, wherean ∼ bn

meansan/bn → 1 andan � bn means lim supn an/bn ≤ 1.

Let us first give a precise definition off
(1)
n . Givenn, m ∈ N, let n1, . . . , nm ∈ N

with �m
j=1nj ≤ n and let gj :R → R be nj -optimal quantizers forN (0,1),

j ∈ {1, . . . ,m}. Set

f (x) =
m∑

j=1

λ
1/2
j gj (xj )uj , x ∈ H,

wherexj = 〈x,uj 〉/λ1/2
j . Then|f (H)| ≤ n and, for everym ∈ N,

E‖X − f (X)‖2 = ∑
j≥m+1

λj +
m∑

j=1

λjE
(
Zj − gj (Zj )

)2

= ∑
j≥m+1

λj +
m∑

j=1

λj enj

(
N (0,1)

)2

≤ ∑
j≥m+1

λj + C(1)

m∑
j=1

λjn
−2
j ,

where

C(1) := sup
k≥1

k2ek

(
N (0,1)

)2

is a universal constant.
By the Zador theorem [cf. (1.3)],C(1) < ∞. Finally,

E‖X − f (X)‖2 ≤ inf
m

inf
n1×···×nm≤n

( ∑
j≥m+1

λj + C(1)

m∑
j=1

λjn
−2
j

)
.

We may first optimize the integer bit allocation given by then′
j s for a givenm

and then select somem = m(n) (hopefully close to the optimal one). To this end,
first note that, for a fixedm ∈ N, the continuous bit allocation problem reads, for
everyn ∈ N,

inf

{
m∑

j=1

λjy
−2
j :yj > 0,

m∏
j=1

yj ≤ n

}
=

m∑
j=1

λjz
−2
j = n−2/mm

(
m∏

j=1

λj

)1/m

,

with

zj = n1/mλ
1/2
j

(
m∏

j=1

λj

)−1/2m

, j = 1, . . . ,m.
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One can produce an integer-valued (approximate) solution by settingnj = [zj ]
provided allzj ≥ 1. In fact, since the sequence(λj ) is nonincreasingz1 ≥ · · · ≥ zm,

so one simply needs thatzm = n1/mλ
1/2
m (�m

j=mλj)
−1/2m ≥ 1. A natural choice for

the dimensionm is then

m = m(n) := max

{
k ≥ 1 :n1/kλ

1/2
k

(
k∏

j=1

λj

)−1/2k

≥ 1

}
,(2.1)

nj = nj (n) :=
[
n1/mλ

1/2
j

(
m∏

i=1

λj

)−1/2m]
, j ∈ {1, . . . ,m},(2.2)

f (1)
n (x) :=

m(n)∑
j=1

λ
1/2
j gj (xj )uj , x ∈ H.(2.3)

We need the notion of a regularly varying function. A measurable function
ϕ : (s,∞) → (0,∞) (s ≥ 0) is said to be regularly varying at infinity with index
b ∈ R if, for every t > 0,

lim
x→∞

ϕ(tx)

ϕ(x)
= tb.

Regular variation ofϕ : (0, s) → (0,∞) (s > 0) at zero is defined analogously.
Slow variation corresponds tob = 0.

THEOREM 2.1. Assumeλj ∼ ϕ(j) asj → ∞, whereϕ : (s,∞) → (0,∞) is
a decreasing, regularly varying function at infinity of index−1 for somes ≥ 0.Set,
for everyx > s,

ψ(x) := 1∫ ∞
x ϕ(y) dy

.

Then

en ∼ (
E

∥∥X − f (1)
n (X)

∥∥2)1/2 ∼ ψ(logn)−1/2 asn → ∞.

Moreover,

m(n) ∼ 2 logn.

REMARK 2.1. Since
∑∞

j=1λj < ∞, the integral
∫ ∞
x ϕ(y) dy is finite. Observe

also that the above functionψ is slowly varying at infinity [see Bingham, Goldie
and Teugels (1987), Proposition 1.5.9 b]. The most prevalent form forϕ is

ϕ(x) = cx−1(logx)−a, a > 1, c > 0, x > 1.

Thenψ(x) = (a − 1)(logx)a−1/c and hence

en ∼ (
E

∥∥X − f (1)
n (X)

∥∥2)1/2 ∼
(

c

a − 1

)1/2

(log logn)−(a−1)/2 asn → ∞.
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The following theorem is devoted to the case of regularly varying eigenvalues
with index−b<−1. It includes a wide class of Gaussian processes. As mentioned
in the Introduction, the sharp asymptotics foren in item (a) is now approximately
achieved byd-dimensional marginal block product quantizers. They will be more
precisely defined further on in the proof [see (4.1)–(4.3) in Section 4]. Asymptotic
optimality is obtained for some high valuesd of the marginal block dimension.
Furthermore, we show in item (b) that, although no longer asymptotically optimal

like in Theorem 2.1 (setting−b = −1), the scalar product quantizersf (1)
n as

defined in (1.5) still provide the sharp rate of convergence to 0 foren.

THEOREM 2.2. Assumeλj ∼ ϕ(j) asj → ∞, whereϕ : (s,∞) → (0,∞) is
a decreasing, regularly varying function at infinity of index−b < −1 for some
s ≥ 0. Set, for everyx > s,

ψ(x) := 1

xϕ(x)
.

