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SHARP BOUNDS ON
CASTELNUOVO-MUMFORD REGULARITY

CHIKASHI MIYAZAKI

Abstract. The Castelnuovo-Mumford regularity is one of the most important
invariants in studying the minimal free resolution of the defining ideals of the
projective varieties. There are some bounds on the Castelnuovo-Mumford
regularity of the projective variety in terms of the other basic measures such
as dimension, codimension and degree.

In this paper we consider an upper bound on the regularity reg(X) of a
nondegenerate projective variety X, reg(X) ≤ d(deg(X)− 1)/ codim(X)e+ k ·
dim(X), provided X is k-Buchsbaum for k ≥ 1, and investigate the projective
variety with its Castelnuovo-Mumford regularity having such an upper bound.

1. Introduction

Let X be a projective scheme of PNK over a field K. Let S = K[x0, · · · , xN ] be
the polynomial ring and m = (x0, · · · , xN ) be the irrelevant ideal. Then we put
PNK = Proj(S). We denote by IX the ideal sheaf of X . Let m be an integer. Then
X is said to be m-regular if Hi(PNK , IX(m− i)) = 0 for all i ≥ 1. The Castelnuovo-
Mumford regularity of X ⊆ PNK , introduced by Mumford by generalizing ideas of
Castelnuovo, is the least such integer m and is denoted by reg(X). The interest in
this concept stems partly from the well-known fact that X is m-regular if and only
if for every p ≥ 0 the minimal generators of the p-th syzygy module of the defining
ideal I of X ⊆ PNK occur in degree ≤ m+ p, see, e.g., [4], [5], [6].

Let k be a nonnegative integer. Then X is called k-Buchsbaum if the graded
S-module Mi(X) =

⊕
`∈ZHi(PNK , IX(`)), called the deficiency module of X , is

annihilated by mk for 1 ≤ i ≤ dim(X), see, e.g., [17], [18]. Further, we call the
minimal nonnegative integer k, if it exists, such that X is k-Buchsbaum, as the
Ellia-Migliore-Miró Roig number of X and denote it by k(X). In case X is not
k-Buchsbaum for all k ≥ 0, we put k(X) =∞. It is known that the numbers k(X)
are invariant in a liaison class, see, e.g., [17], [24]. Note that k(X) <∞ if and only
if X is locally Cohen-Macaulay and equi-dimensional.

In what follows, for a rational number ` ∈ Q, we write d`e for the minimal integer
which is larger than or equal to `, and b`c for the maximal integer which is smaller
than or equal to `.

In recent years upper bounds on the Castelnuovo-Mumford regularity of a pro-
jective variety X have been given by several authors in terms of dim(X), deg(X),
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codim(X) and k(X), see, e.g., [13], [14], [15], [19], [22], [23]. The following bound,
first obtained in [23], is the most optimal among the known results. Even so,
whether such a bound is sharp is still a question.

Proposition 1.1 (see [19], [23]). Let X be a nondegenerate irreducible reduced pro-
jective variety in PNK over an algebraically closed field K of characteristic zero. Then
we have

reg(X) ≤
⌈

deg(X)− 1
codim(X)

⌉
+ max{k(X) dim(X), 1}.

The purpose of this paper is to study sharp examples which attain the upper
bounds of the inequality in Proposition 1.1 and to show that a projective variety
having such property must be a curve on a surface of minimal degree if its degree
is large enough.

Theorem 1.2. Let X be a nondegenerate irreducible reduced projective variety in
PNK over an algebraically closed field K of characteristic zero. Assume that k(X) ≥
1, deg(X) ≥ 2 codim(X)2 + codim(X) + 2 and

reg(X) =
⌈

deg(X)− 1
codim(X)

⌉
+ k(X) dim(X).

Then dim(X) = 1 and X is a curve on a rational ruled surface Y .

The results related to Theorem 1.2 are obtained in [20], [26] for arithmetically
Cohen-Macaulay varieties, that is, k(X) = 0, especially [20] for the positive char-
acteristic case, and in [28] for arithmetically Buchsbaum curves, that is, k(X) = 1
and dim(X) = 1; also see [21] for arithmetically Buchsbaum varieties.

More precisely, we obtain the following classification of the projective variety
with its Castelnuovo-Mumford regularity having such upper bound.

Theorem 1.3. Let X be a nondegenerate irreducible reduced projective variety in
PNK satisfying the assumptions of (1.2). Then X is a divisor on a rational ruled
surface Y constructed as follows:

Let π : Y = P(E) → P1
K be a projective bundle, see, e.g., [11, (V.2)], where

E = OP1
K
⊕OP1

K
(−e) for some e ≥ 0. Let Z be a minimal section of π corresponding

to the natural map E → OP1
K

(−e) and F be a fibre corresponding to π∗OP1
K

(1). We
have an embedding of Y in PNK by a very ample sheaf corresponding to a divisor
H = Z + n · F (n > e), where N = 2n− e + 1. Then X is a divisor on Y linearly
equivalent to a · Z + b · F such that a ≥ 1 and an+ 2 ≤ b ≤ (a+ 2)n− e+ 1.

