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Abstract. Subordination of a killed Brownian motion in a domain D ⊂ R
d via an α/2-sta-

ble subordinator gives rise to a process Zt whose infinitesimal generator is −(−�|D)α/2, the
fractional power of the negative Dirichlet Laplacian. In this paper we establish upper and
lower estimates for the density, Green function and jumping function of Zt when D is either
a bounded C1,1 domain or an exterior C1,1 domain. Our estimates are sharp in the sense that
the upper and lower estimates differ only by a multiplicative constant.

1. Introduction

Let Xt be a d-dimensional Brownian motion in R
d and Tt an α/2-stable subordi-

nator starting at zero, 0 < α < 2. It is well known that Yt = XTt is a rotationally
invariant α-stable process whose generator is −(−�)α/2, the fractional power of
the negative Laplacian. The potential theory corresponding to the process Y is the
Riesz potential theory of order α.

Suppose that D is a domain in R
d , that is, an open connected subset of R

d .
We can kill the process Y upon exiting D. The killed process YD has been exten-
sively studied in recent years and various deep properties have been obtained. For
instance, when D is a bounded C1,1 domain, sharp estimates on the Green function
of YD were established in [4] and [14].

Let �|D be the Dirichlet Laplacian in D. The fractional power −(−�|D)α/2

of the negative Dirichlet Laplacian is a very useful object in analysis and partial
differential equations, see, for instance, [19] and [16]. There is a Markov process
Z corresponding to −(−�|D)α/2 which can be obtained as follows: We first kill
the Brownian motion X at τD , the first exit time of X from D, and then we subor-
dinate the killed Brownian motion using the α/2-stable subordinator Tt . Note that
in comparison with YD the order of killing and subordination has been reversed.
For the differences between the processes YD and Z, see [18].

Despite its importance, the process Z has not been studied much. In [11], a rela-
tion between the harmonic functions of Z and the classical harmonic functions in D
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was established. In [13] (see also [9]) the domain of the Dirichlet form ofZ was iden-
tified when D is a bounded smooth domain and α �= 1. In the recent paper [18] with
Vondracek, we studied the process Z in detail and established, among other things,
the behaviors of the jumping function J and the Green function GD of Z when D is
a bounded C1,1 domain. Recall that a bounded domain D in R

d , d ≥ 2, is said to be
a bounded C1,1 domain if there exist positive constants r0 and M with the following
property: for every z ∈ ∂D and r ∈ (0, r0], there exist a function �z : R

d−1 → R

satisfying the condition |∇�z(ξ) − ∇�z(η)| ≤ M|ξ − η| for all ξ, η ∈ R
d−1 and

an orthonormal coordinate system CSz such that if y = (y1, . . . , yd) in the CSz

coordinates, then

B(z, r) ∩ D = B(z, r) ∩ {y : yd > �z(y1, . . . , yd−1)}.

A bounded domain in R
1 is a finite open interval. So when speak of a bounded

C1,1 domain in R
1, we mean a finite open interval. It is well known that for a

bounded C1,1 domain D, there exists r1 > 0 depending only on D such that for
any z ∈ ∂D and r ∈ (0, r1], there exist two balls Bz

1(r) and Bz
2(r) of radius r such

that Bz
1(r) ⊂ D, Bz

2(r) ⊂ (D)c and {z} = ∂Bz
1(r) ∩ ∂Bz

2(r). One of the main
results of [18] is the following

Theorem 1.1. Suppose that D is a bounded C1,1 domain in R
d and α ∈ (0, 2).

Let ρ(x) stand for the Euclidean distance between x and the boundary ∂D of D.

(1) There exist positive constants C1 and C2 such that for all x, y ∈ D,

C1ρ(x)ρ(y) ≤ J (x, y) ≤ C2

(
ρ(x)ρ(y)

|x − y|2 ∧ 1

)
1

|x − y|d+α

(2) If d > α, then there exist positive constants C3 and C4 such that for all
x, y ∈ D,

C3ρ(x)ρ(y) ≤ GD(x, y) ≤ C4

(
ρ(x)ρ(y)

|x − y|2 ∧ 1

)
1

|x − y|d−α

The lower bounds in the theorem above are very poor when |x − y| is small.
One of the main purposes of this paper is to establish sharp lower bounds which
differ from the upper bounds only by multiplicative constants. We are also going
to establish sharp estimates on the transition density of the process Z.

The content of this paper is organized as follows. In Section 2 we review some
preliminary results on subordinate killed Brownian motions obtained in [18]. In
Section 3 we review the sharp estimates obtained in [20] and [21] of the transition
density of killed Brownian in D when D is a bounded C1,1 domain or an exterior
C1,1 domain in R

d (d ≥ 3) and extend the sharp estimates in the bounded domain
case to dimensions 1 and 2. In Section 4 we establish sharp estimates for the density,
Green function and the jumping function of Z when D is a bounded C1,1 domain
or an exterior C1,1 domain.
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2. Preliminary results on subordinate killed Brownian motion

Let X1 = (	1, F1, F1
t , X1

t , θ
1
t , P

1
x) be a d-dimensional Brownian motion in R

d ,
and let T 2 = (	2, G2, T 2

t , P
2) be an α/2-stable subordinator starting at zero,

0 < α < 2. We will consider both processes on the product space 	 = 	1 × 	2.
Thus we set F = F1 ×G2, Ft = F1

t ×G2, and Px = P
1
x ×P

2. Moreover, we define
Xt(ω) = X1

t (ω
1), Tt (ω) = T 2

t (ω2), and θt (ω) = θ1
t (ω1), where ω = (ω1, ω2) ∈

	. Then X = (	, F, Ft , Xt , θt , Px) is a d-dimensional Ft -Brownian motion, and
T = (	, G, Tt , Px) is an α/2-stable subordinator starting at zero, independent of
X for every Px . From now on, all processes and random variables will be defined
on 	.

Let At = inf{s > 0 : Ts ≥ t} be the inverse of T . Since (Tt ) is strictly
increasing, (At ) is continuous. Further, ATt = t and TAs− ≤ s ≤ TAs .

We define a process Y subordinate to X by Yt = XTt . It is well known that Y is
a rotationally invariant α-stable process in R

d . If µt is the distribution of Tt (i.e.,
(µt , t ≥ 0) is the one-sided α/2-stable convolution semigroup), and (Pt , t ≥ 0)

the semigroup corresponding to the Brownian motion X, then for any nonnegative
Borel function f on R

d , Ex(f (Yt )) = Ex(f (XTt )) = Ex(
∫ ∞

0 f (Xs) µt (ds)) =∫ ∞
0 Psf (x)µt (ds).