(a) Sharp asymptotics foren. Then

en ∼
((

b

2

)b−1 b

b − 1

)1/2

ψ(logn)−1/2 asn → ∞.

(b) Asymptotics of the scalar product quantizersf
(1)
n . Moreover,

m(n) ∼ 2 logn

b

and (
E

∥∥X − f (1)
n (X)

∥∥2)1/2

�
((

b

2

)b−1(
1

b − 1
+ 4C(1)

))1/2

ψ(logn)−1/2 asn → ∞,

where the real constantC(1) is given by(2.1).

The proof combines finite-dimensional quantization theory and Shannon’s rate-
distortion theory.

REMARK 2.2. (i) We obtain from Theorem 2.2

(E‖X − f
(1)
n (X)‖2)1/2

en

�
(

1+ 4C(1)(b − 1)

b

)1/2

asn → ∞.

So, if the indexb is close to 1,f (1)
n is close to asymptotic optimality. The

constantC(1) is lower bounded by

lim
k→∞ k2ek

(
N (0,1)

)2 =
√

3π

2
= 2.7206. . .
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[see Graf and Luschgy (2000), page 124]. There is strong numerical evidence for

C(1) =
√

3π
2 . We computed upper bounds ofek(N (0,1))2 using the i

k+1-quantiles,
i ∈ {1, . . . , k}, of N (0,3) which are known to be asymptotically optimal. We
thus found

sup
1≤k≤1000

k2ek

(
N (0,1)

)2 ≤
√

3π

2
.

This suggests that the product quantizing rulef
(1)
n cannot be dramatically

improved upon for regularly varying eigenvalues.
(ii) The most prevalent form forϕ is

ϕ(x) = cx−b(logx)−a, b > 1, a ∈ R, x > max{1, e−a/b}.
Then we have from the above that

en ∼
(
c

(
b

2

)b−1 b

b − 1

)1/2

(logn)−(b−1)/2(log logn)−a/2 asn → ∞.

A useful equivalence principle can be deduced from the preceding theorems.

COROLLARY 2.3. Assume the situation of Theorem2.1 or 2.2. Let V andW

be centered Gaussian measures onH and assume thatdim supp(V ) < ∞ andW is
equivalent toP ∗ V . Then

en(W) ∼ en(P ) asn → ∞.

Now we consider, forε > 0,

N(ε) := min{n ≥ 1 :en ≤ ε},(2.4)

and the announced strong equivalence of logN(ε) and R(ε). The following
“flooding” formula for theε-entropyR(ε) of Gaussian measures was originally
given by Kolmogorov (1956) [see also Ihara (1993), Theorem 6.9.1]. For 0< ε <

e1 = (
∑∞

j=1λj )
1/2, let

r = r(ε) := max

{
k ≥ 1 :

∑
j≥k+1

λj + kλk > ε2

}
(2.5)

and letϑ = ϑ(ε) ∈ [λr+1, λr) be uniquely defined by∑
j≥r+1

λj + rϑ = ε2.(2.6)

Then
∑∞

j=1 min{λj ,ϑ} = ε2 and

R(ε) = 1
2

r∑
j=1

log(λj/ϑ).(2.7)
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The “reproducing distribution”Q2 = Q2(ε) = P
Y is given by

Y = Y (ε) :=
r∑

j=1

[
λ

1/2
j

(
1− ϑ

λj

)
Zj + ϑ1/2

(
1− ϑ

λj

)1/2

Z′
j

]
uj ,(2.8)

where Z′
1,Z

′
2, . . . are i.i.d. N (0,1)-distributed random variables independent

of (Zj )j≥1, sinceQ = Q(ε) := P
(X,Y ) solves the minimum problem in Shannon’s

R(ε), that is,R(ε) = H(Q|P ⊗ Q2).

COROLLARY 2.4. Assume the situation of Theorem2.2. Then

logN(ε) ∼ R(ε) asε → 0,

R(en) ∼ logn,

r(en) ∼ 2 logn

b
asn → ∞.

Furthermore, R is regularly varying at zero with index−2/(b − 1).

REMARK 2.3. (i) Donoho (2000) states logN(ε) ∼ R(ε) for eigenvalues
λj ∼ j−b with b > 1 and argues that this sharp asymptotics is a consequence of
Shannon’s rate-distortion theory. Our proof of (the more general) Corollary 2.4 is
not in the range of the Shannon theory (see Remark 4.1) and therefore, it does not
support Donoho’s assessment.

(ii) Let fn be ann-optimal quantizer forP . Then, under the condition of
Theorem 2.2,

entropy
(
P fn

) ∼ logn asn → ∞.

This follows from the above result, since

R(en) ≤ entropy
(
P fn

) ≤ logn.

(iii) Since r(en) = dim supp(Q2(en)), the numberr(en) plays the role of a
dimension of the level-n quantization problem. The same role is played bym(n)

for the level-n product quantization problem. By Theorem 2.2 and Corollary 2.4,
we havem(n) ∼ r(en).

