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1 Introduction

In recent years the prices for many commodities have experienced a significant and sustained

boom. Moreover, this boom has extended beyond the “usual suspects,” that is, beyond

oil and precious metals, to include a diverse set of goods such as cotton, maize, wheat,

soybeans, sugar, edible oils, and coffee, among others. The situation is summarized in

Figure 1, where monthly World Bank aggregate price indices, 1960–2010, for energy, grains,

and edible fats and oils are plotted.1 As illustrated there, sustained increases began for each

of these (nominal) price categories sometime during the early 2000s. Indeed, nominal prices

for all three indices reached all–time highs during 2008. As also indicated in Figure 1, while

there were steep declines in these indices following the onset of the recent financial crises,

since then the prices for many commodities have substantially recovered.

There are many reasons underlying the recent commodity price surge. A primary driver

is almost certainly the rapid income growth of emerging economies, most notably for China

and India. With rising purchasing power, there appears to be concomitant “Westernization”

of diets in many emerging economies, with consumers increasingly demanding a richer, more

varied diet, and one tilted more towards protein (Zhang and Law, 2010). Likewise, income

growth in emerging economies has also corresponded with rapidly increasing demands for

energy. See Hamilton (2009) and Kilian (2009). Not only is energy a major input into agri-

cultural production, but the demands for energy and food are increasingly linked because

of biofuel production; see Abbott, Hurt, and Tyner (2008). Since passage of the Energy

Policy Act of 2005, the United States has established a renewable fuel standard while si-

multaneously pursuing a policy of subsidizing ethanol production and restricting its import.

In consequence two of every five bushels of corn now produced in the United States are

used in ethanol production (U.S. Department of Agriculture, 2011). Weather shocks have

also reduced commodity supplies in some instances (see, e.g., World Bank, 2011), the result

being that for some commodities (e.g., maize, rice, and wheat) global stock levels relative to

overall use have been unusually low in recent years. Other factors that have possibly played a
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role in recent commodity price runs include speculation and expansionary monetary policies,

although establishing these as true causal factors is difficult.

A variety of approaches could be used to explore the recent surge in commodity prices.

One would be to construct a comprehensive structural supply–demand system that attempts

to account for the myriad factors influencing commodity markets. While this approach has

merit, it is data intensive, costly to implement, and is sensitive to assumptions (e.g., do agents

possess rational expectations, näıve expectations, or something in between?). Although it

can be advantageous, the problem with the structural approach is that any hypothesis tests

are actually joint tests involving the assumptions embedded in the structural model. An

alternative approach, and one used extensively in the literature (see, e.g., Carter and Smith,

2007), is to model commodity prices in a reduced form manner, typically by using univariate

or multivariate time series methods. We pursue this second approach because we want to

model a large number of commodity prices in a consistent fashion. Our main interest is in

estimating the timing of shifts in sixteen different commodity prices. However, to address

the issue, we must determine whether prices are stationary around an unspecified number of,

possibly smooth, mean shifts. The econometric task is to estimate the number of breaks, the

dates at which breaks occur, and whether series are stationary after controlling for shifts. As

noted by Newbold and Vougas (1996), answering these questions is paramount in obtaining

a deeper understanding of commodity price behavior, and is therefore material to attaining

insights into recent commodity price movements.

There is a small but relevant literature that has examined the time series properties of

commodity prices. Much of this work has sought to examine the long–term behavior of

commodity prices vis–à–vis some numéraire, for example, the producer price index. The

goal is to determine if (real) commodity prices are trend stationary, and if so whether

there has been a long–term secular decline. Recent examples of work in this area include

Kellard and Wohar (2006), Balagtas and Holt (2009), and Harvey et al. (2010). Others such

as Wang and Tomek (2007) have examined the issue conceptually and empirically; they ar-
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gue that, due to storability and biological production constraints, prices for agricultural

commodities should not follow a unit root process. They also discuss specification issues

in testing for unit roots in commodity prices and present empirical evidence that several

common price series appear to be trend stationary once mean breaks are accounted for.

As Wang and Tomek (2007) observe, the production processes for agricultural commodi-

ties in the presence of costly storage means that price changes are serially correlated. The

autocorrelation is a result of: (1) the biological constraints that prevent an instantaneous

supply response to changes in market conditions; and (2) the changes in inventories that

help smooth consumption and hence price changes over time. The argument applies equally

well to temporary and permanent changes in market fundamentals. For example, in response

to a permanent increase in demand, the price could overshoot its long–run level if short–

run supply were sufficiently inelastic. Although inventory adjustments would mitigate the

possibility of overshooting (since stocks would decline when prices are relatively high), the

key point is that prices would gradually adjust to their new long–run level. As such, price

adjustments would tend to be gradual, even if shifts in the underlying market conditions

occur quickly.

Prior research has not investigated the possibility that commodity prices are best rep-

resented as a stationary process that incorporates a set of smooth shifts as opposed to a

series of discrete, one–off sharp breaks. However, the recent time series literature has made

substantial progress in testing for unit roots in the context of models that not only in-

clude trends but also smooth shifts. See, for example, Becker, Enders, and Lee (2006a) and

Enders and Lee (2011). The situation where commodity prices are potentially stationary

around a smoothly shifting mean is also relevant for examining the most recent boom. For

example, did observed price spikes during the past five–six years reflect a true mean shift,

indicating the possible change in some underlying fundamental? Or did they simply result

from a series of random disturbances? And assuming the former is true, is there any discern-

able pattern to the timing of shifts across commodities? These and related questions can be
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examined once the time series properties of the price data have been firmly established.

