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Abstract: The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas
such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to
compute exact values of partition dimension for a graphicmetric space, (G, dG) and networks. In this article,
we give the sharp upper bounds and lower bounds for the partition dimension of generalizedMöbius ladders,
Mm,n, for all n ≥ 3 and m ≥ 2.
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1 Introduction
Computer networks can bemodeled on the grounds of graphs,where hosts, servers or hubs can be considered
as vertices and edges – as connecting medium between them. Vertex is actually a possible location to �nd a
fault or some damaged devices in a computer network. This idea somehow urged Slater and independently
Harary and Meletr in [1] to uniquely recognize each vertex of a graph in a network so that a fault could be
controlled in an e�cient way. Thus, the basis for notion of locating sets and locating number of graphs came
into existence. Since then, the resolving sets have been investigated a lot [1]. The resolving set contributes in
various areas such as connected joins in graphs [2], network discovery [3–5], strategies for the mastermind
games [3, 4], applications of pattern recognition, combinatorial optimization, image processing [6], pharma-
ceutical chemistry and game theory.

Consider a simple, connected graphG, andmetric dG ∶ V(G)×V(G) → N∪0,whereN is the set of positive
integers and dG(x, y) is theminimumnumber of edges in any path between x and y. LetW = {w1,w2, ...,wk}

be an ordered set of vertices of G and let v be a vertex of G. The representation r(v∣W) of v with respect to
W is the k−tuple (d(v,w1), d(v,w2), ..., d(v,wk)). If distinct vertices of G have distinct representation with
respect to W, then W is called a resolving set of G, see [1]. Such resolving set with minimum cardinality is a
basis of G and metric dimension of G, denoted by dim(G) is its cardinality, [7, 8].
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Buczkowski et al. established metric dimension of wheelWn to be ⌊ 2n+25 ⌋ for n ≥ 7 [9], Caceres et. al. [10]
found that the metric dimension of fan is ⌊ 2n+25 ⌋ for n ≥ 7 and Tomescu et. al. [11] determined the dimension
of Jahangir graphs J2n to be ⌊ 2n3 ⌋ for all n ≥ 4.

A particular metric-feature of the family of graphs is independence of metric dimension on the particular
element of the family. A connected graph has constant metric dimension if dim(G) = k where k ∈ Z+. In
[8] Chartrand et. al. proved that a graph has constant metric dimension 1 i� it is a path. In [12] the authors
discussed some families of constant meric dimensions. The authors computedmetric dimension of wheels in
[13] and uni-cyclic graphs in [14]. The authors in [15] computed metric dimension of alpha boron nanotubes.
Javaid et. al. computed metric dimension of P(n, 3) and established new results on metric dimension of
rotationally-symmetric graph. Murtaza et. al. computed partial results of metric dimension of Möbius ladder
in [16] whereas Munir et. al. computed exact and complete results for metric dimension of Möbius Ladders in
[17].

A variant of metric dimension of a connected graph is a partition dimension of graph introduced in [19–
23] given as : Let G be a connected graph, a subset S ⊂ V(G) and a vertex v, distance d(v, S) = min{d(v, x) ∶
x ∈ S}. If Π = {S1, ...St} is an ordered t-partition of V(G), then r(v∣Π) = {d(v, S1), ..., d(v, St)} is the t-
tuple representation of vwith respect toΠ. If this t-tuple representation of v, r(v∣Π) for all v ∈ V(G) being all
distinct, then this Π is called a resolving partition and the minimum cardinality of such resolving partition
is a partition dimension, represented as pd(G).

A natural question may be asked: are partition dimension andmetric dimension related in some way? In
[20, 21], Cartrand et. al. proved that pd(G) ≤ β(G) + 1 for a non-trivial connected graph G. But in [22, 23],
Tomescu et. al. proved that it can bemuch smaller than the metric dimension. In fact, the authors completed
the list of all 23 examples of connected graphs of order n having partition dimensions 2, n −1 or n. They also
gave an example of graphs with �nite partition dimension but those which have in�nite metric dimension.
Recently, Hernando et. al. has proved that there are only 15 families of such type. Tomescu et. al. computed
the bounds for the partition dimension of wheel graph in [23]. In [24], the authors computed some bounds
for metric and partition dimension of a connected graph. In [25], the authors obtained some sharp bounds
for the partition dimension of unicyclic graphs.