(iv) In caseλj ∼ cj−b(logj)−a with c > 0, b > 1 anda ∈ R, the Shannon
ε-entropy can be computed as

R(ε) ∼ b

2

(
cb

b − 1

(
b − 1

2

)a)1/(b−1)

ε−2/(b−1) log(1/ε)−a/(b−1) asε → 0

[see, e.g., Binia (1974) and Luschgy and Pagès (2002); cf. also (4.14)].
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(v) In Shannon information theory is also introduced the distortion-rate
function

D(R) := inf
{(∫

‖x − y‖2 dQ(x, y)

)1/2

,

Q probability onH × H,Q1 = P andH(Q|P ⊗ Q2) ≤ R

}
,

whereH(Q|P ⊗ Q2) classically denotes the relative entropy information as de-
fined in the Introduction. One easily checks that it always satisfiesD(logn) ≤ en.
Furthermore, under the assumptions of Corollary 2.4, one shows as for the rate-
distortion function that

D(logn) ∼ en asn → ∞.

A further application concerns the small ball problem where one tries to find the
asymptotic behavior of the function

F(ε) = − logP(‖X‖ ≤ ε)(2.9)

for smallε > 0. The Shannonε-entropy provides an upper bound.

COROLLARY 2.5. Assume the situation of Theorem2.2. Then

F(ε) � R(ε) asε → 0.

REMARK 2.4. Under the same condition as above, the lower estimate(
b

b + 1

)b/(b−1)

R(ε) � F(ε) asε → 0

follows from Theorem 2.5 in Dereich (2003). Simple examples (e.g., Brownian
motion andH = L2([0,1], dt)) show that neitherF(ε) ∼ R(ε) nor F(ε) ∼
( b
b+1)b/(b−1)R(ε) asε → 0 is true.

3. Examples. We consider centeredL2(P)-continuous Gaussian processes
X = (Xt )t∈I with I = [0,1]d . ThenX can be seen as a centered Gaussian random
vector with values in the Hilbert spaceH = L2(I, dt).

3.1. Stationary Gaussian processes, Ornstein–Uhlenbeck process and frac-
tional Ornstein–Uhlenbeck processes.Let X = (Xt )t∈[0,1] be a centered sta-
tionary Gaussian process (restricted to[0,1]) with covariance functionC(s, t) =
γ (s − t), whereγ :R → R is continuous, symmetric and positive definite. Assume
that the spectral measure admits a (symmetric) Lebesgue densityh so that

C(s, t) =
∫

R

eiλ(t−s)h(λ) dλ =
∫

R

cos
(
λ(t − s)

)
h(λ) dλ.
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THEOREM 3.1 [Rosenblatt (1963)]. Under the conditionh ∈ L2(R, dλ) (whe-
re dλ denotes the Lebesgue measure on the real line) and the high-frequency
condition

h(λ) ∼ cλ−b asλ → +∞(3.1)

for somec > 0,b > 1, the asymptotic behavior of the eigenvalues of the covariance
operator is as follows:

λj ∼ 2cπ−(b−1)j−b asj → ∞.(3.2)

Therefore,

en ∼
(

2c

(
b

2π

)b−1 b

b − 1

)1/2

(logn)−(b−1)/2 asn → ∞.(3.3)

Condition (3.1) comprises a broad class of one-dimensional processes including
processes with rational spectral densities, the Matérn class [see the discussion
in Stein (1999)] and fractional Ornstein–Uhlenbeck processes (but excludes, e.g.,
bandlimited processes).

The fractional Ornstein–Uhlenbeck process with indexρ ∈ (0,2) corre-
sponds to

C(s, t) = exp(−a|s − t|ρ), a > 0.

The spectral measure of this process is a symmetricρ-stable distribution. Its
Lebesgue densityh is (symmetric) continuous and satisfies

h(λ) ∼ cλ−(1+ρ) asλ → +∞
with

c = a�(1+ ρ)sin(πρ/2)

π
,

where� denotes the gamma function. Consequently,

en(FOU) ∼
(

2a�(ρ)sin(πρ/2)(1+ ρ)

π

)1/2(1+ ρ

2π

)ρ/2

(logn)−ρ/2

(3.4)
asn → ∞.

If ρ = 1, one gets the standard stationary Ornstein–Uhlenbeck process on[0,1].
In this case,

en(OU) ∼ 2
√

a

π
(logn)−1/2 asn → ∞.(3.5)
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3.2. Brownian motion, integrated Brownian motions, Gaussian diffusions and
fractional Brownian motions. (i) Brownian motion.Let B = (Bt )t∈[0,1] be
a standard Brownian motion. Its covariance operator has eigenvalues

λk = (
π

(
k − 1

2

))−2
, k ≥ 1.

This gives

en(BM) ∼
√

2

π
(logn)−1/2 asn → ∞.(3.6)

(ii) m-integrated Brownian motion.Form ∈ N, let X = (Xt )t∈[0,1] bem-times
integrated Brownian motion:

Xt =
∫ t

0

∫ sm

0
· · ·

∫ s1

0
Bs1 ds1 · · ·dsm

= 1

(m − 1)!
∫ t

0
(t − s)m−1Bs ds.

Its covariance function reads

C(s, t) = 1

(m!)2

∫ s∧t

0
(s − r)m(t − r)m dr.