In this case, codim(X) = 2n − e, deg(X) = a(n − e) + b, k(X) = b(b − an −
2)/(n− e)c+ 1 and reg(X) = b(b− an− 2)/(n− e)c+ a+ 2.

This result indicates that the inequality

reg(X) ≤
⌈

deg(X)− 1
codim(X)

⌉
+ max{k(X), 1}

is sharp for a nondegenerate irreducible reduced projective curve X in PNK over an
algebraically closed field K of characteristic zero. In fact, for positive integers c
and t with 2 ≤ c ≤ t− 2, we take the integers q and r satisfying that t− 2 = cq+ r
and 0 ≤ r ≤ c− 1. Then we define a non-empty set

S(c, t) = {1 + b2r/`c | ` ∈ Z, 2 ≤ ` ≤ c}.
Note that every element k ∈ S(c, t) satisfies 1 ≤ k ≤ r + 1(≤ c).
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Theorem 1.4. Let c, t and k be positive integers with 2 ≤ c ≤ t− 2. Let us put a
subset S(c, t) of Z as above. Let K be an algebraically closed field.

(i) If k ∈ S(c, t), then there exists a nondegenerate irreducible smooth projective
curve X in Pc+1

K with deg(X) = t, k(X) = k and reg(X) = d(deg(X) −
1)/ codim(X)e+ k(X).

(ii) Assume that t ≥ 2c2 + c+ 2 and char(K) = 0. If there exists a nondegenerate
irreducible reduced projective curve X in Pc+1

K with deg(X) = t, k(X) = k
and reg(X) = d(deg(X)− 1)/ codim(X)e+ k(X), then k ∈ S(c, t).

Theorem 1.5. Let K be an algebraically closed field. For any given positive inte-
gers c and k with c ≥ k, there exists a nondegenerate irreducible smooth projective
curve X in Pc+1

K with k(X) = k and reg(X) = d(deg(X)− 1)/ codim(X)e+ k(X).

These results motivate us to state the following problem.

Problem 1.6. Does the inequality reg(X) ≤ d(deg(X)−1)/codim(X)e+k(X) hold
for a nondegenerate irreducible reduced projective variety X with k(X) ≥ 1 over an
algebraically closed field K?

For the case dim(X) = 1 and char(K) = 0, Proposition 1.1 and the theorems in
this paper are answers to this problem and show that the inequality is best possible.
The theorems give a classification of projective varieties with the regularity bound
under the assumption deg(X) � 0. However, the assumption is indispensable. In
fact, the canonical embedding of a non-hyperelliptic curve C in Pg−1

K with the genus
of g ≥ 5, gives the upper bound of reg(C), while not contained in any surface of
minimal degree, see [28]. On the other hand, you can find how scarce the curves
are which achieve the bound. If C is a space curve with the degree bound and the
regularity bound, then C is a divisor of either type (a, a+ 2) or type (a, a+ 3) on a
smooth quadric surface from Theorem 1.3. Accordingly we describe the following
problem arising from our consideration.

Problem 1.7. Classify all the nondegenerate irreducible reduced projective curves
C with reg(C) = d(deg(C) − 1)/ codim(C)e + max{k(C), 1}. Or describe the best
possible condition that the curve C having the equality above is contained in a
surface of minimal degree.

Finally, we conclude this section by stating Hoa’s conjectures.

Conjecture 1.8 ([12]). Let X be a nondegenerate irreducible reduced projective
variety in PNK over an algebraically closed field K. Let k be a positive integer.
Assume that, for all r ≥ 0, the variety X ∩ L has the Ellia-Migliore-Miró Roig
number k(X ∩ L) ≤ k for any (N − r)-plane L with dim(X ∩ L) = dim(X) − r,
in other words, X is (k, dim(X))-Buchsbaum by using the terminology of [13], [15].
Then we have

reg(X) ≤
⌈

deg(X)− 1
codim(X)

⌉
+ k.

Furthermore, assume that deg(X) is large enough. Then the equality holds only if
X is a divisor on a variety of minimal degree.

Throughout this paper we only consider the characteristic zero case. However,
if you apply some results of [2], [3], you might partially have the corresponding
results in positive characteristic case.