Let D ⊂ R
d be domain, and let τY

D = inf{t > 0 : Yt /∈ D} be the exit time of
Y from D. The process Y killed upon exiting D is defined by

YD
t =

{
Yt , t < τY

D

∂, t ≥ τY
D

=
{

XTt , t < τY
D

∂, t ≥ τY
D

where ∂ is an isolated point serving as a cemetery.
Let τD = inf{t > 0 : Xt /∈ D} be the exit time of X from D. The Brownian

motion killed upon exiting D is defined as

XD
t =

{
Xt, t < τD

∂, t ≥ τD

We define now the subordinate killed Brownian motion as the process obtained
by subordinating XD via the α/2-stable subordinator Tt . More precisely, let Zt =
(XD)Tt , t ≥ 0. Then

Zt =
{

XTt , Tt < τD

∂, Tt ≥ τD
=

{
XTt , t < AτD

∂, t ≥ AτD

where the last equality follows from the fact {Tt < τD} = {t < AτD
}. Note that

AτD
is the lifetime of the process Z. Moreover, it holds that AτD

≤ τY
D . Indeed, if

s < AτD
, then Ts < τD , implying that Ys = XTs ∈ D. Hence, s < τY

D . Therefore,
the lifetime of Z is less than or equal to the lifetime of YD .

For any nonnegative Borel function f on D, let

Qtf (x) = Ex[f (YD
t )] = Ex[f (Yt ), t < τY

D] = Ex[f (XTt ), t < τY
D]

Rtf (x) = Ex[f (Zt )] = Ex[f (XD)Tt ] = Ex[f (XTt ), t < AτD
]

Since AτD
≤ τY

D , it follows that Rtf (x) ≤ Qtf (x) for all t ≥ 0.
The following result was established in [18].
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Proposition 2.1. Suppose that there exists C ∈ (0, 1) such that Px(Xt ∈ D) ≤ C

for every t ∈ (0, 1) and every x ∈ ∂D. Then

(1 − C)(1 − Rt1(x)) ≤ 1 − Qt1(x) ≤ 1 − Rt1(x) (2.1)

for every t ∈ (0, 1) and every x ∈ D.

A domain D ⊂ R
d is said to satisfy an exterior cone condition if there exist a

cone K with vertex at the origin and a positive constant r0, such that for each point
x ∈ ∂D, there exist a translation and a rotation taking the cone K into a cone Kx

with the vertex at x such that

Kx ∩ B(x, r0) ⊂ Dc ∩ B(x, r0) .

Here B(x, r0) denotes the ball of radius r0 centered at x. It is easy to show that
the condition in Proposition 2.1 is true for a any domain D ⊂ R

d satisfying an
exterior cone condition. It is well known that bounded C1,1 domains and exterior
C1,1 domains satisfy the exterior cone condition.

Let q(t, x, y) = q(t, y−x) be the transition density of the rotationally invariant
α-stable process Y . It is well known that the transition semigroup Qt corresponding
to the killed stable process also has a density. Let qD(t, x, y) be this density. Let
r(t, x, y) be the density of Rt and let pD(t, x, y) be the transition density of the
killed Brownian motion XD . The density r(t, x, y) is given by the formula

r(t, x, y) =
∫ ∞

0
pD(s, x, y) µ(t, s)ds , (2.2)

where µ(t, s) is the density of the one-sided α/2-stable convolution semigroup
µt . Let GD(x, y) and GY

D(x, y) denote the Green functions of Z and YD respec-
tively.The Green function of Z is given by

GD(x, y) =
∫ ∞

0
r(t, x, y) dt = 1

�(α/2)

∫ ∞

0
pD(t, x, y)tα/2−1 dt . (2.3)

The following elementary result was shown in [18].

Proposition 2.2. Let D be a domain in R
d .

(i) The transition density r(t, x, y) of Z is jointly continuous in (x, y) for each
fixed t . Further, r(t, x, y) ≤ qD(t, x, y) for all t > 0 and all (x, y) ∈ D×D.

(ii) When d > α, the Green function GD(x, y) is finite and continuous on D ×
D \ {(x, x), x ∈ D}.

It is well known (see, for instance, Example 1.4.1 of [10] and (2.20) of [2]) that
the Dirichlet form (EY , F) associated with Y is given by

EY (u, v) = 1

2
A(d, −α)

∫
Rd

∫
Rd

(u(x) − u(y))(v(x) − v(y))

|x − y|d+α
dxdy

F =
{
u ∈ L2(Rd) :

∫
Rd

∫
Rd

(u(x) − u(y))2

|x − y|d+α
dxdy < ∞

}
,
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where

A(d, −α) = α�(d+α
2 )

21−α πd/2 �(1 − α
2 )

.

If D is a domain in R
d , then the Dirichlet space on L2(D, dx) of the killed

rotationally invariant α-stable process YD is (EY , FD) (cf. Theorem 4.4.3 of [10]),
where

FD = {f ∈ F : f = 0 q.e. on Dc}.
Here q.e. is the abbreviation for quasi-everywhere with respect to the Riesz capacity
corresponding to the process Y . For u, v ∈ FD , EY (u, v) can be rewritten as

EY (u, v) =
∫

D

∫
D

(u(x) − u(y))(v(x) − v(y))J Y (x, y) dxdy

+
∫

D

u(x)v(x)κY (x)dx,

where

JY (x, y) = 1

2
A(d, −α)|x − y|−(d+α), (2.4)

κY (x) = A(d, −α)

∫
Dc

1

|x − y|d+α
dy. (2.5)

JY and κY are called the the jumping and killing functions of YD respectively.
Z is a symmetric Markov process and so there is a Dirichlet form (E, D(E))

associated with Z. Let P D
t be the transition semigroup corresponding to the Brown-

ian motion killed upon exiting D and recall that the corresponding transition density
is denoted by pD(t, x, y). It follows from [3] and [15] (see also [12]) that the jump-
ing function J (x, y) and the killing function κ(x) of the process Z are given by the
following formulae respectively:

J (x, y) =
∫ ∞

0
pD(t, x, y) ν(dt) (2.6)

κ(x) =
∫ ∞

0
(1 − P D

t 1(x)) ν(dt), (2.7)

where

ν(dt) = α/2

�(1 − α/2)
t−α/2−1 dt

is the Lévy measure of the α/2-stable subordinator.
It is easy to see from (2.6) that J (x, y) ≤ JY (x, y) for every x, y ∈ D. The

following result, proven in [18], shows that the killing functions κ(x) with κY (x)

are comparable.

Proposition 2.3. Suppose that there exists C ∈ (0, 1) such that Px(Xt ∈ D) ≤ C

for every t ∈ (0, 1) and every x ∈ ∂D. Then

(1 − C)κ(x) ≤ κY (x) ≤ κ(x), for every x ∈ D . (2.8)
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Remark 2.4. When D is a bounded C1,1 domain or an exterior C1,1 domain, it
follows easily from (2.5) that there exists a positive constant C1 such that

C−1
1 (ρ(x))−α ≤ κY (x) ≤ C1(ρ(x))−α, x ∈ D.

By using this and Proposition 2.3 it follows that there exists a constant C2 such that

C−1
2 (ρ(x))−α ≤ κ(x) ≤ C2(ρ(x))−α, x ∈ D.

3. Estimates on the density of killed Brownian motion

Recall that, for any domain D in R
d , pD(t, x, y) stands for the transition density of

killed Brownian motion in D. In this section we will concentrate on getting sharp
estimates on pD .

Theorem 3.1. If D is a bounded C1,1 domain in R
d , then there exists a constant

C > 0 such that for any t > 0 and any x, y ∈ D,

pD(t, x, y) ≤ C(
ρ(x)ρ(y)

t
∧ 1)t−d/2 exp(−|x − y|2

6t
).