Ritter (2000,page 79) [see also Freedman (1999) form = 1 and Gao, Hanning
and Torcaso (2003)] has derived the asymptotic behavior of the eigenvalues of the
covariance operator:

λk ∼ (πk)−(2m+2) ask → ∞.

Theorem 2.2 then implies that

en(IBMm) ∼ π−(m+1)(m + 1)m+1/2
(

2m + 2

2m + 1

)1/2

(logn)−(m+1/2)(3.7)

The generalm-times integrated BM as considered by Gao, Hanning and Torcaso
(2003) exibits the same asymptotics of the eigenvalues and hence ofen.

(iii) Gaussian diffusion.Next, letX be the unique solution of the equation

dXt = A(t)Xt dt + dBt , X0 = ξ, t ∈ [0,1],
whereA ∈ L2([0,1], dt) andξ is N (0, σ 2)-distributed withσ 2 ≥ 0 and indepen-
dent ofB. We find the same asymptotics as forB:

en ∼
√

2

π
(logn)−1/2 asn → ∞.

This follows from Corollary 2.3. One only has to note that in caseσ 2 = 0 (i.e.,
ξ = 0), the distribution ofX is equivalent to the Wiener measure, and in case
σ 2 > 0, it is equivalent to the distribution ofξ + B.
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(iv) Fractional Brownian motion.The fractional Brownian motion (FBM) with
Hurst exponentβ ∈ (0,1) is a centered continuous Gaussian process on[0,1]
having the covariance function

C(s, t) = 1
2(s2β + t2β − |s − t|2β).

Using the spectral representation

C(s, t) = �e

∫
R

(1− eisλ)(1− e−itλ)
c

|λ|1+2β
dλ,

where

c = 1

4
∫ ∞
0 (1− cosλ)λ−(1+2β) dλ

= �(1+ 2β)sin(πβ)

2π
,

one shows the following proposition.

PROPOSITION3.2. The ordered eigenvalues of the FBM covariance operator
satisfy

λk ∼ 2cπ−2βk−(1+2β) ask → ∞.

PROOF. A different proof has been found independently by Bronski (2003).
For the sake of simplicity we denote by the same letterC a covariance function
and its associated kernel operator. The method of proof consists in checking that
the eigenvalues of the covariance operatorC of the FBM are (strongly) equivalent
to those of the stationary covariance kernel

C0(s, t) =
∫
[−1,1]c

ei(s−t)λ c

|λ|1+2β
dλ.

Then, the announced result follows straightforwardly from (3.2) sinceλ0,n ∼
2cπ−2βn−(1+2β) as n → ∞. To show this equivalence, we will rely on the
following comparison lemma [see, e.g., Rosenblatt (1963)].�

LEMMA 3.3. LetA1, A2 be two symmetric completely continuous transforma-
tions on a Hilbert spaceH . Denote the nth nonnegative eigenvalue ofAi , i = 1,2,
andA1+A2 byλ+

i,n andλ+
n , respectively,and thenth nonpositive eigenvalue ofAi ,

i = 1,2, andA1 + A2 byλ−
i,n andλ−

n . Then, for everyn, m ≥ 1,

λ+
n+m−1 ≤ λ+

1,n + λ+
2,m and λ+

n ≥ λ+
1,n+m−1 + λ−

2,m.(3.8)

First, we decomposẽC := C − C0 as follows:

C̃(s, t) = C1(s, t) + C2(s, t)

with

C1(s, t) := �e

∫
[−1,1]

(1−e−isλ)(1−eitλ)µ(dλ)
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and

C2(s, t) :=
∫
[−1,1]c

(
1−cos(tλ) − cos(sλ)

)
µ(dλ),

whereµ(dλ) := c
|λ|1+2β dλ.

The operatorC1 is nonnegative soλ1,n = λ+
1,n, n ≥ 1. The range of operatorC2

has obviously dimension 2 since it mapsL2([0,1], dt) onto 〈1, γ 〉 with γ (t) :=∫
[−1,1]c cos(tλ)µ(dλ). Henceλ±

2,m = 0 as soon asm ≥ 3 and it follows from
inequalities (3.8) that, for everyn ≥ 3

λ1,n+2 ≤ λ̃+
1,n ≤ λ1,n−2 and λ̃−

1,n = 0.

To estimate the eigenvaluesλ1,n of the operatorC1, one first notes that

C1(s, t) = −2c
∑
k≥1

(−1)k

(2k)!
(
s2k + t2k − (s − t)2k

) ∫ 1

0
λ2(k−β)−1dλ

= −c
∑
k≥1

(−1)k

(2k)!(k − β)

(
s2k + t2k − (s − t)2k)

= −c

n∑
k=1

(−1)k

(2k)!(k − β)

(
s2k + t2k − (s − t)2k

)
︸ ︷︷ ︸

=:C1,n(s,t)

+ (−c)
∑

k≥n+1

(−1)k

(2k)!(k − β)

(
s2k + t2k − (s − t)2k

)
︸ ︷︷ ︸

=:C′
1,n(s,t)

.

One checks thatC1,n mapsL2([0,1], dt) into the(2n − 1)-dimensional space
R2(n−1)[X] of polynomial functionsP such thatdegree(P ) ≤ 2(n−1). The above
lemma implies that

λ1,2n ≤ λ+
(1,n),2n + λ′+

(1,n),1 = λ′+
(1,n),1 = sup

‖u‖=1

∫
[0,1]2

C′
1,n(s, t)u(s)u(t) ds dt.