The author would like to thank Taro Fujisawa, Lê Tuân Hoa, Juan Migliore,
Kohji Yanagawa and the referee for their helpful suggestions.
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2. Bounds on Castelnuovo-Mumford regularity

This section is devoted to the proof of the theorems stated in §1.
First, we describe a sketch of a proof of the upper bound of the Castelnuovo-

Mumford regularity, following, e.g., [19, Section 4], in order to make clear what the
sharp examples should be.

Let R = K[R1] be a finitely generated graded algebra over a field K. We denote
by m the irrelevant ideal of R. Let M be a finitely generated graded R-module with
dim(M) = d+ 1 > 0. We write [M ]n for the n-th graded piece of M , and M(p) for
the graded module with [M(p)]n = [M ]p+n. Then, for i = 0, · · · , d+ 1, we set

ai(M) = max{n | [Hi
m(M)]n 6= 0}

if the max exists, and ai(M) = −∞ otherwise. In particular, we set a(M) =
ad+1(M). The Castelnuovo-Mumford regularity of M is defined as follows:

reg(M) = max{ai(M) + i | i = 0, · · · , d+ 1}.

For an integer k ≥ 0, the gradedR-moduleM is called k-Buchsbaum if mkHi
m(M) =

0 for all i = 0, · · · , d. The following result is an easy consequence of the proof of
[19, (2.7.2)].

Proposition 2.1. Let M be a finitely generated graded R-module with dim(M) =
d+ 1 > 0. Let k be a positive integer. Assume that M is k-Buchsbaum. Then

ai(M) ≤ max{aj(M) + j − i+ k | j = i+ 1, · · · , d+ 1}

for i = 1, · · · , d− 1, and

ad(M) ≤ a(M/hM) + k − 1

for any linear parameter h ∈ R1 for the graded R-module M . Furthermore, the
equalities hold only if ai(M) 6= −∞ and[

Hi
m(R)/hHi

m(R)
]
`

= 0, ` ≥ ai(R)− k + 2,

for i = 1, · · · , d. Consequently, for any integer 1 ≤ i ≤ d, we have

ai(M) + i ≤ a(M/hM) + d+ k(d+ 1− i)− 1,

for any linear parameter h ∈ R1 for the R-module M .

Let X be a projective scheme in PNK = Proj(S), where S is the polynomial ring
K[x0, · · · , xN ]. Let I be the defining ideal

⊕
`∈Z Γ(PNK , IX(`)) of X and R be the

coordinate ring S/I of X . Then we see that reg(X) = reg(I) = reg(R) + 1. By
taking M = R in the above proposition, we have the following bound by using the
Ellia-Migliore-Miró Roig number k(X).

Lemma 2.2. Let X be a projective scheme in PNK. Let R be the coordinate ring of
X. Then

reg(X) ≤ a(R/hR) + dim(X) + max{k(X) dim(X), 1}
for any linear parameter h ∈ R1.

Now we state a well-known fact, see, e.g., [23, (4.6.b)].
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Lemma 2.3. Let X be a nondegenerate irreducible reduced projective variety in
PNK with dim(X) = d over an algebraically closed field K of characteristic zero. Let
R be the coordinate ring of X. Then

a(R/h1R) + d ≤ · · · ≤ a(R/(h1, · · · , hd)R) + 1 ≤
⌈

deg(X)− 1
codim(X)

⌉
for any part of linear system of parameters h1, · · · , hd of the graded ring R.

In this way we obtained Proposition 1.1 from Lemma 2.2 and Lemma 2.3, see
[19]. Furthermore, the following result has an important role in studying the pro-
jective variety having an upper bound on the Castelnuovo-Mumford regularity in
the inequality of Proposition 1.1.

Proposition 2.4. Let X be a nondegenerate irreducible reduced projective variety
in PNK with dim(X) = d over an algebraically closed field K of characteristic zero.
Let R be the coordinate ring of X. Assume that k(X) ≥ 1 and the equality in
Proposition 1.1 holds, that is, reg(X) = d(deg(X) − 1)/ codim(X)e + k(X)d. Let
h1, · · · , hd be a part of linear system of parameters of the graded ring R.

(i) ai(R) = ai+1(R) + k(X) + 1 for 1 ≤ i ≤ d− 1.
(ii) ad(R) = ad(R/h1R) + k(X)− 1 and a(R) + 1 ≤ ad(R/h1R) ≤ a(R) + 2.
(iii) [Hi

m(R)/h1Hi
m(R)]` = 0 for 1 ≤ i ≤ d and ` ≥ ai(R)− k(X) + 2.

(iv) a(R/h1R) + d = · · · = a(R/(h1, · · · , hd)R) + 1 = d(deg(X)− 1)/ codim(X)e.

Proof. It follows immediately from (2.1), (2.2) and (2.3).

Now let us describe a refined result of [16] and [28] on the relationship between
a zero-dimensional scheme with uniform position and its h-vectors.

