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SHARP BOUNDS FOR THE CHROMATIC NUMBER

OF RANDOM KNESER GRAPHS

S. KISELEV and A. KUPAVSKII

Abstract. Given positive integers n ≥ 2k, a Kneser graph KGn,k is a graph whose
vertex set is the collection of all k-element subsets of the set {1, . . . , n}, with edges
connecting pairs of disjoint sets. A famous result due to L. Lovász states that the
chromatic number of KGn,k is equal to n − 2k + 2. In this paper, we study the

random Kneser graph KGn,k(p), obtained from KGn,k by including each of the
edges of KGn,k independently and with probability p.

We prove that, for any fixed k ≥ 3, χ(KGn,k(1/2)) = n − Θ( 2k−2
√

log
2
n). We

also provide new bounds for the case of growing k. This significantly improves
previous results on the subject, obtained by Kupavskii and by Alishahi and Haji-
abolhassan. We also discuss an interesting connection to an extremal problem on
embeddability of complexes.

For positive integers n, k, where n ≥ 2k, a Kneser graph KGn,k = (V,E) is
a graph, whose vertex set V is the collection of all k-element subsets of the set
[n] := {1, . . . , n}, and E is the collection of the pairs of disjoint sets from V . It
was introduced by Kneser [21], who showed that χ(KGn,k) ≤ n − 2k + 2. He
conjectured that this inequality is in fact an equality. This was proven by Lovász
[25], who introduced the use of topological methods in combinatorics in that paper.

We remark that independent sets in KGn,k are intersecting families, and it is

a famous result of Erdős, Ko and Rado [12] that α(KGn,k) =
(

n−1
k−1

)

. For results

on the independence sets of Kneser graphs and hypergraphs, see [11, 13, 14, 15,
16, 18, 24, 34].

The notion of the random Kneser graph KGn,k(p) was introduced in [5, 6].
For 0 < p < 1, the graph KGn,k(p) is constructed by including each edge of
KGn,k in KGn,k(p) independently with probability p. The authors of [7] studied
the independence number of KGn,k(p). Later, their results were strengthened
in [3, 8, 9]). Interestingly, the independence number of KGn,k(p) stays exactly

the same as the independence number of KGn,k in many regimes. Independence
numbers of random subgraphs of generalized Kneser graphs and related questions
were studied in [4, 5, 6, 10, 17, 27, 28, 29, 30, 31, 32, 33]. In [22], the second
author proposed to study the chromatic number of KGn,k(p). He proved that in
different regimes the chromatic number of KGn,k(p) is very close to that of KGn,k.
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In particular, he showed that, for any constant k and p, there exists a constant C,
such that a.a.s.1

(1) χ(KGn,k(p)) ≥ n− Cn
3

2k .

A better a.a.s. bound was next obtained by Alishahi and Hajiabolhassan [1]. In
a follow-up paper, the second author [23] improved the inequality (1) to

(2) χ(KGn,k(p)) ≥ n− C(n log n)1/k

for some C = C(p, k). The main result of this paper is the following theorem,
which, in particular, significantly improves on the bounds (1) and (2) and settles
the problem in the case of constant k.

Theorem 1. For any fixed 0 < p < 1, k ≥ 3 and n → ∞, we a.a.s. have

χ(KGn,k(p)) = n−Θ
(

2k−2

√

log2 n
)

.

For k = 2 and n → ∞ we a.a.s. have

χ(KGn,k(p)) = n−Θ
(

2

√

log2 n · log2 log2 n
)

.

For k = 1, KGn,k is just the complete graph Kn, and thus KGn,1(p) = G(n, p).
Therefore, we a.a.s. have χ(KGn,1(p)) = Θ( n

logn ) (see, e.g., [2]), that is, an

analogue of Theorem 1 cannot hold.
We note that a weaker version of Theorem 1 was announced in the short note

due to the first author and Raigorodskii [20].
While the methods for studying Kneser graphs and hypergraphs in [22], [1] were

topological, in [23] combinatorial methods relating the structure of KGn,k and
KGn,k+l were used. In this paper we use (different) combinatorial and probabilistic
methods, which are based on the analysis of the structure of independent sets
in KGn,k(p) and some parts of which are somewhat resemblant of [7], [3]. In
particular, we prove the following lemma about the structure of colourings of
random Kneser graph.

Lemma 2. For any fixed 0 < p < 1, k ≥ 2, n → ∞ and some some C = C(p, k)
the random graph KGn,k(p) a.a.s. has a colouring in χ(KGn,k(p)) colours such

that at least n− C k−1

√

log2 n of colour classes form a subset of a star.