Considering the above, the goals of this paper are as follows: (1) to use new methods to

examine the unit root hypothesis for commodity prices vis–à–vis a trend stationary model

with smooth shifts; and (2) for commodities for which shifting–mean stationarity is deemed

appropriate, to determine the timing of and the extent to which the most recently observed

shifts occur. In the empirical analysis we examine monthly primary commodity price data

collected from World Bank Pink Sheets and the International Monetary Fund (IMF) Finan-

cial Statistics Database, 1960–2010. Commodities examined include maize, soy, wheat, rice,

cotton, and crude oil, among others. In so doing we employ a set of new tools for examin-

ing smooth shifts in commodity prices. Specifically, we implement two variants of a smooth

shifting–mean autoregressive (SM–AR) process: one due to Becker, Enders, and Hurn (2004;

2006b) that is based on a Fourier flexible form; and one due to González and Teräsvirta

(2008) that is based on a time–varying autoregressive (TV–AR) model. Because SM–AR

models do not force structural change to be sharp they represent a reasonable alternative to

the more common Bai and Perron (1998) approach, the results of which are also included

for comparison.

The outline of the paper is as follows. In the next section we present an overview of the

methods employed to investigate shifting means in commodity prices. In section three we

describe the data, while section four reviews unit root testing in the presence of shifting means

and reports the results of these tests applied to the commodity price data. In section five

we detail the Bai and Perron (1998), the Fourier, and the González and Teräsvirta (2008)

methodologies and compare the estimated break dates found by each. Section six discusses

the implications of our analysis for the timing and possible causes of changing commodity

prices. The final section concludes.
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2 A Framework for Modelling Shifting Means

Let cpt denote a primary commodity price, and let pt denote the producer price index.

The basic building block for our investigation of shifting means in commodity prices is a

univariate autoregressive (AR) model, which is written as:

(1) ∆yt = δ̃(t) +

p∑
j=1

θj∆yt−j + ρyt−1 + εt, t = 1, . . . , T,

and where yt = ln(cpt/pt), ∆ denotes a difference operator such that ∆zt = zt − zt−1, δ̃(t) is

a time–varying intercept, and εt ∼ iid(0, σ2). Here ∆yt denotes the monthly (real) inflation

rate for a commodity price. By examining real commodity prices we abstract from price

movements caused by changes in the overall price level.

Regardless of the approach used to specify δ̃(t), once parameter estimates have been

obtained it is a straightforward matter to uncover an estimate of the shifting mean. Assuming

that ρ < 0 in (1), that is, by assuming that the real commodity price is stationary around a

shifting mean, the underlying unconditional mean at time t is

(2) E(yt) = −δ̃(t)/ρ,

where E denotes the expectation operator.

2.1 Bai–Perron Procedure

A now standard methodology for modelling δ̃(t), developed by Perron (1989) and Bai and Perron

(1998), is to assume the series of interest is stationary around a small set of discrete breaks

in its unconditional mean. In other words, commodity prices might behave as a process that

is piecewise stationary. In the context of (1), the idea is as follows. Rewrite δ̃(t) as:

(3) δ̃(t) = δ0 +
k∑

i=1

δiIτi ,
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where Iτi is defined as a Heaviside indicator function such that Iτi = 1 if t > τi and is 0

otherwise. Additionally, k denotes the number of discrete breaks in the unconditional mean

of the series and δi and τi, i = 1, . . . , k, are additional parameters to be estimated.

In contrast to a Chow test where break dates are known, Andrews and Ploberger (1994)

develop a test for the case of a single sharp break (i.e., k = 1 in (3)) occurring at an unknown

date. The procedure involves searching for τi by performing a Chow test for every possible

break date. To ensure an adequate number of observations for each regression, it is standard

to use “trimming” such that breaks do not occur at the very beginning or end of the sample.

If a break is present, the value of τi producing the best fit is a consistent estimate of the

break date. The null hypothesis of structural stability is tested against the alternative of

a one–time break using the Andrews and Ploberger (1994) supremum test. Bai and Perron

(1998, 2003) generalize this methodology to allow for the possibility of k > 1 breaks.

Although the Bai–Perron method is arguably the current “industry standard,” it is prob-

lematic as to whether it can capture the smooth shifts shown in Figure 1. For equation (3) to

approximate the recent gradual and sustained increases in commodity prices, it is necessary

to combine the sharp breaks into a step-function. Yet, for any type of gradual change, the

first step will necessarily come after the initial price increase.

2.2 Fourier Series Approximation

Instead of viewing breaks in δ̃(t) as being sharp, Becker, Enders and Hurn (2004, 2006b)

show that the essential characteristics of a series containing breaks can often be captured

using a modification of Gallant’s (1984) flexible Fourier form. Specifically, define:

(4) δ̃(t) = δ0 + δ1t+
n∑

i=1

{
δci cos (2πf

∗
i t/T ) + δsi sin (2πf

∗
i t/T )

}
, n ≤ T/2,

where f ∗
i are low frequency Fourier terms. The choice of a Fourier approximation to model the

smoothly evolving time–varying intercept is driven by three considerations. First, it is well–
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known that a Fourier approximation can capture the variation in any absolutely integrable

function of time. Hence, the behavior of the time–varying intercept can be readily captured

by trigonometric expressions even if the actual function in question is not periodic. Although

a Fourier approximation works best when the breaks are smooth, Becker, Enders and Hurn