Lemma 2.5. Let X be a zero-dimensional scheme in uniform position in PNK over
an algebraically closed field K. Let R be the coordinate ring of X. Assume that

deg(X) ≥ N2 + 2N + 2 and a(R) + 1 =
⌈

deg(X)− 1
N

⌉
.

Then X lies on a rational normal curve.

Proof. Let (h0, · · · , hs) be the h-vector of the one-dimensional graded ring R. In
other words, we write hi = dimK(Ri) − dimK(Ri−1) for all nonnegative integers
i, and s for the maximal integer such that hs 6= 0. Note that h0 = 1, h1 = N ,
s = a(R)+1 and deg(X) = h0 + · · ·+hs. Suppose that X does not lie on a rational
normal curve. By [27, (2.3)], we have that hi ≥ h1 + 1 for all 2 ≤ i ≤ s − 2, and
hs−1 ≥ h1. Thus we have

deg(X)− 1
N

=
h1 + · · ·+ hs

h1

≥ 1 +

s−3︷ ︸︸ ︷
N + 1
N

+ · · ·+ N + 1
N

+1 +
hs
N

= a(R) +
a(R)− 2 + hs

N

≥ a(R) +
a(R)− 1

N
.
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Since a(R) + 1 ≥ (deg(X)− 1)/N , we see that a(R) ≤ N + 1. Hence we have

deg(X)− 1 ≤ N(a(R) + 1) ≤ N(N + 2),

which contradicts the hypothesis.

Remark 2.6. There is a counterexample in case deg(X) = N2 + 2N + 1, namely,
a complete intersection of type (2, 2, 4) in P3

K , which is pointed out by the referee.
So we really need the strong condition on the degree.

Let X be a nondegenerate irreducible reduced projective variety in PNK over an
algebraically closed field K. It is well-known that deg(X) ≥ codim(X) + 1, and
that if the equality holds, then X is either (i) a smooth hyperquadric, (ii) the
Veronese surface in P5

K , (iii) a rational normal scroll, or their cone, see [10, (3.10)]
or [7]. In these cases, X is called a variety of minimal degree. Of course, a rational
normal curve is a curve of minimal degree. The next lemma yields an application
of Lemma 2.5 to higher dimensional cases through hyperplane section method.

Lemma 2.7. Let X be a nondegenerate irreducible reduced projective variety in PNK
with dim(X) ≥ 1 over an algebraically closed field K. Assume that X is linearly
normal, that is, H1(PNK , IX(1)) = 0. If, for infinitely many general hyperplanes H,
its hyperplane section X0 = X ∩H is a divisor on a variety Y0 of minimal degree
with Γ(Y0, IX0/Y0(2)) = 0, then X is a divisor on a variety of minimal degree.

Proof. The defining ideal of the projective variety Y0 in H ∼= PN−1
K is generated

by quadric polynomials. Since X is nondegenerate and linearly normal, we have
Γ(PNK , IX(2)) ∼= Γ(PN−1

K , IX0(2)). On the other hand, Γ(Y0, IX0/Y0(2)) = 0 gives
an isomorphism Γ(PN−1

K , IX0(2)) ∼= Γ(PN−1
K , IY0(2)). So the defining equations

f1, · · · , fr of Y0 can be lifted to polynomials g1, · · · , gr with ϕ(f1) = g1, · · · , ϕ(fr) =
gr in Γ(PNK ,OPNK (2)) through the isomorphism ϕ : Γ(PN−1

K , IY0(2)) ∼= Γ(PNK , IX(2)).
Let Y be a projective scheme defined by the polynomials g1, · · · , gr in PNK . Then Y
is the intersection of the quadric hypersurfaces containing X . Note that dim(Y ) =
dim(X) + 1. Then there exists an irreducible component Y ′ of Y such that Y ′ is
a variety of minimal degree with Y ′ ∩ H = Y0, and in fact Y ′ = Y by showing
Γ(PNK , IY (2)) = Γ(PNK , IY ′(2)). Hence X is a divisor on the projective variety Y of
minimal degree, and in this case Y ∩H = Y0.

In the following we show a useful lemma for the proof of a criterion of the linear
normality.

Lemma 2.8. Let R be a graded ring with dim(R) = d+ 1 ≥ 1 over a field K, and
m be the irrelevant ideal of R. Let h be a linear parameter of R. Then

a(R/hR) = max{a(R) + 1, n},
where n = max{` | [Hd

m(R)/hHd
m(R)]` 6= 0}.

Proof. It immediately follows from the exact sequence:

0→ Hd
m(R)/hHd

m(R)→ Hd
m(R/hR)→ Hd+1

m (R)[−1] ·h→ Hd+1
m (R).