The papers [22], [1], [23] were also concerned with the following question: when
does the chromatic number drop by at most an additive constant? The best results
here are due to the second author [23], who proved the following a.a.s. bound for
any fixed l ≥ 2 and some absolute constant C = C(l):

(3) χ(KGn,k(1/2)) ≥ n− 2k + 2− 2l if k ≥ C(n log n)1/l.

In this paper, we provide a major improvement of (3), replacing the polynomial
dependence of k on n by logarithmic.

Theorem 3. For any l ≥ 6 there exists C = C(l), such that for n → ∞ a.a.s.

(4) χ(KGn,k(1/2)) ≥ n− 2k + 2− 2l if k ≥ C log
1

2l−3 n.

1asymptotically almost surely, i.e., with probability tending to 1 as n → ∞.
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We, however, expect that the same result should hold for k ≥ C log log n. We
can prove an upper bound of this form (see [23, Section 5]). The difficulty is in
the lower bound, and it is related to certain extremal properties of complexes.

Colourings and simplicial complexes

One of the difficulties that arise in the study of colourings of random Kneser graphs
is that we poorly understand that happens if we reduce the number of colours by
some constant value.

If we colour KGn,k into χ(KGn,k)− 1 = n− 2k + 1 colours, then we of course
get at least 1 monochromatic edge. But the intuition suggests that we should have
much more. Modifying the standard colouring of KGn,k by colouring subsets on
the last 2k elements (instead of 2k−1) in the same colour, we get a colouring with
1
2

(

2k
k

)

monochromatic edges.

Problem 4. Given k and n, what is the minimum number ζ of monochromatic
edges in the colouring of KGn,k into n− 2k + 1 colours?

One approach that allows us to get some bounds on ζ is via Schrijver graphs

SGn,k, that is, induced subgraphs of Kneser graphs on k-sets not containing two
cyclically consecutive elements of [n]. It is known that χ(SGn,k) = χ(KGn,k).

However, the number of vertices in SGn,k is roughly
(

n−k
k

)

. Thus, taking an
n − 2k + 1-colouring of KGn,k and a permutation of [n], we get monochromatic
edges in each induced SGn,k that corresponds to that permutation. Averaging over

the choice of the permutaion, we can conclude that there are at least
|E(KGn,k)|
|E(SGn,k)|

monochromatic edges in KGn,k. This gives good bounds for n = ck for constant
c, but already for n = k2 the aforementioned ratio is a constant independent of k.

It may be even more natural to study the vertex version of this problem. We
believe that the following strengthening of the Lovász’ bound χ(KGn,k) ≥ n −
2k + 2 should be true.

Conjecture 1. The largest subset of vertices of KGn,k that may be properly
coloured in n − 2k + 1 colours has size at most

(

n
k

)

− ck, where c > 1 is some
constant.

Again, if one modifies the standard colouring of KGn,k, by first taking n− 2k

stars and then an intersecting family on the remaining set
(

X
k

)

, |X| = 2k, then the

number of not coloured sets is
(

2k−1
k

)

≈ 4k. Interestingly, we can do better and

provide an example with only 3k “missing” sets.
This question has a very interesting topological counterpart. We advise the

reader to consult the book of Matoušek [26] for the introduction to topological
method. A simplicial complex H ⊂ 2[n] is a family satisfying the condition that if
H ∈ H and H ′ ⊂ H, then H ′ ∈ H. Put

H∗2
∆ :=

{

(H1 × {1}) ∪ (H2 × {2}) : H1, H2 ∈ H, H1 ∩H2 = ∅
}

.
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There is a natural free Z2-action onH∗2
∆ , and we can define the Z2-index indZ2

(H∗2
∆ )

of H∗2
∆ as the minimal dimension d of a sphere Sd, for which there exists a contin-

uous map ‖H∗2
∆ ‖ → Sd that commutes with the Z2-actions on the spaces. Using

a result due to Sarkaria (see [26, Theorem 5.8.2]), Conjecture 1 is implied by the
following conjecture:

Conjecture 2. There exists c > 1, such that if H is a simplicial complex that
has fewer than ck k-element sets, then indZ2

(H∗2
∆ ) ≤ 2k− 3 (or even the following

is true: H is embeddable into R
2k−3).

Note that, substituting c = 1 in the (version in the brackets of the) conjecture
above, we get the geometric realisation theorem, stating that any finite k − 1-
dimensional simplicial complex has a geometric realisation in R

2k−3.

Acknowledgment. We thank Florian Frick and Gábor Tardos for useful dis-
cussions on Conjecture 1. Florian pointed out the connection to Sarkaria’s in-
equality.
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