(2004), Becker, Enders, and Lee (2006a) and Enders and Lee (2011) show that trigonometric

functions do reasonably well in approximating certain sharp breaks. Second, unlike a Taylor

series approximation using powers of t, t2, t3, . . ., the sum of a small number of trigonometric

components is bounded and projections into the future are necessarily finite. Although a

Taylor series is valid at a particular point in the sample space, a Fourier approximation

is a global (rather than a local), approximation. Third, the estimation of (4) is easily ac-

complished by using OLS; for each desired frequency f ∗
i , form the variables sin(2πf ∗

i t/T )

and cos(2πf ∗
i t/T ) and include them in the estimating equation. Hypothesis testing is also

straightforward since the values of sin(2πf ∗
i t/T ) and cos(2πf ∗

i t/T ) are orthogonal to each

other and Gallant and Souza (1991) show that their joint distributions are multivariate nor-

mal.2

Throughout, we select various model components including lag lengths, p, and the number

of cumulative frequencies, n, by using Akaike’s Information Criterion (AIC), determined as:

(5) AIC = T log

(
T∑
t=1

ε̂2t

)
+ 2r,

where r is the number of estimated parameters and ε̂t’s are the SM–AR’s estimated residuals.

2.3 Logistic Function Components

González and Teräsvirta (2008) also assume the series in question moves around a determin-

istically shifting mean while allowing shifts to be either sharp or smooth. Specifically, they
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consider:

(6) δ̃(t) = δ0 +
k∑

i=1

δig(ηi, ci, t
∗),

where, again, δi’s are “mean–shift” parameters and g(.)’s is a logistic function, defined as:

(7) g(ηi, ci, t
∗) =

(
1 + exp(−γ(ηi)(t

∗ − ci)/σ̂t∗)
)−1

, i = 1, . . . , k,

where γ(ηi) = exp(ηi), t
∗ = t/T, t = 1, . . . , T ; σ̂t∗ is the estimated standard deviation of t∗;

and where ηi and ci are parameters. Specifically, ηi is finite but is otherwise unrestricted. As

well, ci ∈ [0, 1] is a centrality parameter where the value of ciT indicate the date at which

the shift is centered. By construction each g(.) component in (7) is bounded on the unit

interval.

Given (7), it follows that the unconditional mean can, depending on the magnitude

of ηi, experience either sharp or slowly evolving changes. Specifically, as the normalized

value of ηi becomes large, g(.) effectively becomes a Heaviside indicator function, Ici , as in

(3). Alternatively, for small values of ηi the function g(.) approaches a linear trend, while

for intermediate values it has a sigmoidal shape. By varying k additional flexibility can

be achieved. Significantly, the shifting mean could include a combination of discrete and

smooth changes as well as a linear trend. In this sense the logistic function approach is also

a generalization of Bai and Perron’s (1998) methodology.

We use the following procedure to estimate the SM–AR’s parameters with logistic func-

tion components:

1. Define a set of candidate transition functions by evaluating (7) for a grid of values for

η and c. Let ΘN =
{(

HNη × CNc

)}
, where HNη = {ηs : ηs = ηs−1 + κη, s = 1, . . . , Nη}

and CNc = {cs : cs = cs−1 + κc, s = 1, . . . , Nc}, and where κη and κc are values used to

initialize the grid.
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2. Estimate the AR model in (1) by setting δ̃(t) = δ0. The minimized sum of squared

errors is computed and saved.

3. Determine the first smooth break as

(η̂1, ĉ1) = argmin
(ηs,cs)∈ΘN

T∑
t=1

{
∆yt − δ̂0 − δ̂1g (ηs, cs, t

∗)−
p∑

j=1

θ̂j∆yt−j − ρ̂yt−1

}2

where estimates of α̂ =
(
δ̂0, δ̂1, θ̂1, . . . , θ̂p, ρ̂

)′

are obtained as follows. Define wt (ηs, cs) =

(1, g (ηs, cs, t
∗) ,∆yt−1, . . . ,∆yt−p, yt−1)

′
. Then

α̂ (ηs, cs) =

(
T∑
t=1

wt (ηs, cs)wt (ηs, cs)
T

)−1( T∑
t=1

wt (ηs, cs)∆yt

)
.

4. Repeat step 3 until k = k. For each pass, k, treat (η̂1, . . . , η̂k−1, ĉ1, . . . , ĉk−1) as fixed.

Compute and save the AIC(k) as defined in equation (5). Determine the number of

logistic function components to use in the final model as k̂ = argmink∈(1,...,k) AIC(k).

Simply put, we use a two–dimensional grid search to estimate logistic function param-

eters. For this reason we name our estimation strategy SlowShift, as opposed to González

and Teräsvirta’s (2008) QuickShift procedure. The advantage of SlowShift is that with a fine

enough grid, the in–sample mean square prediction error is effectively minimized.

3 Data

Commodity price data were obtained from World Bank (various issues). We also examine

the behavior of ocean freight rates for bulk products, a series collected by Lutz Kilian; see

Kilian (2009). Although a large array of commodity prices are available, we focus on sixteen

series: maize, soy, wheat, sorghum, palm oil, rice, cotton, coffee, cocoa, sugar, beef, logs,

rubber, oil, coal, and ocean freight rates. The data are monthly and, as described in the

Technical Appendix, generally span the period 1960–2010 (612 observations). This group
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includes important food and feed grains (maize, soy, wheat, sorghum, and rice) as well as

prices for other primary food and fibre items (palm oil, cotton, coffee, cocoa, sugar, and beef).