Proof. Let φ0 be the ground state of the Dirichlet Laplacian −�D . It is well known
that when D is a bounded C1,1 domain, there exists a constant c1 such that

c−1
1 ρ(x) ≤ φ0(x) ≤ c1ρ(x), x ∈ D.

Now we can repeat the proof of Theorem 4.6.9 of [7] to show that there exists a
constant c2 > 0 such that for any t > 0 and any x, y ∈ D,

pD(t, x, y) ≤ c2t
−(d+2)/2φ0(x)φ0(y) exp(−|x − y|2

6t
).

Combining the two displays above we get that there exists c3 > 0 such that for any
t > 0 and any x, y ∈ D,

pD(t, x, y) ≤ c3t
−(d+2)/2ρ(x)ρ(y) exp(−|x − y|2

6t
).

Now the theorem follows by combining the above with the trivial estimate

pD(t, x, y) ≤ (2πt)−d/2 exp(−|x − y|2
2t

), t > 0, x, y ∈ D. ��

The following result was recently established in [20].

Theorem 3.2. If D is a bounded C1,1 domain in R
d , d ≥ 3, then there exist positive

constants T0, C1 and C2 such that for any t ∈ (0, T0] and any x, y ∈ D,

pD(t, x, y) ≥ C1(
ρ(x)ρ(y)

t
∧ 1)t−d/2 exp(−C2|x − y|2

t
).
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Remark 3.3. From Theorem 4.2.5 of [7] we know that, when D is a bounded C1,1

domain, there exists S > 0 such that for all t ≥ S and x, y ∈ D,

1

2
e−λ0t φ0(x)φ0(y) ≤ pD(t, x, y) ≤ 3

2
e−λ0t φ0(x)φ0(y),

where λ0 is the eigenvalue of the Dirichlet Laplacian −�|D corresponding to the
ground state φ0. Therefore one can not expect the lower bound in the theorem above
to be true for all t > 0.

One of the main goals of this section is to show that the theorem above holds
in dimensions 1 and 2 also. Before we do that, we establish some lemmas first.

Lemma 3.4. If D is a bounded C1,1 domain in R
2, there exists C > 0 such that

for all x, y ∈ D with 2|x − y| ≥ ρ(x) ∨ ρ(y),

1

C

ρ(x)ρ(y)

|x − y|2 ≤ G̃D(x, y) ≤ C
ρ(x)ρ(y)

|x − y|2 ,

where G̃D stands for the Green function of the killed Brownian motion in D.

Proof. It follows from Theorem 6.23 of [6] that there exists c1 > 0 such that for
all x, y ∈ D,

1

c1
ln

(
1 + ρ(x)ρ(y)

|x − y|2
)

≤ G̃D(x, y) ≤ c1 ln

(
1 + ρ(x)ρ(y)

|x − y|2
)

. (3.1)

When x, y ∈ D satisfies 2|x − y| ≥ ρ(x) ∨ ρ(y), we have

ρ(x)ρ(y)

|x − y|2 ≤ 4.

Therefore in this case the inequalities in (3.1) are equivalent to

1

c2

ρ(x)ρ(y)

|x − y|2 ≤ G̃D(x, y) ≤ c2
ρ(x)ρ(y)

|x − y|2
for some c2 > 0. ��
Lemma 3.5. Suppose that D is a bounded C1,1 domain in R

d , d = 1, 2. For any
a1 > 1, there exist positive constants T0, C1 and C2 depending only on D and a1
such that whenever t ∈ (0, T0], ρ2(x) ≥ a1t and ρ2(y) ≥ a1t we have

pD(t, x, y) ≥ C1

td/2 exp(−C2|x − y|2
t

).

Proof. One can repeat the proof of Lemma 2.1 of [20] to get this result. ��
Lemma 3.6. Suppose that D is a bounded C1,1 domain in R

d , d = 1, 2. For any
a1 > 1, there exist positive constants T0, C1 and C2 depending only on D and a1
such that whenever t ∈ (0, T0], ρ2(x) ≤ a1t and ρ2(y) ≥ 16a1t we have

pD(t, x, y) ≥ C1ρ(x)

t(d+1)/2
exp(−C2|x − y|2

t
).
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Proof. This proof is similar to the proof of Lemma 2.2 of [20]. We first deal with
the case d = 2. Let T0 = r1

16a1
, where r1 is the constant specified at the end of

paragraph before Theorem 1.1. Given x ∈ D such that ρ2(x) ≤ a1t , let x̄ ∈ ∂D be
such that |x − x̄| = ρ(x). Let xt be chosen so that: x̄ − xt and x − x̄ are co-linear,
ρ(xt ) = √

2a1t , |x − xt | ≤ √
2a1t . Then for any y ∈ D satisfying ρ2(y) ≥ 16a1t ,

|y − x| ≥ ρ(y) − ρ(x) ≥ 3
√

a1t ≥ 3√
2
|x − xt |.

Hence

|y − xt | ≥ |y − x| − |x − xt | ≥ 1

2
|y − x| (3.2)

|y − xt | ≤ |x − y| + |x − xt | ≤ 4|x − y|. (3.3)

Let y0 ∈ D be chosen so that: x̄ − y0 and x − x̄ are colinear, ρ(y0) = 4
√

a1t . Then
|x − y0| < 4

√
a1t . Now write u(z, s) = pD(s, z, y) and v(z) = G̃D(z, y0).

Both u and v are positive solutions of the equation ∂su = �u in the region
(B(x̄, 3.5

√
a1t) ∩ D) × (0, ∞) and u(z, s) = v(z) = 0 when z ∈ ∂D. By the

local comparison theorem in [8], there exists c1 > 0 such that

u(x, t)

v(x)
≥ c1

u(xt , t/2)

v(xt )
,

that is,

pD(t, x, y) ≥ c1
G̃D(x, y0)

G̃D(xt , y0)
pD(

t

2
, xt , y).

Obviously we have

|x − y0| ≥ ρ(y0) − ρ(x) ≥ 3
√

a1t > 2
√

a1t = ρ(x)

2
∨ ρ(y0)

2

|xt − y0| ≥ ρ(y0) − ρ(xt ) ≥ 2
√

a1t = ρ(xt )

2
∨ ρ(y0)

2
.

Thus by Lemma 3.4 we have

pD(t, x, y) ≥ c2
ρ(x)ρ(y0)

|x − y0|2
|xt − y0|2
ρ(xt )ρ(y0)

pD(
t

2
, xt , y) ≥ c3

ρ(x)

t1/2 pD(
t

2
, xt , y).

Here we used the facts that |xt − y0|/|x − y0| ≥ 1/2 and ρ(xt ) = √
2a1t . Since

ρ2(xt ) = 2a1t and ρ2(y) ≥ 16a1t , the previous lemma implies that

pD(
t

2
, xt , y) ≥ c4

t
exp(−c5|xt − y|2

t
) ≥ c6

t
exp(−c7|x − y|2

t
)

where in the last inequality is due to (3.3). The proof of the lemma in the case of
d = 2 is now complete.