Now, using that|s2k + t2k − (s − t)2k| ≤ 3 for everys, t ∈ [0,1], one easily
derives that

0 ≤ λ1,2n ≤ 3c
∑

k≥n+1

1

(2k)!(k − β)
≤ 3c

k + 1− β

∑
k≥2(n+1)

1

k!

≤ 3c

n + 1− β

1

(2n + 1)(2n + 1)! ∼ 3c

2n2

1

(2n + 1)! .



1588 H. LUSCHGY AND G. PAGÈS

The sequence(λ1,n)n≥1 being nonincreasing, it follows thatλ1,n = o(λ0,n) and
consequentlỹλ+

n = o(λ0,n). Finally, one derives the announced conclusion from
the equalityC = C0 + C̃ and inequalities (3.8) of the lemma:

λn = λ+
n = λ0,n + o(λ0,n) asn → ∞.

This yields

en(FBM) ∼
(

�(2β)sin(πβ)(1+ 2β)

π

)1/2(1+ 2β

2π

)β

(logn)−β

(3.9)
asn → ∞.

It is interesting to observe that the quantization error of the fractional Brownian
motion exhibits the same asymptotic behavior as that of the fractional Ornstein–
Uhlenbeck process with covariance exp(−|s − t|2β/2).

3.3. Gaussian sheets.We consider centered(L2(P)-continuous) Gaussian
fieldsX = (Xt )t∈[0,1]d with covariance function of tensor product form

C(s, t) =
d∏

j=1

Cj (sj , tj ),

whereCj are covariance functions on[0,1]. Let λ1(j) ≥ λ2(j) ≥ · · · > 0 and
λ1 ≥ λ2 ≥ · · ·0 denote the ordered nonzero eigenvalues associated toCj andC

respectively. We rely on the following proposition.

PROPOSITION3.4 [Papageorgiou and Wasilkowski (1990)].If λk(j) ∼ cj k
−b

ask → ∞ for everyj ∈ {1, . . . , d}, wherecj > 0, b > 1, then

λk ∼
(

d∏
j=1

cj

)(
(d − 1)!)−b

k−b(logk)b(d−1) ask → ∞.

• Fractional Ornstein–Uhlenbeck sheet.The fractional Ornstein–Uhlenbeck
sheet on[0,1]d with index ρ ∈ (0,2) corresponds to the following covari-
ance function

C(s, t) =
d∏

j=1

exp(−aj |sj − tj |ρ), aj > 0.

By Example 3.1 and Proposition 3.4, the eigenvalues of its covariance opera-
tor satisfy

λk ∼
(

d∏
j=1

aj

)(
2�(1+ ρ)sin(πρ/2)

π1+ρ

)d(
(logk)d−1

(d − 1)!k
)1+ρ

ask → ∞.
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Therefore,

en(FOUS) ∼
(

d∏
j=1

aj

)1/2(
2�(1+ ρ)sin(πρ/2)

π1+ρ

)d/2(
(d − 1)!)−(1+ρ)/2

×
((

1+ ρ

2

)ρ 1+ ρ

ρ

)1/2

(logn)−ρ/2(log logn)(1+ρ)(d−1)/2(3.10)

asn → ∞.

If ρ = 1, one gets the stationary Ornstein–Uhlenbeck sheet on[0,1]d . In this case

en(OUS) ∼
(

d∏
j=1

aj

)1/2
2(d+1)/2

πd(d − 1)!(logn)−1/2(log logn)d−1

(3.11)
asn → ∞.

The 2-parameter O.U.-sheet has been successfully used as model for image
compression [see, e.g., Rosenfeld and Kak (1976)].

• Fractional Brownian sheet.The fractional Brownian sheet with Hurst
exponentβ ∈ (0,1) is a centered continuous Gaussian field on[0,1]d having the
covariance function

C(s, t) = 2−d
d∏

j=1

(s
2β
j + t2β − |sj − tj |2β).

By Propositions 3.2 and 3.4, the eigenvalues of th FBS covariance operator satisfy

λk ∼
(

�(1+ 2β)sin(πβ)

π1+2β

)d(
(d − 1)!)−(1+2β)

k−(1+2β)(logk)(1+2β)(d−1)

ask → ∞.

This yields

en(FBS) ∼
(

�(1+ 2β)sin(πβ)

π1+2β

)d/2(
(d − 1)!)−(1+2β)/2

×
((

1+ 2β

2

)2β 1+ 2β

2β

)1/2

(logn)−β(log logn)(1+2β)(d−1)/2(3.12)

asn → ∞.

If β = 1
2, one gets Brownian sheet where

C(s, t) =
d∏

j=1

(sj ∧ tj ).
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In this case

en(BS) ∼
√

2

πd(d − 1)!(logn)−1/2(log logn)d−1 asn → ∞.(3.13)

The same asymptotic behavior of the eigenvalues and subsequently ofen is
obtained for the completely tucked Brownian sheet on[0,1]d , where

C(s, t) =
d∏

j=1

(sj ∧ tj − sj tj ).