Logs and rubber are important products used extensively in manufacturing, construction,

and production of consumer items. The price of oil is included because of its universal

importance as a primary input in manufacturing, food production, and transportation. As

well, and as noted previously, oil and maize prices have become more intertwined in recent

years due to increased biofuel production. Oil, while important, is not the only energy

source, and for this reason we also include coal. Ocean freight is included to reflect general

global economic activity; the cost of ocean transport is also an important consideration in

commodity trade. A detailed description of the data used including units, sample periods,

and sources may be found in the Technical Appendix.

All prices are deflated by the producer price index (PPI). The PPI is used because most

commodities can be regarded as intermediate inputs. We also transform each real price series

by multiplying by 100 and then by taking the natural logarithm.

4 Unit Root Testing in the Presence of Smooth Shifts

Before estimating a model in the form of (1), it is crucial to know whether or not the

series in question is stationary around a shifting mean. Of course H0 : ρ = 0 is a testable

hypothesis, and one that should be verified for (2) to be defined. However, it is well known

that typical unit root tests lose power in the presence of one or more mean shifts (Perron,

1989). Moreover, smooth shifts add another complicating factor in that a gradually changing

series is not likely to be piecewise stationary in the sense of Prodan (2008). For example,

when capturing a smooth break with a Bai-Perron stair–step function, the series will not

generally be stationary within any of the selected intervals.

Several papers have proposed unit root tests for SM–AR models including Leybourne,

Newbold, and Vougas (1998), who examined the null of a unit root against a TV–AR model

with a single logistic component. Nevertheless, since our series are likely to have multiple
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structural breaks, we adopt another estimation strategy that is consistent with (1) and (4).

Becker, Enders and Lee (2006a) (BEL) modify the Kwiatkowski, Phillips, Schmidt and Shin

(1992) (KPSS) test, which examines the null of stationarity against a unit root alternative.

The BEL test allows for flexibility in the specification of mean shifts by using selected

frequency components from a Fourier function. An advantage of KPSS–type tests is that

the problem of low power associated with standard unit root tests is avoided. Moreover, the

null hypothesis that commodity prices are stationarity seems more in tune with economic

theory than the null hypothesis of a unit root (Wang and Tomek, 2007).

To implement the BEL test, the following regressions are estimated:

yt = δ0 +
n∑

i=1

{δci cos (2πf ∗
i t/T ) + δsi sin (2πf

∗
i t/T )}+ et,(8a)

yt = δ0 + δ1t+
n∑

i=1

{δci cos (2πf ∗
i t/T ) + δsi sin (2πf

∗
i t/T )}+ et,(8b)

where (8a) is appropriate when the null hypothesis is level–stationary and (8b) when the

null is trend–stationary. Let ẽt denote the residuals from the estimates of (8). The BEL test

statistics are then

(9) τµ (n) or ττ (n) =
1

T 2

T∑
t=1

S̃t (n)
2

σ̃2
,

where S̃t(n) =
∑t

j=1 ẽj and where ẽt are from the regression in (8a) for τµ or from (8b) for

ττ . The test statistic can be viewed as a comparison of an estimate of the short–run variance

to that of the long–run variance, σ̃2. An estimate for the long–run variance is also needed,

and is typically given by:

σ̃2 = γ̃0 + 2
ℓ∑

j=1

wj γ̃j,

where ℓ is the truncation lag, γ̃j is the jth sample autocovariance of the residuals, ẽt, from

estimates of either (8a) or (8b), and wj are a set of weights. Alternatively, σ̃2 could be
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obtained by augmenting (8) with lags of ∆yt, as indicated by Leybourne and McCabe (1994).

Becker et al. (2006a) discuss the properties of the test statistics in (9), and present simulated

critical values. They also illustrate that these tests have good power to ascertain U–shaped

breaks and smooth breaks even near the end of the sample.

Enders and Lee (2011) develop an LM–type unit root test that also approximates breaks

(shifts) in a series by using low frequency terms from a Fourier series. The test proceeds by

estimating a regression analogous to (8a), but in first–difference form. That is,

(10) ∆yt = δ0 +
n∑

i=1

{δci∆cos (2πf ∗
i t/T ) + δsi∆sin (2πf ∗

i t/T )}+ et.

Based on estimates of (10), a de–trended series is constructed as

S̃t = yt − δ̃0 −
n∑

i=1

{
δ̃ci cos (2πf

∗
i t/T ) + δ̃si sin (2πf

∗
i t/T )

}
, t = 2, . . . , T,

and the testing regression is therefore:

(11) ∆yt = φS̃t−1 + d0 +
n∑

i=1

{dci∆cos (2πf ∗
i t/T ) + dsi∆sin (2πf ∗

i t/T )}+ ξt.

If yt follows a unit root process then φ = 0 is true. The associated LM test, called the

τLM test, is then simply a test of H0 : φ = 0 in (11); Enders and Lee (2011) report critical

values for such a test. Importantly, they also find that the τLM test has good size and power

properties in the presence of logistic shifts of the sort described in (6) and (7).

We perform both versions of the Fourier tests. Stationary tests, such as the KPSS test

and the BEL test, are known to have good power, but poor size properties. Tests with the

null of a unit root, such as the usual Dickey-Fuller test and the τLM test, have good size but

low power.