Now let us show a criterion of the linear normality which is applied to give a
proof of (2.10) on the dimensional induction by combining (2.7) and (2.11).
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Lemma 2.9. Let X be a nondegenerate irreducible reduced projective variety in
PNK over an algebraically closed field K of characteristic zero. Assume that

reg(X) =
⌈

deg(X)− 1
codim(X)

⌉
+ max{k(X) dim(X), 1}

and
deg(X) ≥ 2 codim(X)2 + codim(X) + 2.

Then X is linearly normal, that is, H1(PNK , IX(1)) = 0.

Proof. If k(X) = 0, then X is, of course, linearly normal. So we may assume
that k(X) ≥ 1. We put PNK = Proj(S), where S is the polynomial ring and m is
the irrelevant ideal of S. Suppose that X is not linearly normal. Then there is
a nondegenerate projective variety X ′ in PN+1

K such that X ′ is isomorphic to X
in PNK by a linear projection. Let R and R′ be the coordinate rings of X and X ′

respectively.
Then we have only to prove that⌈

deg(X)− 1
codim(X)

⌉
≤
⌈

deg(X ′)− 1
codim(X ′)

⌉
+ 1.

In fact, this inequality yields (t− 1)/c ≤ (t− 1)/(c+ 1) + 2− 1/(c+ 1), where t =
deg(X) = deg(X ′) and c = codim(X) = codim(X ′)− 1. Therefore t ≤ 2c2 + c+ 1,
which contradicts the hypothesis.

For the proof of d(t− 1)/ce ≤ d(t− 1)/(c+ 1)e+ 1, we have only to show that

a(R/hR) ≤ a(R′/hR′) + 1,

where h is a linear parameter for R and R′, because a(R′/hR′) + dim(X ′) ≤ d(t−
1)/(c+ 1)e by (2.3) and a(R/hR) + dim(X) = d(t− 1)/ce by (2.4), (iv).

Note that Hi
m(R) ∼= Hi

m(R′) and Hi
m(R/hR) ∼= Hi

m(R′/hR′) for i ≥ 2 since R′ is a
finite R-algebra. In particular, we have a(R/hR) = a(R′/hR′) in case dim(X) ≥ 2.
Hence the assertion is proved for the case dim(X) ≥ 2.

Now we may assume that dim(X) = 1. Since H1
m(R′) is a homomorphic image

of H1
m(R), we see [

H1
m(R)/hH1

m(R)
]
`

=
[
H1

m(R′)/hH1
m(R′)

]
`

= 0

for ` ≥ a1(R)− k(X) + 2 by (2.4), (iii). Therefore, by using Lemma 2.8, we have

a(R/hR) = a(R′/hR′) ( = a(R) + 1 )

in case a(R) = a1(R)− k(X), and

a(R/hR) = a(R′/hR′) or a(R′/hR′) + 1 ( = a(R) + 2 )

in case a(R) = a1(R)− k(X)− 1, see (2.4), (ii). Hence the assertion is proved.

Proposition 2.10. Let X be a nondegenerate irreducible reduced projective variety
in PNK over an algebraically closed field K of characteristic zero. If

reg(X) =
⌈

deg(X)− 1
codim(X)

⌉
+ max{k(X) dim(X), 1}

and
deg(X) ≥ 2 codim(X)2 + codim(X) + 2,

then X is a divisor on a variety of minimal degree.
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Proof. It follows immediately from (2.5), (2.7), (2.9) and (2.11) by induction on
dim(X). Lemma 2.11 is proved later.

By Proposition 2.10 we need to study a divisor X of a variety Y of minimal
degree in order to give a classification of the projective varieties having an equality
in Theorem 1.2. In case Y is a cone over the projective variety Z either (i), (ii)
or (iii) described in the paragraph before (2.7), the divisor X on Y is linearly
equivalent to the cone over a divisor X0 on Z, see, e.g., [11, (II.Exercise 6.3)].
Since codim(X) = codim(X0), deg(X) = deg(X0), reg(X) = reg(X0) and k(X) =
k(X0), the projective variety X cannot be an extremal case. In case Y is a smooth
hyperquadric, X is a complete intersection of Y and a hypersurface and so k(X) =
0, except the case Y a smooth quadric surface, see, e.g., [11, (II.Exercise 6.5)]. In
case Y is the Veronese surface, we see k(X) = 0. Since we have only to consider
the case k(X) ≥ 1, the projective variety Y can be assumed to be a rational normal
scroll.