4. Proofs of results. We need an extension of the quantizing rulef
(1)
n based

now on quantizing blocks of Karhunen–Loève coefficients of fixed block lengthd .
Fix d,n ∈ N and setνj := λ(j−1)d+1, j ≥ 1. Let

m = m(n,d) := max

{
k ≥ 1 :n1/kν

d/2
k

(
k∏

j=1

νj

)−d/2k

≥ 1

}
,(4.1)

nj = nj (n, d) :=
[
n1/mν

d/2
j

(
m∏

i=1

νi

)−d/2m]
, j ∈ {1, . . . ,m},(4.2)

and

f (d)
n (x) :=

m∑
j=1

d∑
k=1

λ
1/2
(j−1)d+k

(
gj

(
x(j−1)d+1, . . . , xjd

))
ku(j−1)d+k, x ∈ H,

wheregj :Rd → R
d denotes annj -optimal quantizer forN (0, Id). SettingZ(j) :=

(Z(j−1)d+1, . . . ,Zjd), we get

f (d)
n (X) =

m∑
j=1

d∑
k=1

λ
1/2
(j−1)d+k

(
gj

(
Z(j)

))
ku(j−1)d+k,(4.3)

nj ≥ 1,�m
j=1nj ≤ n and |f (d)

n (H)| ≤ n. For d ≥ 2, the procedure (4.3) is worse

than quantizingd-blocks of coefficientsλ1/2
j Zj but good enough for our purpose.

For the evaluation of the error off (d)
n , we need the constant

C(d) := sup
k≥1

k2/dek

(
N (0, Id)

)2
.(4.4)

By the Zador theorem [see (1.3)],C(d) < ∞.

LEMMA 4.1. For everyd,n ∈ N,

E
∥∥X − f (d)

n (X)
∥∥2 ≤ ∑

j≥md+1

λj + 41/dC(d)mνm

with m = m(n,d) from (4.1)andνm = λ(m−1)d+1.
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PROOF. We have

E
∥∥X − f (d)

n (X)
∥∥2 = ∑

j≥md+1

λj +
m∑

j=1

d∑
k=1

λ(j−1)d+kE
(
Z(j−1)d+k − (

gj

(
Z(j)))

k

)2

≤ ∑
j≥md+1

λj +
m∑

j=1

νjE
∥∥Z(j) − gj

(
Z(j)

)∥∥2

= ∑
j≥md+1

λj +
m∑

j=1

νjenj

(
N (0, Id)

)2
.

Moreover, by (4.2),
m∑

j=1

νj enj

(
N (0, Id)

)2 ≤ C(d)

m∑
j=1

νjn
−2/d
j

= C(d)

m∑
j=1

νj (nj + 1)−2/d

(
nj + 1

nj

)2/d

≤ 41/dC(d)mn−2/dm

(
m∏

j=1

νj

)1/m

≤ 41/dC(d)mνm. �

A Shannon-type lower bound is as follows.

LEMMA 4.2. For everyn ∈ N,

e2
n ≥ ∑

j≥m+1

λj + mλm+1

with m = m(n) from (2.1).
[Note thatm(n) = m(n,1).]

PROOF. Setting

ak := k

2
log

((
k∏

j=1

λj

)1/k/
λk

)
= 1

2

k∑
j=1

log(λj /λk),(4.5)

we see that

m = m(n) = max{k ≥ 1 :ak ≤ logn}.(4.6)

On the other hand, by (2.8) forε < e1,

R(ε) > ar(ε),
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so that by the converse source coding theorem, for everyn ≥ 2,

logn ≥ R(en) > ar(en).

Consequently,r(en) ≤ m(n) and, using (2.5), this yields

e2
n ≥ ∑

j≥m+2

λj + (m + 1)λm+1 = ∑
j≥m+1

λj + mλm+1.

The assertion is also true forn = 1 sincem = m(1) equals the multiplicity
of λ1 and

e2
1 =

∞∑
j=1

λj = ∑
j≥m+1

λj + mλm ≥ ∑
j≥m+1

λj + mλm+1.
�

PROOF OFTHEOREM 2.1. The subsequent arguments already occur (some-
what hidden) in Luschgy and Pagès (2002). We repeat them for completeness and
the reader’s convenience. By Lemma 4.1, we have, for everyn ∈ N,

e2
n ≤ E

∥∥X − f (1)
n (X)

∥∥2 ≤ ∑
j≥m+1

λj + 4C(1)mλm

with m = m(n), where the approximation error is the dominating term. In fact, it
follows from the assumption on the eigenvalues that, forak defined in (4.5), we
haveak ∼ k/2 ask → ∞ and hence by (4.6),

m(n) ∼ 2 logn asn → ∞.

This yields ∑
j≥m+1

λj ∼ ψ(m)−1 ∼ ψ(logn)−1 asn → ∞.

Moreover,

xϕ(x) = o
(
ψ(x)−1)

asx → ∞
[cf. Bingham, Goldie and Teugels (1987), Proposition 1.5.9 b] and thus

E
∥∥X − f (1)

n (X)
∥∥2 � ψ(logn)−1 asn → ∞.