The proof of the case d = 1 is similar to that of d = 2, we only need to replace
Lemma 3.4 by the exact formula for G̃D in this case. ��
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Lemma 3.7. Suppose that D is a bounded C1,1 domain in R
d , d = 1, 2. For any

a2 > 1, there exist positive constants T0, C1 and C2 depending only on D and a2
such that whenever t ∈ (0, T0], ρ2(x) ≤ a2t and ρ2(y) ≤ a2t we have

pD(t, x, y) ≥ C1ρ(x)ρ(y)

t(d+2)/2
exp(−C2|x − y|2

t
).

Proof. With the two lemmas above, one can now repeat the proof of Lemma 2.3 in
[20] to get this result. ��

Now we are ready to extend Theorem 3.2 to dimensions 1 and 2.

Theorem 3.8. If D is a bounded C1,1 domain in R
d , d = 1, 2, then there exist

positive constants T0, C1 and C2 such that for any t ∈ (0, T0] and any x, y ∈ D,

pD(t, x, y) ≥ C1(
ρ(x)ρ(y)

t
∧ 1)t−d/2 exp(−C2|x − y|2

t
).

Proof. For any t > 0 and a1 > 1, put

D1 = {(x, y) ∈ D × D : ρ2(x) ≥ a1t, ρ
2(y) ≥ a1t}

D2 = {(x, y) ∈ D × D : ρ2(x) ≤ a1t, ρ
2(y) ≥ 16a1t}

D3 = {(x, y) ∈ D × D : ρ2(x) ≥ 16a1t, ρ
2(y) ≤ a1t}

D4 = {(x, y) ∈ D × D : ρ2(x) ≤ 16a1t, ρ
2(y) ≤ 16a1t},

then D×D = D1 ∪D2 ∪D3 ∪D4. In D1, we use Lemma 3.5, while in D4 we apply
Lemma 3.7. When (x, y) ∈ D2 we know by Lemma 3.6 that there exist positive
constants c1 and c2 such that

pD(t, x, y) ≥ c1ρ(x)

t(d+1)/2
exp(−c2|x − y|2

t
).

Using the simple fact that ρ(y) ≤ ρ(x) + |x − y|, we get that

ρ(y)√
t

exp(−c2|x − y|2
t

) ≤ (
√

a1 + |x − y|√
t

) exp(−c2|x − y|2
t

) ≤ c3

for some constant c3. Thus

pD(t, x, y) ≥ c4ρ(x)ρ(y)

t(d+2)/2
exp(−2c2|x − y|2

t
).

D3 can be treated similarly. ��
The following result extends the above result to arbitrary finite time intervals.

Theorem 3.9. If D is a bounded C1,1 domain in R
d , then for any T > 0, there

exist positive constants C1 and C2 such that for any t ∈ (0, T ] and any x, y ∈ D,

pD(t, x, y) ≥ C1(
ρ(x)ρ(y)

t
∧ 1)t−d/2 exp(−C2|x − y|2

t
).
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Proof. We are only going to prove the result for T = 2T0, where T0 is the constant
specified in Theorem 3.2 when d ≥ 3 and Theorem 3.8 when d < 3. Then we
can repeat the argument to go from 2T0 to 4T0, and then 8T0, 16T0, . . . , to get the
general case.

Throughout this proof, C2 stands for the constant C2 in Theorem 3.2 when
d ≥ 3 and for the constant C2 in Theorem 3.8 when d < 3. Without loss of gener-
ality we may assume that C2 ≥ 1/6. For any t ≤ T0, by Theorems 3.2 and 3.8 we
have

pD(2t, x, y) =
∫

D

pD(t, x, z)pD(t, z, y)dz

≥ c1

∫
D

(
ρ(x)ρ(z)

t
∧ 1)t−d/2e− 2C2 |x−z|2

t (
ρ(z)ρ(y)

t
∧ 1)t−d/2

e− 2C2 |z−y|2
t dz

Putting s = t/(12C2) and using the elementary fact that for any c > 1,

1

c
(
ρ(x)ρ(y)

t
∧ 1) ≤ (

ρ(x)ρ(y)

ct
∧ 1) ≤ (

ρ(x)ρ(y)

t
∧ 1), t > 0, x, y ∈ D,

(3.4)

we get that

pD(2t, x, y) ≥ c2

∫
D

(
ρ(x)ρ(z)

s
∧ 1)s−d/2e− |x−z|2

6s

× (
ρ(z)ρ(y)

s
∧ 1)s−d/2e− |z−y|2

6s dz

≥ c3

∫
D

pD(s, x, z)pD(s, z, y)dz = c3p
D(2s, x, y),

where in the last inequality we used Theorem 3.1. Since 2s = t/(6C2) ≤ T0, we
can apply Theorems 3.2 and 3.8 to get

pD(2t, x, y) ≥ c4(
ρ(x)ρ(y)

2s
∧ 1)(2s)−d/2 exp(−C2|x − y|2

2s
)

≥ c5(
ρ(x)ρ(y)

2t
∧ 1)(2t)−d/2 exp(−c6|x − y|2

2t
),

where in the last inequality we used (3.4). ��
A domain D in R

d (d ≥ 2) is said to be an exterior domain if its comple-
ment is a compact set. An exterior domain is said to be an exterior C1,1 domain
if there exist positive constants r0 and M with the following property: for every
z ∈ ∂D and r ∈ (0, r0], there exist a function �z : R

d−1 → R satisfying the
condition |∇�z(ξ) − ∇�z(η)| ≤ M|ξ − η| for all ξ, η ∈ R

d−1 and an orthonormal
coordinate system CSz such that if y = (y1, . . . , yd) in the CSz coordinates, then

B(z, r) ∩ D = B(z, r) ∩ {y : yd > �z(y1, . . . , yd−1)}.
For exterior C1,1 domains we have the following result.
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Theorem 3.10. If D is an exterior C1,1 domain in R
d , d ≥ 3, then there exist

positive constants C1, C2, C3 and C4 such that for any t > 0 and any x, y ∈ D,

C1(
ρ(x)ρ(y)

t ∧ 1
∧ 1)t−d/2e− C2 |x−y|2

t ≤ pD(t, x, y)

≤ C3(
ρ(x)ρ(y)

t ∧ 1
∧ 1)t−d/2e− C4|x−y|2

t .

Proof. It follows from Theorem 1.1 of [21] that there exist positive constants c1,
c2, c3 and c4 such that for any t > 0 and any x, y ∈ D,

c1(
ρ(x)√
t ∧ 1

∧ 1)(
ρ(y)√
t ∧ 1

∧ 1)t−d/2e− c2 |x−y|2
t

≤ pD(t, x, y) ≤ c3(
ρ(x)√
t ∧ 1

∧ 1)(
ρ(y)√
t ∧ 1

∧ 1)t−d/2e− c4|x−y|2
t .

So the upper bound in the theorem follows immediately.
When ρ(x) ∨ ρ(y) ≤ √

t ∧ 1, or when ρ(x) ∧ ρ(y) ≥ √
t ∧ 1, we have

(
ρ(x)√
t ∧ 1

∧ 1)(
ρ(y)√
t ∧ 1

∧ 1) = (
ρ(x)ρ(y)

t ∧ 1
∧ 1).