Let C be the projective line P1
K . Let E = OP1

K
⊕OP1

K
(−e1)⊕· · ·⊕OP1

K
(−er). Let

π : Y = P(E) → C be a projective bundle. Let Z be the divisor corresponding to
the natural map E → OP1

K
(−e1)⊕ · · ·⊕OP1

K
(−er). Then we see OP(E)(1) ∼= OY (Z)

and Pic(Y ) is a free Abelian group of rank 2 generated by Z and F , where F
is a fibre corresponding to π∗OP1

K
(1). Then we easily have intersection numbers

Zr+1 = −e1 − · · · − er, Zr · F = 1 and Zi · F r+1−i = 0 for 0 ≤ i ≤ r − 1. We
consider an embedding of Y in PNK by a very ample divisor H = Z +n ·F (n > er),
where N = rn+ r + n− e1 − · · · − er. Then Y is called a rational normal scroll.

Let X be an irreducible reduced effective divisor on Y linearly equivalent to
a · Z + b · F . Since X is nondegenerate, in other words,

Γ(Y, IX/Y (1)) = Γ(Y,OY ((1 − a) · Z + (n− b) · F )) = 0,

we may assume that a = 1 and b ≥ n + 1, or a ≥ 2 and b ≥ 1. Thus X is a
nondegenerate projective variety in PNK , where N = rn+ r+n− e1−· · ·− er. Also,
we have codim(X) = rn+n−e1−· · ·−er and deg(X) = (a ·Z+b ·F ) ·(Z+n ·F )r =
a(rn− e1 − · · · − er) + b.

Now let us show the following lemma to finish the proof of Proposition 2.10.

Lemma 2.11. Let X be an effective divisor of a rational normal scroll Y with the
ideal sheaf IX/Y as the notation above.

(i) Γ(Y, IX/Y (2)) 6= 0 if and only if a ≤ 2 and b ≤ 2n.
(ii) If deg(X) ≥ 2 codim(X) + 1, then Γ(Y, IX/Y (2)) = 0.

Proof. Part (i) follows from isomorphisms

Γ(Y, IX/Y (2)) ∼= Γ(Y,OY ((2 − a) · Z + (2n− b) · F ))
∼= Γ(C, π∗OY ((2− a) · Z + (2n− b) · F ))
∼= Γ(C, Sym2−a(E)⊗OC(2n− b)).

Part (ii) is an easy consequence of (i).

Now we are in the position to get the Castelnuovo-Mumford regularity and the
Ellia-Migliore-Miró Roig number of the projective variety. Let S be the polynomial
ring K[x0, · · · , xN ] and m be the irrelevant ideal (x0, · · · , xN ). Then we put PNK =
Proj(S). Since Y is arithmetically Cohen-Macaulay, the deficiency module Mi(X)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SHARP BOUNDS ON CASTELNUOVO-MUMFORD REGULARITY 1683

of X in PNK , 1 ≤ i ≤ r, is isomorphic to
⊕

`∈ZHi(Y, IX/Y (`)) as graded S-modules.
Thus we have

Mi(X) ∼=
⊕
`∈Z

Hi(Y,OY ((−a+ `) · Z + (−b+ `n) · F ))

for 1 ≤ i ≤ r. In Lemma 2.12 and Lemma 2.13 we calculate the intermediate
cohomologies Hi(Y,OY ((−a+ `) ·Z+(−b+ `n) ·F )), 1 ≤ i ≤ r, and get the number
k(X) by considering the structure of the graded S-module Mi(X).

Lemma 2.12. Under the above condition, assume that r = 1.

(i) H1(Y,OY (α · Z + β · F )) 6= 0 if and only if either α ≥ 0 and β ≤ e1α− 2, or
α ≤ −2 and β ≥ e1α+ e1.

(ii) X is arithmetically Cohen-Macaulay, that is, k(X) = 0 if and only if an −
2n+ e1 < b < an+ 2.

(iii) If b ≥ an+ 2, then k(X) = b(b− an− 2)/(n− e1)c+ 1.
(iv) If b ≤ an− 2n+ e1, then k(X) = b(an− 2n+ e1 − b)/(n− e1)c+ 1.

Proof. In case α ≥ 0, by isomorphisms

H1(Y,OY (α · Z + β · F )) ∼= H1(C, π∗OY (α · Z + β · F ))
∼= H1(C, Symα(E)⊗OC(β))
∼= H1(P1

K ,OP1
K

(β) ⊕OP1
K

(−e1 + β)⊕ · · · ⊕ OP1
K

(−αe1 + β)),

we see that H1(Y,OY (α ·Z+β ·F )) 6= 0 if and only if β ≤ e1α−2. In case α ≤ −2,
by isomorphisms

H1(Y,OY (α · Z + β · F )) ∼= H0(C,R1π∗OY (α · Z + β · F ))
∼= H0(C, (Sym−α−2(E))′ ⊗OC(e1)⊗OC(β))
∼= H0(P1