The lower estimate

e2
n � ψ(logn)−1 asn → ∞

follows from Lemma 4.2. �

Now we turn to the proof of Theorem 2.2. LetQ(d) denote the quantization co-
efficient (of order 2) of thed-dimensional standard normal distributionN (0, Id),
that is,

Q(d) = lim
n→∞n2/den

(
N (0, Id)

)2(4.7)

[see (1.3)].
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PROPOSITION4.3. The sequence(Q(d))d≥1 satisfieslimd→∞ Q(d)/d = 1.

PROOF. See Graf and Luschgy [(2000), Proposition 9.5].�

The key property is the followingd-asymptotics of the constantsC(d) defined
in (4.4).

PROPOSITION4.4. The sequence(C(d))d≥1 satisfieslim inf d→∞C(d)/d = 1.

PROOF. Since C(d) ≥ Q(d) for every d ∈ N, it follows from Proposi-
tion 4.3 that

lim inf
d→∞

C(d)

d
≥ 1.(4.8)

Again by Proposition 4.3, the converse inequality is true ifC(d) = Q(d) for
all but finitely manyd ’s. So assume thatC(d) > Q(d) for all members in a
subsequence of(C(d),Q(d))d . (No special notation for subsequences is used.)
Seten(d) := en(N (0, Id)) and

A(d, k) := k2/dek(d)2

d
.

If for d ∈ N, C(d) > Q(d) holds, then chooseη > 0 such thatC(d) > Q(d) + η.
By (4.7), there existsk0 ∈ N such that

sup
k≥k0+1

k2/dek(d)2 ≤ Q(d) + η.

Consequently,C(d) = supk≤k0
k2/dek(d)2 and hence, there existsp(d) ∈ N

such that

C(d)

d
= A

(
d,p(d)

)
.

We claim that for every sequence(k(d))d in N,

lim inf
d→∞ A

(
d, k(d)

) ≤ 1.(4.9)

The proof of (4.9) which settles the proposition is given by a sequence of steps.

STEP 1. Assume

lim inf
d→∞

logk(d)

d
= 0.

By taking a subsequence, we may assume that limd→∞ logk(d)
d

= 0. Using the
rough upper bound

ek(d)(d)2 ≤ e1(d)2 = d,
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one gets

A
(
d, k(d)

) ≤ k(d)2/d.

Consequently,

lim inf
d→∞ A

(
d, k(d)

) ≤ lim
d→∞ k(d)2/d = 1.

STEP 2. Forδ > 0 andε ∈ (0,1), consider the special sequence

k(d) = [
exp

(
d
(
δ + R1(ε)

))]
,(4.10)

whereR1(ε) denotes theε-entropy ofN (0,1) given by

R1(ε) = log(1/ε).(4.11)

The direct part of Shannon’s source coding theorem says that

lim sup
d→∞

ek(d)(d)2

d
≤ ε2

[see Dembo and Zeitouni (1998), Theorem 3.6.2]. A careful reading of the proof
shows that their large deviation approach also works for the unbounded (squared)
error function in our setting. Since limd→∞ k(d)2/d = (1/ε)2 exp(2δ), one gets

lim sup
d→∞

A
(
d, k(d)

) ≤ exp(2δ).(4.12)

STEP 3. Assume

0 < lim inf
d→∞

logk(d)

d
< ∞.

By taking a subsequence, we may assume that

lim
d→∞

logk(d)

d
= c with 0 < c < ∞.

Choosec1 ∈ (0, c) andδ ∈ (0, c1). Then ford large, logk(d)
d

≥ c1 and hence

k(d) ≥ exp(dc1) = exp
(
dδ + d(c1 − δ)

)
.

Setε := exp(δ − c1) and

q(d) := [
exp

(
d
(
δ + R1(ε)

))]
.

Then ford large ,k(d) ≥ q(d) and

A
(
d, k(d)

) ≤ k(d)2/d

d
eq(d)(d)2 = k(d)2/d

q(d)2/d
A

(
d, q(d)

)
.

By Step 2, we have

lim sup
d→∞

A
(
d, q(d)

) ≤ exp(2δ).
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Since limd→∞ k(d)2/d = exp(2c) and limd→∞ q(d)2/d = exp(2c1), one obtains

lim sup
d→∞

A
(
d, k(d)

) ≤ exp
(
2(c − c1) + 2δ

)
.

Letting δ → 0 and thenc1 → c yields

lim sup
d→∞

A
(
d, k(d)

) ≤ 1.

STEP 4. Assume

lim
d→∞

logk(d)

d
= ∞.

Fix m ∈ N and proceed by a block-quantizer design consisting ofd blocks of
lengthm for quantizingN (0, Imd ). Set

s = s(d) := [k(md)1/d ].
Thensd ≤ k(md) and

ek(md)(md)2 ≤ esd (md)2 ≤ des(m)2.

Consequently, for everyd ∈ N,

A
(
md,k(md)

) ≤ k(md)2/mdes(m)2 1

m
=

(
k(md)1/d

s

)2/m

s2/mes(m)2 1

m
.

Sinces(d) → ∞ asd → ∞, it follows from the Zador theorem that

lim
d→∞ s(d)2/mes(d)(m)2 = Q(m)

[see (4.7)]. This implies

lim inf
d→∞ A

(
md,k(md)

) ≤ Q(m)

m
.

Using Proposition 4.3, we deduce that

lim inf
d→∞ A

(
d, k(d)

) ≤ 1.
�

REMARK 4.1. We emphasize that Step 4 of the above proof is not in the range
of the Shannon theory.