12



4.1 Unit Root and Stationarity Test Results

Table 1 shows the results of the Enders and Lee (2011) LM unit–root test and the Becker,

Enders and Lee (2006a) KPSS–type stationarity test. The second column of the table shows

the number of frequencies selected (by minimizing AIC) up to a maximum of n = 3. For that

number of frequencies, n, the next column shows the sample value of the τLM test statistic

for H0 : φ = 0. The lower panel of Table 1 indicates the 5% and 10% critical values for each

n for a sample size of 500. For example, if n = 3, the corresponding 5% and 10% critical

values are −5.42 and −5.16, respectively. For coffee, cocoa, and sugar, we cannot reject the

null of a unit root at the 10% significance level, whereas for all other commodities we reject

the null at the 5% level.

Columns 3 and 4 of Table 1 contain the sample test statistics for the BEL staionarity

tests. The critical values for this test depend on whether there is a deterministic trend in the

estimating equation. For n = 3, the 5% and 1% critical values are 0.0216 and 0.0265 in the

presence of a trend and 0.0729 and 0.1157 without the trend.3 Column 3 reports the results

with a trend (the ττ test) while column 4 reports the results when the trend was found to be

insignificant (the τµ test). For all commodities except cotton, logs, oil, and coal, we cannot

reject the null hypothesis of stationarity at the 5% level; but even for these commodities we

fail to reject stationarity at the 1% level. Nevertheless, for every commodity, at least one

version of the test indicates that the series reverts to a smoothly evolving mean.

In an earlier version of this paper, we considered eight other commodities including gold,

silver, iron ore, zinc, copper, tin, and lead. These commodities were found to have unit roots

and so necessitate a different methodology to find breaks than that considered here. To save

space, and because these commodities have no direct bearing on agricultural prices, results

for these commodities are not reported here.
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5 Estimation Results

In this section we apply the methods described previously for estimating shifting means to

commodity prices. In every case we set the upper limit for the number of autoregressive

parameters, p, to twelve; we use the AIC to determine the lag order of the autoregressive

process by setting δ̃(t) = δ0. The result is there are T = 599 sample observations, from

February, 1961 through December, 2010 for all commodities save coal (T = 479) and ocean

freight (T = 503). A detailed description of the data as well summary statistics for the best

fitting constant–mean autoregressions (including results of several parameter non–constancy

tests) are reported in the Technical Appendix; in each case the test results allow us to reject

the null hypothesis that the model’s intercept is constant.

5.1 Bai–Perron Results

We employ the Bai and Perron (1998, 2003) methodology setting the maximum number of

breaks at 9. We use a trim factor such that the last of these breaks can occur no later than

December, 2008 (2008:12).4 Instead of using a sequential search, we estimate the model for

every possible combination of 9 breaks imposing the restriction that there must be at least

24 observations between any adjacent break dates. The combination of break dates resulting

in the smallest residual sum of squares is a consistent estimate of the vector of break dates.

We test the null hypothesis of no breaks against the alternative hypothesis of some breaks

by using the UDmax critical values tabulated in Bai and Perron (1998).5 Since we allow

only the intercept to change across regimes, we can use the 90%, 95% and 97.5% asymptotic

critical values of 8.78, 10.17 and 11.52, respectively. Although Bai and Perron (1998) indicate

that the critical values are insensitive to the magnitude chosen for the upper value of k, we

also perform tests for the null hypothesis of no breaks against the specific alternatives of

exactly one break and exactly nine breaks (i.e., the sup–F test using a single break and

using nine breaks). Given that we reject the null hypothesis of no breaks, we estimate

14



every possible combination of breaks using models containing 1 through 9 breaks. We select

the best fitting model using the Bayesian Information Criterion (BIC). This procedure is

recommended by Prodan (2008) and seems reasonable for a large number of commodities

with varying numbers of potential breaks.

Summary results for the final models estimated by using the Bai–Perron procedure are

reported in the Technical Appendix. Here we focus on the timing of the last break found

for each series. After all, if rising oil prices have caused run–ups in other commodity prices,

we should find a positive jump in the price of oil that occurs prior to, or concurrently with,

jumps in the prices of the other commodities.6 Figure 2 shows the time paths of the estimated

breaks superimposed over the actual price series. For clarity, the plots in Figure 2 focus only

on the later part of the sample, beginning in 1995; plots for the entire sample period are

reported in the Technical Appendix. Table 2 reports, for each commodity, the estimated

date of the most recent break along with a 95% confidence interval (i.e., the columns headed

Lower and Upper in the Table) for the break date. As should be clear from the Table, for oil,

the last break occurs in December, 2004. This is earlier than the final jumps in the prices of

maize (2006:08), soy (2007:04), rice (2008:01), cotton (2008:11), coffee (2008:10), and cocoa

(2008:11). The oil price jump also precedes the jumps in the prices of wheat (2006:1) and

sorghum (2006:08) that were followed by partial returns to their pre–jump levels. This is

reasonably strong evidence in support of the claim that the rise in the price of oil reflected

itself in a general rise in most other commodity prices. Of the commodities in our sample,

only sugar and beef seem to be invariant to the jump in the price of oil. This argument is

bolstered by the fact that the jump in the mean real price of oil was almost twofold.

The problem with the view that the oil price jump occurred prior to the other breaks

is that the break dates are poorly estimated. Notice, for example, that a 95% confidence

interval is such that the last break in the price of oil could have occurred as early as 2004:05

but as late as 2005:04. Part of the problem may be that breaks are gradual instead of sharp.