K ,OP1
K

(e1 + β)⊕OP1
K

(2e1 + β)⊕ · · · ⊕ OP1
K

((−α− 1)e1 + β)),

we see that H1(Y,OY (α · Z + β · F )) 6= 0 if and only if β ≥ e1α+ e1. Similarly, we
have H1(Y,OY (−Z + β · F )) = 0 for all β. Thus we proved part (i). Part (ii) is an
easy consequence of (i). By virtue of these results, the rest of the assertion, (iii)
and (iv), immediately follows from a study of the structure of the graded S-module⊕

`∈ZH1(Y,OY ((−a + `) · Z + (−b + `n) · F )). In fact, through the surjective
homomorphism S ∼=

⊕
`∈Z Γ(PNK ,OPNK (`)) →

⊕
`∈Z Γ(Y,OY (` · Z + `n · F )), the

structure of M1(X) as graded S-module, that is, S1 ⊗ M1(X)` → M1(X)`+1 is
given by the natural map

Γ(Y,OY (Z + n · F ))⊗K H1(Y,OY ((−a+ `) · Z + (−b+ `n) · F ))
→ H1(Y,OY ((−a+ `+ 1) · Z + (−b+ (`+ 1)n) · F )).

This K-linear map is a zero map if and only if either of the cohomologies vanishes,
by considering the isomorphisms

H1(Y,OY (α · Z + β · F )) ∼= H1(C, Symα(E)⊗OC(β))

for α ≥ 0 and H1(Y,OY (α ·Z+β ·F )) ∼= H0(C, (Sym−α−2(E))′⊗OC(e1)⊗OC(β))
for α ≤ −2. In other words, k(X) equals the diameter of M1(X) in this case, see,
e.g., [17] for the definition. Thus, by using (i), we have (iii) and (iv). Therefore the
assertion is proved
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The proof of (2.12) shows that k(X) equals the diameter of M1(X) for a divisor
X on a rational normal scroll, while the corresponding results were shown for a
curve on a smooth quadric surface in [18] and for a curve on a smooth cubic surface
in [9], although there are lots of curves X with k(X) < diam(M1(X)) constructed,
say, by liaison addition, see [8], [17].

Lemma 2.13. Under the above condition, assume that r > 1.
(i) H1(Y,OY (α · Z + β · F )) 6= 0 if and only if α ≥ 0 and β ≤ erα− 2.
(ii) Hi(Y,OY (α · Z + β · F )) = 0 for 1 < i < r.
(iii) Hr(Y,OY (α · Z + β · F )) 6= 0 if and only if α ≤ −r − 1 and β ≥ erα + rer −

e1 − · · · − er−1.
Consequently, ai(R) = −∞ for 1 ≤ i ≤ r unless either i = 1 and b ≥ an + 2, or
i = r and b ≤ an− (r + 1)n+ e1 + · · ·+ er, where R is the coordinate ring of X.

Proof. First, we note Riπ∗OY (α · Z + β · F ) = 0 for i 6= 0, r and

Hj(C,Riπ∗OY (α · Z + β · F )) = 0 for j ≥ 2.

Thus we obtain (ii). In order to prove (i), we have isomorphisms

H1(Y,OY (α · Z + β · F )) ∼= H1(C, π∗OY (α · Z + β · F ))
∼= H1(C, Symα(E) ⊗OC(β)).

Hence we obtain (i) from an isomorphism Symα(E) ⊗ OC(β) ∼= OP1
K

(β) ⊕ · · · ⊕
OP1

K
(−αer + β) for α ≥ 0. Finally, for the proof of (iii), we have isomorphisms

Hr(Y,OY (α · Z + β · F )) ∼= H0(C,Rrπ∗OY (α · Z + β · F ))
∼= H0(C, (Sym−α−r−1(E))′ ⊗OC(e1 + · · ·+ er)⊗OC(β)).

Hence we obtain (iii) from an isomorphism (Sym−α−r−1(E))′⊗OC(e1 + · · ·+ er)⊗
OC(β) ∼= OP1

K
(e1 + · · ·+ er + β)⊕ · · · ⊕OP1

K
(e1 + · · ·+ er−1 + (−α− r)er + β) for

α ≤ −r − 1. Therefore the assertion is proved.

Furthermore, we need the following lemma to get the Castelnuovo-Mumford
regularity of the divisor X on the rational normal scroll Y in PNK .

Lemma 2.14. Under the above condition, Hr+1(Y,OY (α · Z + β · F )) 6= 0 if and
only if α ≤ −r − 1 and β ≤ −2− e1 − · · · − er−1.

Proof. Since Rr+1π∗OY (α ·Z+β ·F ) = 0 and Hi(C,Rr+1−iπ∗OY (α ·Z+β ·F )) = 0
for i ≥ 2, we have an isomorphism

Hr+1(Y,OY (α · Z + β · F )) ∼= H1(C,Rrπ∗OY (α · Z + β · F )).