If ρ(x) ≤ √
t∧1 and ρ(y) ≥ √

t∧1, then using the inequality ρ(y) ≤ ρ(x)+|x−y|
and the fact that for any c > 0 the function se−cs2

is bounded on (0, ∞) we see
that

c1(
ρ(x)√
t ∧ 1

∧ 1)(
ρ(y)√
t ∧ 1

∧ 1)t−d/2e− c2 |x−y|2
t

= c1
ρ(x)√
t ∧ 1

t−d/2e− c2 |x−y|2
t

≥ c5
ρ(x)√
t ∧ 1

ρ(y)√
t ∧ 1

e− c2 |x−y|2
t t−d/2e− c2 |x−y|2

t

= c5
ρ(x)ρ(y)

t ∧ 1
t−d/2e− 2c2 |x−y|2

t

≥ c5(
ρ(x)ρ(y)

t ∧ 1
∧ 1)t−d/2e− 2c2 |x−y|2

t .

The proof is now complete. ��

4. Sharp bounds on the density, Green function and the jumping kernel

We start this section with sharp estimates on the Green function and jumping func-
tion in the case of when D is a bounded C1,1 domain.

Theorem 4.1. Suppose that D is a bounded C1,1 domain in R
d and α ∈ (0, 2).

Let J and GD stand for the jumping function and Green function of Z respectively.



Subordinate killed Brownian motion 617

(1) There exist positive constants C1 and C2 such that for all x, y ∈ D,

C1

(
ρ(x)ρ(y)

|x − y|2 ∧ 1

)
1

|x − y|d+α
≤ J (x, y)

≤ C2

(
ρ(x)ρ(y)

|x − y|2 ∧ 1

)
1

|x − y|d+α

(2) If d > α, then there exist positive constants C3 and C4 such that for all
x, y ∈ D,

C3

(
ρ(x)ρ(y)

|x − y|2 ∧ 1

)
1

|x − y|d−α
≤ GD(x, y)

≤ C4

(
ρ(x)ρ(y)

|x − y|2 ∧ 1

)
1

|x − y|d−α

Proof. The upper bounds were established in [18], so we only need to prove the
lower bounds. The proofs of the lower bounds for J and GD are similar, we are
only going to write down the details for GD . It follows from (2.3) that

GD(x, y) = 1

�(α/2)

∫ ∞

0
pD(t, x, y)tα/2−1 dt.

Thus it follows from Theorem 3.9 that for any T > 0 there exist positive constant
c1 and c2 such that

GD(x, y) ≥ c1

�(α/2)

∫ T

0
(
ρ(x)ρ(y)

t
∧ 1)t−

d
2 −1+ α

2 e− c2 |x−y|2
t dt.

We may and do assume that x �= y. Let R be the diameter of the domain D. Without
loss of generality we may assume that R2 = T . Then for any x, y ∈ D, we have
ρ(x)ρ(y) < R2 = T . We now prove the lower bound by dealing with 2 separate
cases.

(i) |x−y|2
ρ(x)ρ(y)

< 2. In this case we have

GD(x, y) ≥ c1

�(α/2)

∫ ρ(x)ρ(y)

0
t−

d
2 −1+ α

2 e− c2 |x−y|2
t dt

= c1c
−(d−α)/2
2

�(α/2)

1

|x − y|d−α

∫ ∞
c2 |x−y|2
ρ(x)ρ(y)

s(d−α)/2−1e−sds

≥ c1c
−(d−α)/2
2

�(α/2)

1

|x − y|d−α

∫ ∞

2c2

s(d−α)/2−1e−sds

= c1c4c
−(d−α)/2
2

�(α/2)

1

|x − y|d−α
.

(ii) |x−y|2
ρ(x)ρ(y)

≥ 2. In this case we have
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GD(x, y) ≥ c1ρ(x)ρ(y)

�(α/2)

∫ T

ρ(x)ρ(y)

t−
d
2 −2+ α

2 e− c2 |x−y|2
t dt

= c1c
−(d−α)/2−1
2

�(α/2)

ρ(x)ρ(y)

|x − y|d+2−α

∫ c2 |x−y|2
ρ(x)ρ(y)

c2 |x−y|2
T

s(d−α)/2e−sds

≥ c1c
−(d−α)/2−1
2

�(α/2)

ρ(x)ρ(y)

|x − y|d+2−α

∫ 2c2

c2

s(d−α)/2e−sds

= c1c5c
−(d−α)/2−1
2

�(α/2)

ρ(x)ρ(y)

|x − y|d+2−α
.

The proof is now complete. ��
As a consequence of this result, we immediately get the following very useful

3G inequality. For an example of an application of this inequality, see [5].

Corollary 4.2. Suppose that D is a bounded C1,1 domain in R
d and α ∈ (0, 2). If

d > α, then there exists a constant C > 0 such that

GD(x, y)GD(y, z)

GD(x, z)
≤ C

(
ρ(y)

ρ(x)
GD(x, y) + ρ(y)

ρ(z)
GD(y, z)

)
, x, y, z ∈ D.

Proof. See the proof of Proposition 4.2 of [5]. ��
Theorem 4.3. If D is an exterior C1,1 domain in R

d , d ≥ 3, then there exist
positive constants C1, C2, C3 and C4 such that for all x, y ∈ D,

C1

(
ρ(x)ρ(y)

|x − y|2 ∧ 1
∧ 1

)
1

|x − y|d+α
≤ J (x, y)

≤ C2

(
ρ(x)ρ(y)

|x − y|2 ∧ 1
∧ 1

)
1

|x − y|d+α

C3

(
ρ(x)ρ(y)

|x − y|2 ∧ 1
∧ 1

)
1

|x − y|d−α
≤ GD(x, y)

≤ C4

(
ρ(x)ρ(y)

|x − y|2 ∧ 1
∧ 1

)
1

|x − y|d−α

Proof. The proofs for J and GD are similar, and so we only spell out the details
for GD . It follows from (2.3) that

GD(x, y) = 1

�(α/2)

∫ ∞

0
pD(t, x, y)tα/2−1 dt.

From this and the trivial bound pD(t, x, y) ≤ (4πt)−d/2e−|x−y|2/(4t) we can imme-
diately get that there is a c1 > 0 such that

GD(x, y) ≤ c1

|x − y|d−α
, x, y ∈ D.
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From the upper bound in Theorem 3.10 we get that

GD(x, y) ≤ C3

�(α/2)

∫ ∞

0

(
ρ(x)ρ(y)

t ∧ 1
∧ 1

)
t−

d
2 −1+ α

2 e− C4|x−y|2
t dt,

where C3 and C4 are the constants in Theorem 3.10. Therefore we have for all
x, y ∈ D, GD(x, y) is bounded from above by

C3

�(α/2)

∫ 1

0
ρ(x)ρ(y)t−

d
2 −2+ α

2 e− C4|x−y|2
t dt

+ C3

�(α/2)

∫ ∞

1
ρ(x)ρ(y)t−

d
2 −1+ α

2 e− C4|x−y|2
t dt

≤ C3

�(α/2)
ρ(x)ρ(y)

∫ ∞

0
t−

d
2 −2+ α

2 e− C4|x−y|2
t dt

+ C3

�(α/2)
ρ(x)ρ(y)

∫ ∞

0
t−

d
2 −1+ α

2 e− C4|x−y|2
t dt

≤ c2ρ(x)ρ(y)

|x − y|d+2−α
+ c3ρ(x)ρ(y)

|x − y|d−α
≤ c4

ρ(x)ρ(y)

|x − y|2 ∧ 1

1

|x − y|d−α
.