Unless each break fully manifests itself at a single point in time, models with sharp breaks
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are misspecified. If you examine Figure 2, it is clear that sometime close to 1999, the (real)

price of oil started to rise at a fairly steady pace. The Bai–Perron method captures this

steady upward drift using sharp (upward) breaks at 1999:02 and 2004:12. If the price of oil

actually did begin to rise in 1999, the prices of other commodities should have begun their

increases around 1999 as well. Similar problems occur in the end–of–sample run–ups in the

prices of soy, rice, coffee. The point is that if breaks are smooth, the Bai–Perron procedure

necessarily relies on several or more reinforcing breaks to capture the sustained movement

in the series. In these instances the estimated break dates are not especially informative of

the actual change points in the series.

5.2 Fourier Results

Since breaks manifest themselves at the low end of the spectrum, Becker, Enders and Lee

(2006a) recommend estimating (4) using a number of low frequencies, n. Unit root and

stationarity tests lose power as the number of frequency components is expanded. Unlike

these tests, where power is a particularly important issue, our aim is to precisely estimate

the break dates. As such, we set max(n) = 10 and estimate each series in the form of (1)

and (4). To avoid being ad hoc, we did not attempt to pare down the models by eliminating

insignificant intermediate frequencies (e.g., for Maize, the value of n yielding the lowest AIC

was n = 6 so that sine and cosine terms using frequencies f ∗
1 through f ∗

6 are included). For

each commodity, the number of frequencies selected, estimates of ρ, and other regression

diagnostics are reported in the Technical Appendix. Unlike the Bai and Perron (1998, 2003)

specification, with a Fourier expansion, the number of breaks (shifts) in the data need not

equal the number of frequencies used in the estimating equation.

For our purposes, the key piece of information is in the fifth column of Table 2 labeled

“Last”. Entries in this column show the date of the last trough of the estimated Fourier

intercept and can be taken as an approximation of the last upward break in the series.7

For example, if you examine the estimated time–varying mean for maize, −δ̃(t)/ρ, shown
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as the long dashed line labeled “Trig” in Panel 1 of Figure 2, you can see that the last

trough occurred in September of 2004 suggestive of an upward jump in the price of maize.

Reading down column five, the last trough for oil occurred in July 2002. This clearly predates

the last trough in all of the agricultural commodities except rice. Most importantly, the last

upward shift for most commodities including maize (2004:09), soybeans (2005:10) and wheat

(2005:03), occurred two or more years after the initial run–up in oil prices. Nevertheless, the

Bai-Perron and Fourier results reinforce each other in supporting the claim that the recent

run–up in agricultural commodities follows from an increase in the real price of oil.

5.3 SlowShift Results

In the implementation of SlowShift we set the upper limit for the number of mean shifts,

k, to ten. As well, when k ≥ 2 we force SlowShift to pick a centrality parameter, ci, that

is at least 24 months away from its nearest neighbor.8 We restrict our search for ci’s to

100 equally spaced values in the [0.05, 0.95] interval (1963:07 to 2008:06) and for ηi’s to 100

equally spaced values in the [−1, 3.401] interval. In terms of gi = exp(ηi), the corresponding

grid is [0.368, 30].9 The result is that 10,000 regressions are estimated for each iteration of

the SlowShift procedure.

The estimation results, including the number of shifts, parameter estimates, goodness–

of–fit measures, and tests for serial correlation are summarized in the Technical Appendix.

For all commodities save palm oil and ocean freight, the SlowShift procedure chooses at

least two logistic function components. Moreover, in ten instances four or more shifts are

included in the final model specification (i.e., for maize, soy, wheat, sorghum, rice, coffee,

cocoa, sugar, beef, and coal). Results in Table 2 indicate that in some instances the shifts

in underlying commodity price means are fairly sharp, that is, γ̂ = γmax = 30. Even so,

for most commodities there is at least one component for which the estimated value of γ is

substantially less than 30, indicating that long–term mean shifts are a feature of the data.

For example, although not reported here, long–term shifts were estimated for maize, soy,
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wheat, sorghum, cotton, coffee, sugar, beef, oil, coal, and ocean freight. See the Technical

Appendix for details.

Additional results of interest, as reported in the Technical Appendix, are as follows. In

mid–1986 the International Coffee Organization (ICO) failed in its attempts to ratify a new

agreement, choosing instead to temporarily extend the 1983 agreement. During 1993–94 the

ICO tried again to negotiate a new agreement to regulate international coffee prices, and

did eventually have a new agreement ratified in late 1994. The new agreement, however, did

not include provisions for regulating prices. In this instance the SM–AR model with logistic

function components does a reasonable job of identifying these periods and the resulting

impacts on international coffee prices.

Of interest here, as with the Bai–Perron and Fourier results, are the shifts that occurred in

recent years, notably, since the early– or mid– 2000s. Results in Table 2 as well as in Figure 2

suggest that in many instances commodity price means did change rather sharply during this

period. To illustrate, a rather abrupt increase in the mean for maize was centered around

August 2006 (2006:08). Similar shifts were identified for soy (2007:02), wheat (2006:03),

sorghum (2006:03), rice (2007:02), coffee (2008:06), cocoa (2007:07), and rubber (2008:06).

Likewise, notable upward shifts in the prices of oil and coal were centered around December

2003 (2003:12). Similar to the results obtained by using alternative methods (i.e., Bai–

Perron and Fourier frequencies), the SlowShift models indicate that means for oil and coal

apparently shifted upward about three–to–four years in advance of the corresponding rise in

the means for grains and food commodities.