Chartrand et al. proved in [22] that if G is a connected graph of order n ≥ 2 then pd(G) = 2 if and only
if G is a path, pd(G) = n if and only if G = Knand for n ≥ 5 pd(G) = n − 1 if and only if G is one of the
graphs K1,n−1,Kn − e, K1 + (K1∪ Kn+2). In [22] Tomescu and Imran studied in�nite regular graphs which are
generated by tailings of the plane by regular triangles and hexagons. They proved that these graphs have no
�nite metric bases but their partition dimension is �nite and they evaluated this dimension in some cases. In
[23], they computed a partition dimension and a connected partition dimension of wheel graphs and showed
that n ≥ 4, ⌈(2n)

1
3 ⌉ ≤ pd(G) ≤ 2⌈n

1
2 ⌉+1. The following lemma gives a general upper bounds for the partition

dimension of a graph of size n.

Lemma 1.1. If ∣ G ∣≥ 3, then pd(G) ≤ n − diam(G) + 1

In this article we want to compute sharp bounds for partition dimension of Generalized Möbius ladders.

2 Generalized Möbius ladders
The classical Möbius ladder Mn is a cubic circulant graph with an even number of vertices, formed from an
n-cycle by adding edges connecting opposite pair of vertices in the cycle, except with two pairs which are
connected with a twist, as you can see in the �gure:
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Fig. 1.Möbius ladder M16

This graph has been an active area of research. For instance, [16, 17] give complete results for its metric di-
mension. In [26] the authors computed a distance labeling of this graph and also introduced its generalization
referred to asMöbius ladder. In [27], the authors not only rede�ned this generalization in a novel way but also
computed metric dimension of Mm,n. They also obtained the results of [16, 17] as easy consequences of the
results in [27]. Consider the Cartesian product Pm × Pn of paths Pm and Pn with vertices u1, u2, . . . , um and
v1, v2, . . . , un, respectively. Take a 180o twist and identify the vertices (u1, v1), (u1, v2), . . . , (u1, vn) with
the vertices (um , vn), (um , vn−1), . . . , (um , v1), respectively, and identify the edge ((u1, i), (u1, i + 1)) with
the edge ((um , vn+1−i), (um , vn−i)), where 1 ≤ i ≤ n − 1. What we receive is the generalized Möbius ladder
Mm,n. You may observe that we receive the usual Möbius ladder for n = 2 and for any odd integer m ≥ 4. You
can see M7,3 in the following �gure.

Fig. 2. P7

Fig. 3. P3

Fig. 4. P7 × P3
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For brevity we shall use the symbol vij (or simply ij) to represent the vertex (ui , vj) ofMm,n, as you can see in
the �gure:

Fig. 5. P7 × P3 with complete simple labels

The generalized Möbius ladder obtained from P7 × P3 is:

Fig. 6. M7,3

So the generalized Möbius ladder Mm,n is a non-regular simple connected graph on n(m − 1) vertices.
This article deals with the computation of sharp upper bounds and lower bounds for partition and metric
dimensions of Mm,n.

3 Main results and discussions
In this part we give our main results. We begin with the sharp upper bounds for the partition dimension of
Mm,n. Then we move towards the lower bounds.

Theorem 3.1. For m ≥ 3 and n ≥ 2

3 ≤ pd(Mm,n) ≤

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

5, when n ≡ 1(mod2)and m ≡ 1(mod2), m − n ≥ 4
4, when n ≡ 0(mod2)and m ≡ 1(mod2)
4 when n ≡ 1(mod2)and m ≡ 0(mod2)
5 when n ≡ 0(mod2)and m ≡ 0(mod2), m − n ≥ 4

At �rst we compute the upper bounds. We construct a general resolving partition on a case by case basis.
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3.1 Upper bound

Proof. We divide the proof in two cases on the basis of parities of m and n.
Case I: When m and n are of opposite parity
LetΠ = {S1, S2, S3, S4} Where S1 = {V1,1}, S2 = {V1,n}, S3 = {V1,2, V1,3, ...,
V1,n−1, V2,1, V2,2, ......, V2,n , ....., Vm−2,1, Vm−2,2, ...,
Vm−2,n , Vm−1,2, Vm−1,3, ..., Vm−1,n} S4 = {Vm−1,1}. We prove that Π is a resolving partition for Mm,n. To �nd
distance vectors we use two parameters q, i and depending on their di�erent values we divide the entries of
distance vectors into four steps.
Step I: Distances of S1 with all vertices of Mm,n.
In this case for each value of q ∈ {1, 2, ..., n} the parameter i varies from 1 to m − 1. The entries of di�erent
vectors are

d(S1, Vi,q) = {
i + q − 2, 1 ≤ i ≤ 1

2(m + n − 2q + 1)
m + n − q − i, 12(m + n − 2q + 3) ≤ i ≤ m − 1

Step II: Distances of S2 with all vertices of Mm,n.
For each value of q ∈ {1, 2, ..., n} the parameter i varies from 1 to m - 1 and we get d(S2, Vi,q) =

d(S1, Vi,n+1−q).
Step III : Distances of S3 with all vertices of Mm,n.
Here for each value of q ∈ {1, 2, ..., n} the parameter i varies from 1 to m - 1 and we have

d(S3, Vi,q) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if i = 1,q = 1,q = n
1, i� = m − 1, q = n
0, otherwise