The proof of the upper bound is now complete.
Now we prove the lower bound. It follows from the lower bound in Theorem

3.10 that

GD(x, y) ≥ C1

�(α/2)

∫ ∞

0
(
ρ(x)ρ(y)

t ∧ 1
∧ 1)t−

d
2 −1+ α

2 e− C2 |x−y|2
t dt,

where C1 and C2 are the constants in Theorem 3.10. We consider the following 4
separate cases.

(i) ρ(x)ρ(y) ≥ 1. In this case we have

GD(x, y) ≥ C1

�(α/2)

∫ ∞

0
t−

d
2 −1+ α

2 e− C2 |x−y|2
t dt = c5

|x − y|d−α
.

(ii) ρ(x)ρ(y) < 1 and |x − y|2 ≤ 2ρ(x)ρ(y). In this case we have

GD(x, y) ≥ C1

�(α/2)

∫ ρ(x)ρ(y)

0
t−

d
2 −1+ α

2 e− C2 |x−y|2
t dt

= c6

|x − y|d−α

∫ ∞
C2 |x−y|2
ρ(x)ρ(y)

s
d−α

2 −1e−sds

≥ c6

|x − y|d−α

∫ ∞

2C2

s
d−α

2 −1e−sds ≥ c7

|x − y|d−α
.
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(iii) ρ(x)ρ(y) < 1, |x − y|2 ≥ 2ρ(x)ρ(y) and |x − y|2 ≤ 1. In this case we have

GD(x, y) ≥ C1

�(α/2)

∫ 1

ρ(x)ρ(y)

ρ(x)ρ(y)

t
t−

d
2 −1+ α

2 e− C2 |x−y|2
t dt

= c8ρ(x)ρ(y)

|x − y|d−α

∫ C2 |x−y|2
ρ(x)ρ(y)

C2|x−y|2
s

d−α
2 e−sds

≥ c8ρ(x)ρ(y)

|x − y|d+2−α

∫ 2C2

C2

s
d−α

2 e−sds

≥ c9ρ(x)ρ(y)

|x − y|d+2−α
= c9

ρ(x)ρ(y)

|x − y|2 ∧ 1

1

|x − y|d−α
.

(iv) ρ(x)ρ(y) < 1, |x − y|2 ≥ 2ρ(x)ρ(y) and |x − y|2 ≥ 1. In this case we have

GD(x, y) ≥ C1

�(α/2)

∫ ∞

1
ρ(x)ρ(y)t−

d
2 −1+ α

2 e− C2 |x−y|2
t dt

= c10ρ(x)ρ(y)

|x − y|d−α

∫ C2|x−y|2

0
s

d−α
2 −1e−sds

≥ c10ρ(x)ρ(y)

|x − y|d−α

∫ C2

0
s

d−α
2 −1e−sds

≥ c11ρ(x)ρ(y)

|x − y|d−α
= c11

ρ(x)ρ(y)

|x − y|2 ∧ 1

1

|x − y|d−α
.

The proof is now complete. ��

Similar to Corollary 4.2, we have the following

Corollary 4.4. If D is an exterior C1,1 domain in R
d , d ≥ 3, then there exists a

constant C > 0 such that

GD(x, y)GD(y, z)

GD(x, z)
≤ C

(
ρ(y)

ρ(x)
GD(x, y) + ρ(y)

ρ(z)
GD(y, z)

)
, x, y, z ∈ D.

By using the same argument as in the proof of Theorem 4.3, we get the fol-
lowing sharp estimates for the Green function G̃D of killed Brownian motions in
exterior C1,1 domains. As far as we know, these estimates are new.

Theorem 4.5. If D is an exterior C1,1 domain in R
d , d ≥ 3, then there exist

positive constants C1 and C2 such that for all x, y ∈ D,

C1

(
ρ(x)ρ(y)

|x − y|2 ∧ 1
∧ 1

)
1

|x − y|d−2 ≤ G̃D(x, y)

≤ C2

(
ρ(x)ρ(y)

|x − y|2 ∧ 1
∧ 1

)
1

|x − y|d−2 .

Proof. The proof is similar to that of Theorem 4.3. We omit the details. ��
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Now we deal with estimates on the density of r(t, x, y) of Z. We start with the
case of exterior C1,1 domains.

Theorem 4.6. If D is an exterior C1,1 domain in R
d , d ≥ 3, then there exist

positive constants C1 and C2 such that

C1

(
ρ(x)ρ(y)

(t2/α + |x − y|2) ∧ 1
∧ 1

)
t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

≤ r(t, x, y)

≤ C2

(
ρ(x)ρ(y)

(t2/α + |x − y|2) ∧ 1
∧ 1

)
t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

.

Proof. It is easy to see that the function on (0, ∞) × R
d defined by

(t, ξ) �→
∫ ∞

0
s−d/2e− |ξ |2

s µ(t, s)ds

is comparable to the transition density q(t, ξ) of the rotationally invariant α-stable
process Y on R

d . Thus it follows from scaling and Theorem 2.1 of [1] that there
exist positive constants c1 and c2 such that for all ξ ∈ R

d ,

c1t
− d

α

(
1 + |ξ |2

t2/α

)− d+α
2

≤
∫ ∞

0
s−d/2e− |ξ |2

s µ(t, s)ds ≤ c2t
− d

α

(
1 + |ξ |2

t2/α

)− d+α
2

.

(4.1)

From this and the trivial bound pD(s, x, y) ≤ (4πs)−d/2e−|x−y|2/(4s) we immedi-
ately get that

r(t, x, y) =
∫ ∞

0
pD(s, x, y)µ(t, s)ds ≤ c3t

− d
α

(
1 + |x − y|2

t2/α

)− d+α
2

, x, y ∈ D,

for some c3 > 0. Using the upper bound in Theorem 3.10 we get that for all
x, y ∈ D,

r(t, x, y) ≤ C3

∫ ∞

0
(
ρ(x)ρ(y)

s ∧ 1
∧ 1)s−d/2e− C4|x−y|2

s µ(t, s)ds,

where C3 and C4 are the constants in Theorem 3.10. Thus we have

r(t, x, y) ≤ C3

∫ 1

0

ρ(x)ρ(y)

s
s−d/2e− C4|x−y|2

s µ(t, s)ds

+C3

∫ ∞

1
ρ(x)ρ(y)s−d/2e− C4|x−y|2

s µ(t, s)ds

≤ C3ρ(x)ρ(y)

∫ ∞

0
s−(d+2)/2e− C4|x−y|2

s µ(t, s)ds
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+C3ρ(x)ρ(y)

∫ ∞

0
s−d/2e− C4|x−y|2

s µ(t, s)ds

≤ c4ρ(x)ρ(y)t−
d+2
α

(
1 + |x − y|2

t2/α

)− d+2+α
2

+c5ρ(x)ρ(y)t−
d
α

(
1 + |x − y|2

t2/α

)− d+α
2

≤ c6
ρ(x)ρ(y)

(t2/α + |x − y|2) ∧ 1
t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

.