6 Discussion and Analysis

A fundamental question is this: did the recent run–up in the price of oil cause subsequent

upward shifts in prices of other commodities? While the results of our analysis do not

allow us to make explicit causal statements, it seems unlikely that oil price jumps were the

sole cause of subsequent shifts for other commodity prices. Unfortunately, it is not always
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straightforward to determine the beginning of a price movement. For example, for maize,

the Bai–Perron method selects a last upward break date of 2006:08, the Fourier method

2004:09, and ShowShift selects 2005:8.10 Since this last shift in the price of maize is rather

sharp, the Bai–Perron method seems to capture this particular shift better than the other

methods. Notice that the SlowShift and Fourier methods seem to smooth out the shift and,

therefore, seem to select a somewhat early break date. However, in cases where the shift is

gradual, the Bai–Perron method seems to be the most problematic. For oil (see Panel 15

of Figure 2), the Bai–Perron method finds a downward shift at 1997:01 followed by upward

shifts in 1999:02 and 2004:12. The SlowShift and Fourier methods seem more plausible in

that they capture the rise in the price of oil that began in late 2002. Finally, some prices,

(such as wheat and ocean freight) began to increase, but then fell during the onset of the

2008 financial crisis. In an effort to be fair to each method, we used some judgment and,

in Table 3, report what appear to be the start of the most recent run–up; notice that the

commodities are listed chronologically from first to last shift date. As such, the results in

Table 3 are not a simple ordering of the last upward shifts shown in Table 2.

Based on the rankings, we can categorize each method in terms of which commodities

began to rise early, which rose later, and those which are unclear (or have non–applicable

last breaks, i.e., a last break occurring prior to 2000:01). Notice that three commodities,

specifically, rubber, coal, and oil seem to have the strongest evidence of early price shifts.

Maize, sorghum, logs, palm oil, rice, and soybeans increase somewhat later. Finally, some

commodities have no breaks occurring after 2000:01 (e.g., sugar for Bai–Perron and Slow-

Shift); run–ups which begin quite late in the sample period (e.g., cotton); or downward shifts

following a previous upward shift (e.g., freight).

The key point is the timing of the various jumps seems somewhat out of sync if in

fact oil is the primary causal factor. Specifically, if oil is singularly the causal driver, the

corresponding jumps in the prices for grains and other food items would have occurred sooner

than they did. Moreover, the Bai–Perron and Fourier methodologies suggest that shifts in
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the prices for building materials (rubber and logs) preceded the increase in oil. As well, we

are dubious that speculative activity has played a large and sustained role in the recently

observed behavior for many commodity prices. Why? Because not all prices examined

were associated conclusively with upward shifts at the end of the sample period including

several heavily traded commodities such as wheat and sugar. Moreover, wheat and sugar are

included in the widely used Reuters–Jefferies CRB index, which in turn has recently become

a focal point of a number of exchange traded funds (ETFs). A priori it is not clear why

speculative activity would result in sustained run–ups in prices for certain commodities and

not others. Finally, note that these shifts are not simply due to changes in the overall level

of inflation as we analyze only deflated commodity prices.

Other than negative oil supply shocks, there are at least two plausible candidates for the

recent shifts in many primary commodity prices. First, and as noted in the introduction,

there is solid reason to believe that demand shifts for many commodities may have occurred

sometime in the mid 2000s and that, likewise, increases in supplies were not sufficient to

offset these shifts. The demand shifts in turn were likely driven by higher real incomes

in China, India, and in other emerging economies. The nature and timing of the various

breaks revealed here suggest that the demand for energy and building materials increased

first followed secondly by an increase in demand for food–related commodities. Secondly,

and consistent with the conclusions of Abbott, Hurt, and Tyner (2008), we cannot rule out

the possibility that for some commodities, and notably for maize as well as possibly for soy,

wheat, and sorghum, that the explicit shift in the United States to a mandated ethanol fuel

standard starting in 2006 also triggered a permanent shift in underlying price relationships

for these goods. Indeed, it is very likely that the two factors are intertwined, that is, that

both increasing demands for commodities in emerging economies as well as the rise of biofuel

production are primary drives underlying much of the recently observed change in commodity

prices.
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7 Conclusions

In this paper we have examined the underlying behavior of a group of monthly commodity

prices over a fifty year period. Specifically, we examine price movements in the context of

mean breaks or shifts. We do so by using established methods for detecting multiple struc-

tural breaks in time series data (i.e., the procedures due to Bai and Perron, 1998, 2003) as

well as several new procedures, specifically, Fourier and SlowShift approximations. Interest-

ingly, all three methods appear to tell a similar story: in recent years changes in the price of

oil and the prices for several building materials pre–dated (by several years) changes in the

prices for grains and other food items. As such, it seems unlikely that shifts in the oil price

alone caused shifts in other commodity prices. Indeed, a more plausible story seems to be

that demand growth in emerging economies and the increasing utilization of certain crops

for biofuels production have also contributed to the recent price runs.