PROOF OFTHEOREM 2.2. By Lemma 4.1, we have, for everyd , n ∈ N,

e2
n ≤ E

∥∥X − f (d)
n (X)

∥∥2 ≤ ∑
j≥md+1

λj + 41/dC(d)mνm
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with m = m(n,d). Setting

ak(d) := k

2
log

((
k∏

j=1

νd
j

)1/k/
νd
k

)
,

we see that

m(n,d) = max{k ≥ 1 :ak(d) ≤ logn}.
The assumption on the eigenvalues impliesak(d) ∼ bdk/2 ask → ∞ and hence,
for everyd ∈ N,

m(n,d) ∼ 2 logn

bd
asn → ∞.

Consequently,

νm ∼ λmd ∼
(

2

b

)−b

ϕ(logn),

m,dνm ∼
(

2

b

)1−b

ψ(logn)−1

and ∑
j≥md+1

λj ∼ mdϕ(md)

b − 1
∼ 1

b − 1

(
2

b

)1−b

ψ(logn)−1 asn → ∞.

We deduce that, for everyd ∈ N,

E
∥∥X − f (d)

n (X)
∥∥2 �

(
b

2

)b−1( 1

b − 1
+ 41/dC(d)

d

)
ψ(logn)−1

(4.13)
asn → ∞.

Note that ford = 1, (4.13) gives the desired upper estimate forf
(1)
n . Now it follows

from Proposition 4.4 that

e2
n �

(
b

2

)b−1 b

b − 1
ψ(logn)−1 asn → ∞.

The lower estimate

e2
n �

(
b

2

)b−1 b

b − 1
ψ(logn)−1 asn → ∞

is a consequence of Lemma 4.2.�

Finally, we prove Corollaries 2.3–2.5.
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PROOF OF COROLLARY 2.3. Let ρ1 ≥ ρ2 ≥ · · · > 0 denote the nonzero
eigenvalues of the covariance operator ofP ∗V and letd := dim supp(V ). Then,
by the minimax characterization [see (3.8)] of eigenvalues, for everyj ∈ N,

ρj+d ≤ λj ≤ ρj .

Regular variation of the eigenvaluesλj implies ρj ∼ λj as j → ∞. Let µ1 ≥
µ2 ≥ · · · > 0 denote the nonzero eigenvalues associated toW . Theorem 2 in
Ihara (1970) and regular variation ofρj imply that µj ∼ ρj as j → ∞. Thus
the assertion follows from Theorems 2.1 and 2.2.�

PROOF OFCOROLLARY 2.4. By Theorem 4.12 in Luschgy and Pagès (2002),
we have

e2
n ∼

(
b

2

)b−1 b

b − 1
ψ

(
R(en)

)−1 asn → ∞,

with the functionψ from Theorem 2.2. Combining this with Theorem 2.2 gives

ψ
(
R(en)

) ∼ ψ(logn) asn → ∞.

There exists a functioñψ which is regularly varying at infinity of index 1/(b − 1)

such that

ψ̃(ψ(x)) ∼ x asx → ∞
[cf. Bingham, Goldie and Teugels (1987), Theorem 1.5.12]. Hence

R(en) ∼ ψ̃
(
ψ

(
R(en)

)) ∼ ψ̃
(
ψ(logn)

) ∼ logn asn → ∞.

In particular,

logN(ε) ∼ R
(
eN(ε)

)
,

logN(ε) ∼ log
(
N(ε) − 1

) ∼ R
(
eN(ε)−1

)
asε → 0.

Since ε < eN(ε)−1 for ε ≤ e2 and eN(ε) ≤ ε and thusR(ε) ≥ R(eN(ε)−1) and
R(ε) ≤ R(eN(ε)), we obtain

logN(ε) ∼ R(ε) asε → 0.

Using Theorem 2.2, this implies

ε2 ∼ e2
N(ε) ∼

(
b

2

)b−1 b

b − 1
ψ(R(ε))−1 asε → 0.

Consequently,

R(ε) ∼ ψ̃

((
b

2

)b−1 b

b − 1
ε−2

)
(4.14)

∼ b

2

(
b

b − 1

)1/(b−1)

ψ̃(ε−2) asε → 0,
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and thereforeR is regularly varying at zero of index−2/(b − 1). Finally, by (2.8),
R(en) ∼ ar(en) ∼ r(en)b/2 asn → ∞ with ak from (4.5) and thus

r(en) ∼ 2 logn

b
asn → ∞. �

PROOF OFCOROLLARY 2.5. For everyn ∈ N, c ∈ (0,1), we have

en ≥ cF−1
(

log
(

n

1− c2

))
[see Dereich, Fehringer, Matoussi and Scheutzow (2003) or Graf, Luschgy and
Pagès (2003)]. Consequently,

F

(
en

c

)
≤ log

(
n

1− c2

)
∼ logn asn → ∞.

By Corollary 2.4, this implies

F

(
ε

c

)
≤ F

(
eN(ε)

c

)
� logN(ε) ∼ R(ε)

and thus

F(ε) � R(cε) ∼ c−2/(b−1)R(ε) asε → 0.

Letting c → 1 yields the assertion.�
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