The proof of the upper bound is now finished.
Now we deal with the lower bound. It follows from Section 2.4 of [22] that

there exists M > 1 such that

c7u
− α

2 −1 ≤ µ(1, u) ≤ c8u
− α

2 −1, u ≥ M (4.2)

for some positive constants c7 and c8. In the remainder of this proof, C1 and C2
stands for the constant C1 and C2 in Theorem 3.10 respectively. We are going to
prove the lower bound in the following separate cases.

(i) ρ(x)ρ(y) ≥ 1. In this case we have

r(t, x, y) ≥ C1

∫ ∞

0
s−d/2e− C2 |x−y|2

s µ(t, s)ds

≥ c9t
− d

α

(
1 + |x − y|2

t2/α

)− d+α
2

for some c9 > 0.

(ii) ρ(x)ρ(y) < 1, |x−y|2 ≤ ρ(x)ρ(y) and |x−y|2
t2/α ≥ 2M . In this case, by using

the lower bound in Theorem 3.10 we get that

r(t, x, y) ≥ C1

∫ |x−y|2

0
s−d/2e− C2 |x−y|2

s µ(t, s)ds

= C1

∫ |x−y|2

0
s−d/2e− C2 |x−y|2

s t−2/αµ(1, t−2/αs)ds

= C1t
−d/α

∫ |x−y|2
t2/α

0
u−d/2e

− C2
u

|x−y|2
t2/α µ(1, u)du

≥ C1t
−d/α

∫ |x−y|2
t2/α

|x−y|2
2t2/α

u−d/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c10t
−d/α

( |x − y|2
t2/α

) ( |x − y|2
t2/α

)−d/2 ( |x − y|2
t2/α

)−α/2−1

= c10t
−d/α

( |x − y|2
t2/α

)− d+α
2

≥ c10t
−d/α

(
1 + |x − y|2

t2/α

)− d+α
2

,

where in the fifth line above we used (4.2).
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(iii) ρ(x)ρ(y) < 1, |x − y|2 ≤ ρ(x)ρ(y), |x−y|2
t2/α ≤ 2M , ρ(x)ρ(y)

t2/α ≥ 2M . In this
case we have

r(t, x, y) ≥ C1

∫ ρ(x)ρ(y)

0
s−d/2e− C2 |x−y|2

s µ(t, s)ds

≥ C1t
−d/α

∫ ρ(x)ρ(y)

t2/α

0
u−d/2e

− C2
u

|x−y|2
t2/α µ(1, u)du

≥ C1t
−d/α

∫ 2M

M

u−d/2e− 2C2M

u µ(1, u)du ≥ c11t
−d/α.

(iv) ρ(x)ρ(y) < 1, |x − y|2 ≤ ρ(x)ρ(y), ρ(x)ρ(y)

t2/α ≤ 2M and 1
t2/α ≥ 3M . In this

case we have

r(t, x, y) ≥ C1

∫ 1

ρ(x)ρ(y)

ρ(x)ρ(y)s−(d+2)/2e− C2 |x−y|2
s µ(t, s)ds

= C1ρ(x)ρ(y)t−
d+2
α

∫ 1
t2/α

ρ(x)ρ(y)

t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ C1ρ(x)ρ(y)t−
d+2
α

∫ 3M

2M

u−(d+2)/2e− 2C2M

u µ(1, u)du

≥ c12ρ(x)ρ(y)t−
d+2
α ≥ c13

ρ(x)ρ(y)

(t2/α + |x − y|2) ∧ 1
t−

d
α

×
(

1 + |x − y|2
t2/α

)− d+α
2

.

(v) ρ(x)ρ(y) < 1, |x − y|2 ≤ ρ(x)ρ(y), ρ(x)ρ(y)

t2/α ≤ 2M and 1
t2/α ≤ 3M . In this

case we have

r(t, x, y) ≥ C1

∫ ∞

1
ρ(x)ρ(y)s−d/2e− C2 |x−y|2

s µ(t, s)ds

= C1ρ(x)ρ(y)t−
d
α

∫ ∞
1

t2/α

u−d/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ C1ρ(x)ρ(y)t−
d
α

∫ ∞

3M

u−d/2e− 2C2M

u µ(1, u)du

≥ c14ρ(x)ρ(y)t−
d
α ≥ c15

ρ(x)ρ(y)

(t2/α + |x − y|2) ∧ 1
t−

d
α

×
(

1 + |x − y|2
t2/α

)− d+α
2

.
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(vi) ρ(x)ρ(y) < 1, |x − y|2 > ρ(x)ρ(y), ρ(x)ρ(y)

t2/α ≥ 2M and |x−y|2
t2/α ≤ 3M . In

this case we have

r(t, x, y) ≥ C1

∫ ρ(x)ρ(y)

0
s−d/2e− C2 |x−y|2

s µ(t, s)ds

= C1t
−d/α

∫ ρ(x)ρ(y)

t2/α

0
u−d/2e

− C2
u

|x−y|2
t2/α µ(1, u)du

≥ C1t
−d/α

∫ 2M

0
u−d/2e− 3C2M

u µ(1, u)du ≥ c16t
−d/α.

(vii) ρ(x)ρ(y) < 1, |x − y|2 > ρ(x)ρ(y), ρ(x)ρ(y)

t2/α ≤ 2M , and |x−y|2
t2/α ≤ 3M . In

this case we have

r(t, x, y) ≥ C1

∫ ∞

ρ(x)ρ(y)

ρ(x)ρ(y)s−(d+2)/2e− C2 |x−y|2
s µ(t, s)ds

= C1ρ(x)ρ(y)t−
d+2
α

∫ ∞
ρ(x)ρ(y)

t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ C1ρ(x)ρ(y)t−
d+2
α

∫ ∞

2M

u−(d+2)/2e− 3C2M

u µ(1, u)du

≥ c17ρ(x)ρ(y)t−
d+2
α ≥ c17

ρ(x)ρ(y)

t2/α + |x − y|2 t−
d
α

×
(

1 + |x − y|2
t2/α

)− d+α
2

,

and

r(t, x, y) ≥ C1

∫ ∞

ρ(x)ρ(y)

ρ(x)ρ(y)s−d/2e− C2 |x−y|2
s µ(t, s)ds

= C1ρ(x)ρ(y)t−
d
α

∫ ∞
ρ(x)ρ(y)

t2/α

u−d/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ C1ρ(x)ρ(y)t−
d
α

∫ ∞

2M

u−d/2e− 3C2M

u µ(1, u)du

≥ c18ρ(x)ρ(y)t−
d
α ≥ c18ρ(x)ρ(y)t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

.