Although this study has shed light on the timing and nature of recently observed com-

modity price movements, more work remains. For example, to what extent do some or all

of the commodity prices examined here cotrend? To illustrate, do the price of oil and the

price of maize share a common, nonlinear trend? In this regard it may be possible to use

the SlowShift or Fourier SM–AR modelling framework presented here in conjunction with

methods advanced by, for example, Bierens (2000) to examine this issue. This and related

topics remain, however, as important future extensions of the analyses presented here.
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Notes

1The commodities included in these indices are as follows: (1) energy (oil, coal, and

natural gas); (2) grains (barley, maize, rice, sorghum, and wheat); and (3) edible fats and

oils (coconut oil, copra, groundnut oil, palm oil, palmkernel oil, soybean meal, soybean oil,

and soybeans).

2If the individual f ∗
i are estimated, they become unidentified nuisance parameters under

the null that δci = δsi = 0. In such circumstances, Becker, Enders and Hurn (2004, 2006b)

develop a sup–F test along the lines of Davies (1987).

3 The critical values get larger as the significance level decreases since the null hypothesis

is that the data are stationary and the alternative is that they are nonstationary. To be

99% confident that the series is nonstationary requires larger critical values than to be 95%

confident.

4Although not reported here, in earlier stages of the analysis we experimented with other

trim factors, all of which were less favorable to the Bai–Perron methodology than the one

utilized here.

5As discussed in Prodan (2008), searching for multiple breaks using the alternative se-

quential procedure is problematic. The problem is that finding a consistent estimate of the

k-th break is contingent on successfully finding the first k−1 breaks. Yet, if there are k breaks

the search for the k − 1 breaks entails the use of a misspecified model. Papell and Prodan

(2006), show that this problem is especially acute in searching for offsetting breaks, some-

times called U–shaped breaks. Similarly, sequential testing procedures can be problematic

in that any test for the k-th break is conditional on the outcome of the tests for the other

k − 1 breaks.

6For some highly speculative commodities such as gold and silver, prices rises could occur
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in anticipation of future events, including anticipated oil price inflation.

7Since our interest is in breaks occurring around the rise in oil prices, we do not consider

troughs that occur before 2000:01 or after 2009:01.

8If two or more of the estimated ci’s are too close, and if the corresponding γi’s are similar

in magnitude, near singularity can result. By forcing ci’s to be at least 24 months apart we

preclude this possibility.

9One advantage of searching over η versus γ is that an equally spaced grid on the former

does not translate into an equally spaced grid for the later. As González and Teräsvirta

(2008) note, there is less need to have an evenly spaced grid for relatively large values of γ.

This principle is embedded here in our equidistant grid for η.

10To make comparisons comparable, we measure the beginning of the break for SlowShift

as the date where the corresponding logistic function equals 0.10. See the column labeled

10% in Table 2.
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Table 1: Unit Root Test Results.

Commodity n τLM ττ (n) τµ(n)

Maize 3 -5.454 0.0210 –

Wheat 3 -5.652 0.0189 –

Soybeans 3 -6.378 – 0.041

Sorghum 3 -6.152 0.0200 –

Palmoil 3 -6.658 – 0.032

Rice 3 -5.432 – 0.022

Cotton 3 -6.175 0.0221 –

Coffee 3 -5.022 – 0.031

Cocoa 1 -3.426 0.0368 –

Sugar 3 -5.003 0.0195 –

Beef 2 -5.596 – 0.026

Logs 3 -5.495 0.0224 –

Rubber 3 -5.701 – 0.020

Oil 3 -6.221 0.0234 –

Coal 2 -5.309 0.0330 –

Freight 1 -5.859 0.0389 –

Critical Values:

τLM ττ (n) τµ(n)
——— ——— ———

n 5% 10% 5% 1% 5% 1%

1 -4.05 -3.78 0.0538 0.0714 0.1688 0.2696

2 -4.79 -4.52 0.0312 0.0397 0.1023 0.1614

3 -5.42 -5.16 0.0216 0.0265 0.0729 0.1157

Note: Entries in bold for the τLM test indicate that the unit root
hypothesis is rejected at the 5% but not the 10% significance
level. For the same test an entry that is in bold and underlined
is not significant at the 10% level. For the KPSS–type tests,
bolded entries indicate the null of stationarity can be rejected at
the 5% but not the 1% significance level.
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Table 3: Last Upward Shift in Commodity Price Means.

Commodity Bai-Perron Commodity Fourier Commodity SlowShift

Commodities with Early Shifts

Rubber 2001:12 Coal 2001:11 Oil 2002:11

Freight 2003:02 Rice 2001:11 Coal 2002:11

Beef 2003:06 Rubber 2002:12

Coal 2003:10

Commodities with Intermediate Shifts

Rice 2004:07 Oil 2002:07 Wheat 2005:02

Coffee 2004:08 Palm Oil 2002:11 Sorghum 2005:02

Oil 2004:12 Logs 2002:12 Rubber 2005:04

Maize 2005:08

Commodities with Late or Non Applicable Shifts

Logs 2005:11 Maize 2004:09 Soy 2006:01

Wheat 2006:01 Wheat 2005:03 Rice 2006:01

Palmoil 2006:06 Sorghum 2005:03 Cocoa 2006:06

Maize 2006:08 Cocoa 2005:09 Coffee 2007:03

Sorghum 2006:08 Soy 2005:10 Palm Oil NA

Soy 2007:04 Freight 2006:09 Cotton NA

Cotton 2008:11 Coffee 2007:05 Sugar NA

Cocoa 2008:11 Beef 2007:06 Beef NA

Sugar NA Cotton 2007:10 Logs NA

Sugar 2008:01 Freight NA

Note: NA denotes “Non Applicable” in that no shifts (breaks) occurred after
2000:01.
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