Step IV: Distances of S4 with all vertices of Mm,n.
Here we have two parts
a) For q = 1 , we have

d(S4, Vi,q) = {
i + n − 1, 1 ≤ i ≤ 1

2(m − n − 1)
m − 1 − i, 12(m − n + 1) ≤ i ≤ m − 1

b) For each value of q ∈ {2, ..., n} the parameter i varies from 1 to m - 1 and we have d(S4, Vi,q) =

d(S1, Vi,n+2−q).
These representations are distinct in at least one coordinate. So Π is a resolving partition for Mm,n so

clearly pd(Mm,n) ≤ 4.

Example. Clearly pd(M9,4) ≤ 4 as the resolving partition for M9,4 is Π = {S1, S2, S3, S4} where S1 = {V1,1},
S2 = {V1,4}, S3 = {V1,2, V1,3, V2,1, V2,2, V2,3, V2,4

, ....., V7,1, V7,2, V7,4, V8,2, V8,3, V8,4}, S4 = {V8,1}.
The representations of di�erent vertices of M9,4 with respect toΠ are
V1,1(0, 3, 1, 4), V1,2(1, 2, 0, 3), V1,3(2, 1, 0, 2), V1,4(3, 0, 1, 1),
V2,1(1, 4, 0, 5), V2,2(2, 3, 0, 4), V2,3(3, 2, 0, 3), V2,4(4, 1, 0, 2),
V3,1(2, 5, 0, 5), V3,2(3, 4, 0, 5), V3,3(4, 3, 0, 4), V3,4(5, 2, 0, 3),
V4,1(3, 5, 0, 4), V4,2(4, 5, 0, 5), V4,3(5, 4, 0, 5), V4,4(5, 3, 0, 4),
V5,1(4, 4, 0, 3), V5,2(5, 5, 0, 4), V5,3(5, 5, 0, 5), V5,4(4, 4, 0, 5),
V6,1(5, 3, 0, 2), V6,2(5, 4, 0, 3), V6,3(4, 5, 0, 4), V6,4(3, 5, 0, 5),
V7,1(5, 2, 0, 1), V7,2(4, 3, 0, 2), V7,3(3, 4, 0, 3), V7,4(2, 5, 0, 4),
V8,1(4, 1, 1, 0), V8,2(3, 2, 0, 1), V8,3(2, 3, 0, 2), V8,4(1, 4, 0, 3)

Case II: when m and n are of same parity: We want to prove that pd(Mm,n) ≤ 5 by constructing a general
resolving partition of size 5, for m − n ≥ 4 and m, n are of same parity.
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Proof. Let Π = {S1, S2, S3, S4, S5} where S1 = {V1,1}, S2 = {V1,n} ,
S3 = {V1,2, V1,3, ..., V1,n−1, V2,1, V2,2, ......, V2,n , ....., Vm−2,1, Vm−2,2, ..., Vm−2,n , Vm−1,2, Vm−1,3

, ..., Vm−1,n−1} , S4 = {Vm−1,1} , S5 = {Vm−1,n} .
We prove thatΠ is a resolving partition forMm,n. To �nd distance vectors we use two parameters q , i and

depending on their di�erent values we divide the entries of distance vectors into �ve steps.
Step I: Distances of S1 with all vertices of Mm,n.

In this case for each value of q ∈ {1, 2, ..., n} the parameter i varies from 1 tom - 1. The entries of di�erent
vectors are

d(S1, Vi,q) = {
i + q − 2, 1 ≤ i ≤ 1

2(m + n − 2q + 2)
m + n − q − i, 12(m + n − 2q + 4) ≤ i ≤ m − 1

Step II: Distances of S2 with all vertices of Mm,n.
For each value of q ∈ {1, 2, ..., n} the parameter i varies from 1 to m - 1 and we get d(S2, Vi,q) =

d(S1, Vi,n+1−q).
Step III : Distances of S3 with all vertices of Mm,n.
Here for each value of q ∈ {1, 2, ..., n} the parameter i varies from 1 to m - 1 and we have

d(S3, Vi,q) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if i = 1,q = 1,q = n
1, i� = m − 1, q = 1, q = n
0, otherwise