Combining the above we get that in this case

r(t, x, y) ≥ c19
ρ(x)ρ(y)

(t2/α + |x − y|2) ∧ 1
t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

.
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(viii) ρ(x)ρ(y) < 1, |x − y|2 > ρ(x)ρ(y) and |x−y|2
t2/α ≥ 3M . In this case we have

r(t, x, y) ≥ C1

∫ ∞

|x−y|2
ρ(x)ρ(y)s−d/2e− C2 |x−y|2

s µ(t, s)ds

≥ C1ρ(x)ρ(y)t−
d
α

∫ 2|x−y|2
t2/α

|x−y|2
t2/α

u−d/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c20ρ(x)ρ(y)t−d/α

( |x − y|2
t2/α

) ( |x − y|2
t2/α

)−d/2

×
( |x − y|2

t2/α

)−α/2−1

= c20ρ(x)ρ(y)t−d/α

( |x − y|2
t2/α

)− d+α
2

≥ c20ρ(x)ρ(y)t−d/α

(
1 + |x − y|2

t2/α

)− d+α
2

,

and

r(t, x, y) ≥ C1

∫ ∞

|x−y|2
ρ(x)ρ(y)s−(d+2)/2e− C2 |x−y|2

s µ(t, s)ds

≥ C1ρ(x)ρ(y)t−
d+2
α

∫ 2|x−y|2
t2/α

|x−y|2
t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c21ρ(x)ρ(y)t−(d+2)/α

( |x − y|2
t2/α

) ( |x − y|2
t2/α

)−(d+2)/2

×
( |x − y|2

t2/α

)−α/2−1

= c21ρ(x)ρ(y)t−(d+2)/α

( |x − y|2
t2/α

)− d+2+α
2

≥ c21ρ(x)ρ(y)t−d/α

(
1 + |x − y|2

t2/α

)− d+α
2

= c21
ρ(x)ρ(y)

t2/α + |x − y|2 t−
d
α

(
1 + |x − y|2

t2/α

)− d+α
2

,

where we used (4.2) in the third lines of both displays above. Combining the
above we get that in this case

r(t, x, y) ≥ c22
ρ(x)ρ(y)

(t2/α + |x − y|2) ∧ 1
t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

.

The proof of the lower bound is now complete. ��
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For bounded C1,1 domains we have the following result.

Theorem 4.7. Suppose that D is a bounded C1,1 domain in R
d , d ≥ 1. For any

T1 > 0, there exist positive constants C1 and C2 such that for any t ∈ (0, T1] and
x, y ∈ D,

C1

(
ρ(x)ρ(y)

t2/α + |x − y|2 ∧ 1

)
t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

≤ r(t, x, y)

≤ C2

(
ρ(x)ρ(y)

t2/α + |x − y|2 ∧ 1

)
t−

d
α

(
1 + |x − y|2

t2/α

)− d+α
2

.

Proof. The upper bound is actually valid for all t > 0. To get this upper bound, we
just need to use Theorem 3.1. So we only deal with the lower bound.

Let R be the diameter of D. Without loss of generality we may assume that
R2 < T1/2. In the remainder of this proof C2 stands for the constant C2 in Theorem
3.9. We deal with the following separate cases.

(i) |x − y|2 ≤ ρ(x)ρ(y) and |x−y|2
t2/α ≥ 2M . Using exactly the same argument as

in case (ii) of the proof of the theorem above we get

r(t, x, y) ≥ c1t
−d/α

(
1 + |x − y|2

t2/α

)− d+α
2

.

The only difference is that we use Theorem 3.9 for T = T1 here instead of
Theorem 3.10.

(ii) |x − y|2 ≤ ρ(x)ρ(y), ρ(x)ρ(y)

t2/α ≥ 2M and |x−y|2
t2/α ≤ 2M . Using exactly the

same argument as in case (iii) of the proof of the theorem above we get

r(t, x, y) ≥ c2t
−d/α.

Again the only difference is that we use Theorem 3.9 for T = T1 here instead
of Theorem 3.10.

(iii) |x −y|2 ≤ ρ(x)ρ(y), ρ(x)ρ(y)

t2/α ≤ 2M and |x−y|2
t2/α ≤ 2M . In this case, by using

Theorem 3.9 for T = 4T
2/α
1 M , we get

r(t, x, y) ≥ c3

∫ 4T
2/α
1 M

ρ(x)ρ(y)

ρ(x)ρ(y)s−(d+2)/2e− C2 |x−y|2
s µ(t, s)ds

= c3ρ(x)ρ(y)t−
d+2
α

∫ 4T
2/α
1 M

t2/α

ρ(x)ρ(y)

t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c4ρ(x)ρ(y)t−
d+2
α

∫ 4T
2/α
1 M

t2/α

2M

u−(d+2)/2e− 2C2M

u µ(1, u)du

≥ c5ρ(x)ρ(y)t−
d+2
α .
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(iv) |x − y|2 > ρ(x)ρ(y) and |x−y|2
t2/α ≥ M . In this case, by using Theorem 3.9 for

T = T1, we get

r(t, x, y) ≥ c3

∫ T1

ρ(x)ρ(y)

ρ(x)ρ(y)s−(d+2)/2e− C2 |x−y|2
s µ(t, s)ds

= c3ρ(x)ρ(y)t−
d+2
α

∫ T1
t2/α

ρ(x)ρ(y)

t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c6ρ(x)ρ(y)t−
d+2
α

∫ 2R2

t2/α

ρ(x)ρ(y)

t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c6ρ(x)ρ(y)t−
d+2
α

∫ 2|x−y|2
t2/α

|x−y|2
t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c7ρ(x)ρ(y)t−
d+2
α

( |x − y|2
t2/α

) ( |x − y|2
t2/α

)−(d+2)/2

×
( |x − y|2

t2/α

)−α/2−1

= c7ρ(x)ρ(y)t−
d+2
α

( |x − y|2
t2/α

)− d+2+α
2

≥ c7ρ(x)ρ(y)t−
d+2
α

(
1 + |x − y|2

t2/α

)− d+2+α
2

,

where in the fifth line above we used (4.2).

(v) |x − y|2 > ρ(x)ρ(y) and |x−y|2
t2/α ≤ M . In this case, by using Theorem 3.9 for

T = 4T
2/α
1 M , we get

r(t, x, y) ≥ c3

∫ 4T
2/α
1 M

ρ(x)ρ(y)

ρ(x)ρ(y)s−(d+2)/2e− C2 |x−y|2
s µ(t, s)ds

= c3ρ(x)ρ(y)t−
d+2
α

∫ 4T
2/α
1 M

t2/α

ρ(x)ρ(y)

t2/α

u−(d+2)/2e
− C2

u
|x−y|2
t2/α µ(1, u)du

≥ c8ρ(x)ρ(y)t−
d+2
α

∫ 4T
2/α
1 M

t2/α

R2

t2/α

u−(d+2)/2e− C2M

u µ(1, u)du

≥ c9ρ(x)ρ(y)t−
d+2
α .

Combining the five cases above we get the desired lower bound. ��

Remark 4.8. One could also use the results of the two theorems above to get the
Green function estimates in Theorems 4.1 and 4.3.
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