Hence we have the assertion.

Now let us prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.10, X is a divisor on a rational normal scroll
Y . If we assume that dimX = r ≥ 2, then ai(R) = −∞ for some 1 ≤ i ≤ r
by Lemma 2.13, which contradicts Proposition 2.4. Thus we see that X is one-
dimensional. Hence the assertion is proved.

Accordingly, by Theorem 1.2, we may assume that X is one-dimensional, that
is, r = 1, and put e1 = e to finish the proofs of the theorems in §1.

Then we state the following lemmas, (2.15) and (2.16), which are immediate
consequences of Lemma 2.12 and Lemma 2.14.
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Lemma 2.15. Under the above condition, assume that b ≥ an+ 2. Then we have
reg(X) = b(b − an− 2)/(n− e)c+ a+ 2 and k(X) = b(b− an− 2)/(n− e)c+ 1.

Lemma 2.16. Under the above condition, assume that b ≤ an− 2n+ e. Then we
have a1(R) = a2(R), where R is the coordinate ring of X.

We also need the following lemma.

Lemma 2.17. Under the above condition, assume that b ≥ an+2. Then reg(X) =
d(deg(X)− 1)/ codim(X)e+ k(X) if and only if an+ 2 ≤ b ≤ (a+ 2)n− e+ 1.

Proof. By Lemma 2.15, reg(X) = d(deg(X) − 1)/ codim(X)e + k(X) if and only
if a + 1 = d(a(n − e) + b − 1)/(2n − e)e. Since (a(n − e) + b − 1)/(2n − e) =
a+ (b− an− 1)/(2n− e), we have the assertion.

Now let us prove Theorem 1.3, Theorem 1.4 and Theorem 1.5.

Proof of Theorem 1.3. By virtue of Theorem 1.2, as in the notation above, X is a
divisor linearly equivalent to a ·Z+b ·F on a rational ruled surface Y = P(E), where
E = OP1

K
⊕OP1

K
(−e) on P1

K . Then we see b ≥ an+ 2. In fact, if an− 2n− e < b <

an + 2, then k(X) = 0 by (2.12). If b ≤ an − 2n − e, then a(R/hR) = a1(R) + 1
by (2.8) and (2.16), which contradicts (2.4), (ii), where R is the coordinate ring of
X and h is a linear parameter of R. So we exclude both cases and have only to
consider the case b ≥ an+ 2. By Lemma 2.15 and Lemma 2.17, we have a ≥ 1 and
an+ 2 ≤ b ≤ (a+ 2)n− e+ 1. Hence the assertion is proved.

Proof of Theorem 1.4. We have only to consider a curve on a rational ruled surface
by Theorem 1.2, and follow the notation in Theorem 1.3. By putting c = 2n − e
and t = a(n− e) + b, we have n = (c+ e)/2 and b = t− a(c− e)/2. By substituting
them, we have ac+2 ≤ t ≤ ac+c+1 and e ≤ c−2 from an+2 ≤ b ≤ (a+2)n−e+1
and n ≥ e + 1. In particular, a = b(t − 2)/cc. In order to prove (i), we take the
integers q and r such that t − 2 = qc + r and 0 ≤ r ≤ c − 1 for given integers c
and t. Note that q must be equal to a. Then we can take an integer e such that
k = 1 + b2(t− 2− ac)/(c− e)c = 1 + b2r/(c− e)c if k is an element of S(c, t). On
the other hand, the linear system |a ·Z+ b ·F | on Y contains an irreducible smooth
curve for a ≥ 1 and b ≥ an+ 2 by [11, (V.2.18)]. Thus there exists a nondegenerate
smooth projective curve X with codim(X) = c, deg(X) = t and k(X) = k such
that reg(X) = d(deg(X)− 1)/ codim(X)e+ k(X). Hence we proved (i). The proof
of (ii) is similar to that of (i) and is left to the readers.

Proof of Theorem 1.5. For given positive integers c and k with c ≥ k, we take
e = c − 2, n = c − 1, a = 1 and b = c + k and construct a nondegenerate smooth
projective curve X as a divisor linearly equivalent to a · Z + b · F on a rational
ruled surface P(OP1

K
⊕OP1

K
(−e)) embedded by a very ample divisor Z+n ·F to the

projective space, as in the notation of Theorem 1.3. Then we have codim(X) = c,
deg(X) = c+1+k, k(X) = k and reg(X) = k+2. Hence the assertion is proved.
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Montréal, 1982. MR 84g:14024
[11] R. Hartshorne, Algebraic geometry, GTM 52, Springer, 1977. MR 57:3116
[12] L. T. Hoa, Personal communications.
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