Step IV : Distances of S4 with all vertices of Mm,n. Here we have two parts
a) For q = 1 , we have

d(S4, Vi,q) = {
i + n − 1, 1 ≤ i ≤ 1

2(m − n)
m − 1 − i, 12(m − n + 2) ≤ i ≤ m − 1

b) For each value of q ∈ {2, ..., n} the parameter i varies from 1 to m - 1 and we have d(S4, Vi,q) =

d(S1, Vi,n+2−q)

Step V : Distances of S5 with all vertices of Mm,n.
Here for each value of ∈ {1, 2, ..., n} the parameter i varies from 1 to m - 1 and we have d(S5, Vi,q) =

d(S4, Vi,n+1−q).
These representations are distinct in at least one coordinate. SoΠ is a resolving partition forMm,n. Since

there is no 4 resolving partition for Mm,n, hence Π is a minimal resolving partition for Mm,n. So partition
dimension of Mm,n is 5.

Example. The partition dimension of M9,3 is 5. The resolving partition for M9,3 is
Π = {S1, S2, S3, S4, S5}.Where
S1 = {V1,1}

S2 = {V1,3}

S3 = {V1,2, V2,1, V2,2, V2,3, ....., V7,1, V7,2, V7,3, V8,2, V8,3}

S4 = {V8,1}

S5 = {V8,3}

The representations of di�erent vertices of M9,3 with respect toΠ are
V1,1(0, 2, 1, 3, 1), V1,2(1, 1, 0, 2, 2), V1,3(2, 0, 1, 1, 2),
V2,1(1, 3, 0, 4, 2), V2,2(2, 2, 0, 3, 3), V2,3(3, 1, 0, 2, 4),
V3,1(2, 4, 0, 5, 3), V3,2(3, 3, 0, 4, 4), V3,3(4, 2, 0, 3, 5),
V4,1(3, 5, 0, 4, 4), V4,2(4, 4, 0, 5, 5), V4,3(5, 3, 0, 4, 4),
V5,1(4, 4, 0, 3, 5), V5,2(5, 5, 0, 4, 4), V5,3(4, 4, 0, 5, 3),
V6,1(5, 3, 0, 2, 4), V6,2(4, 4, 0, 3, 3), V6,3(3, 5, 0, 4, 2),
V7,1(4, 2, 0, 1, 3), V7,2(3, 3, 0, 2, 2), V7,3(2, 4, 0, 3, 1),
V8,1(3, 1, 1, 0, 2), V8,2(2, 2, 0, 1, 1), V8,3(1, 3, 1, 2, 0, )
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3.2 Lower bound

Proof. It is clear that 2 < pd(Mm,n) as it is not a path, [8]. So it is obvious that 3 ≤ pd(Mn,m).

Theorem 3.2. For m ≥ 3 and n ≥ 2

2 ≤ β(Mm,n) ≤

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

4, when n ≡ 1(mod2)and m ≡ 1(mod2), m − n ≥ 4
3, when n ≡ 0(mod2)and m ≡ 1(mod2)
3 when n ≡ 1(mod2)and m ≡ 0(mod2)
4 when n ≡ 0(mod2)and m ≡ 0(mod2), m − n ≥ 4

Proof. Proof is just straightforward after taking into account the fundamental inequality betweenmetric and
patrtition dimensions.

4 Conclusions and open problems
In this article we have computed sharp upper bounds for the partition dimension of the generalized Möbius
ladders and arrive at the following results

Theorem 4.1. For m ≥ 3 and n ≥ 2

3 ≤ pd(Mm,n) ≤

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

5, when n ≡ 1(mod2)and m ≡ 1(mod2), m − n ≥ 4
4, when n ≡ 0(mod2)and m ≡ 1(mod2)
4 when n ≡ 1(mod2)and m ≡ 0(mod2)
5 when n ≡ 0(mod2)and m ≡ 0(mod2), m − n ≥ 4

and

Theorem 4.2. For m ≥ 3 and n ≥ 2

2 ≤ β(Mm,n) ≤

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

4, when n ≡ 1(mod2)and m ≡ 1(mod2), m − n ≥ 4
3, when n ≡ 0(mod2)and m ≡ 1(mod2)
3 when n ≡ 1(mod2)and m ≡ 0(mod2)
4 when n ≡ 0(mod2)and m ≡ 0(mod2), m − n ≥ 4

At the same timewepose natural open problems regarding the exact values of partition dimension, pd(Mm,n)

and β(Mm,n), and sharp lower bounds for this new family of graphs. For further problems about the
dimensions of graphs please see [28, 29].
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