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ABSTRACT. We obtain necessary and sufficient conditions for
all weighted one dimensional Poincaré inequalities. Weighted
Hardy-type inequalities are an example of our estimates. We
use these estimates to obtain some Poincaré type inequalities on
product spaces for product weights. In some cases, we also ob-
tain the exact constants in the inequalities. Finally, we apply our
result to study solutions of ordinary differential equations with
given average value.

1. INTRODUCTION. If 1 ≤ q, p < ∞, and −∞ < a < b < ∞, there is
a constant Tp,q depending on a, b such that the one dimensional Poincaré
type inequality

(∫ b
a

∣∣∣∣∣f(x)− 1
b − a

∫ b
a
f(t)dt

∣∣∣∣∣
q

dx
)1/q

≤ Tp,q
(∫ b

a
|f ′(x)|p dx

)1/p

(1.1)

holds for any Lipschitz continuous function f on [a,b]. In this paper, we
study the constant Tp,q and, more generally, the problems of the validity of
the corresponding weighted estimates

(∫ b
a

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
fdv

∣∣∣∣∣
q

µ(x)dx
)1/q

(1.2)

≤ C
(∫ b

a
|f ′(x)|pw(x)dx

)1/p
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and the value of the constant C. Here, µ, w are weights (i.e., nonnegative
measurable functions which are finite a.e.) and v is any nonnegative finite
Borel measure on [a, b]. In fact, for any 1 ≤ p, q < ∞, we will give simple
characterizations of µ, w, v in order for (1.2) to hold and estimates for
the best constant. In some cases, we obtain the exact constant. We are
primarily concerned with the case when b − a < ∞, but the results are also
valid for unbounded intervals, if f ∈ L1

v[a, b] in addition to being Lipschitz
continuous.

Estimates of type (1.2) are related to weighted Hardy inequalities of the
form (∫ b

a

∣∣∣∣∫ x
a
g(t)dt

∣∣∣∣q µ(x)dx
)1/q

≤ C
(∫ b

a
|g(x)|pw(x)dx

)1/p

,(1.3)

as well as the “dual” form(∫ b
a

∣∣∣∣∣
∫ b
x
g(t)dt

∣∣∣∣∣
q

µ(x)dx
)1/q

≤ C
(∫ b

a
|g(x)|pw(x)dx

)1/p

.

These Hardy estimates can be viewed as special cases of (1.2) applied to
the indefinite integral of g, where v is chosen to be the Delta measure at
one of the endpoints a or b. Weighted Hardy estimates have been studied
extensively (see e.g., [25]), and the conditions which turn out to characterize
the Poincaré estimate (1.2) have some similarity to those which characterize
the Hardy estimates. For example, in the simple case when 1 < p ≤ q < ∞
and all three measures are the same (i.e., when µ dx = wdx = dv), the
necessary and sufficient condition for (1.2) is

1
w[a,b]

(
sup
a<x<b

{
w[x,b]1/q

(∫ x
a
w[a, t]p

′
w(t)1−p

′
dt
)1/p′}

+ sup
a<x<b

w[a,x]1/q
(∫ b

x
w[t, b]p

′
w(t)1−p

′
dt
)1/p′


 <∞,

whereas the known necessary and sufficient condition for (1.3) in the corre-
sponding case is

sup
a<x<b

{
w[x,b]1/q

(∫ x
a
w(t)1−p

′
dt
)1/p′ }

<∞,

and the necessary and sufficient condition for the dual Hardy estimate (still
with 1 < p ≤ q <∞ and µ = w) is

sup
a<x<b

{
w[a,x]1/q

(∫ b
x
w(t)1−p

′
dt
)1/p′ }

<∞.
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The main difference is clearly the two factors (w[a, t]/w[a,b])p′ ,
(w[t, b]/w[a,b])p′ in the integrands in the first condition above. As we
shall see, the sufficiency of the first condition for the Poincaré estimate is
fairly easy to deduce by using the corresponding Hardy estimates. On the
other hand, the necessity is more complicated, and its proof occupies the
majority of the paper.

Poincaré and Hardy inequalities, including their weighted generalized
forms in higher dimensions, have had many important applications. There
are many papers which study such inequalities, including results for other
types of domains in higher dimensions and on manifolds: see for example
[25], [5], [13], [21], [24], [30], and [22]. None of these give simple char-
acterizing conditions for the measures in the Poincaré estimate (1.2) or for
its analogues in higher dimensions, nor do they give good estimates for the
best norm constants in (1.2). Some necessary and sufficient conditions for
Poincaré inequalities have been given in terms of capacity (see [29], [36]),
but those conditions are usually difficult to verify. Necessary and sufficient
conditions have also been given in terms of measure of noncompactness
(see [2], [17], [18], [19], and [20]). For weighted estimates, the questions
of simple necessary and sufficient conditions and of best constants have been
discussed mostly for Hardy inequalities, including estimates of the kind∥∥f∥∥Lqµ[a,b] ≤ C∥∥f ′∥∥Lpw[a,b],
where f is Lipschitz continuous and has compact support in [a, b] (see,
e.g., [25]). The smallest constant for an analogue of this estimate in higher
dimensions with µ = w = 1 has been found in certain cases in [33], [34],
[4], and [27]. However, it seems that for Poincaré type estimates (1.2), the
smallest value of Tp,q (i.e., the constant in the unweighted case (1.1)) had
not been found until recently and then only in case p = q = 1. In [28],
a very elementary method is used to show that the best constant for T1,1 is
equal to 1

2(b − a).
Surprisingly, the method in [28] can be modified and generalized to ob-

tain the best constant T1,q for 1 < q < ∞ in one dimension, and even the
best constant for the weighted Poincaré inequality (1.2) when p = 1. More-
over, it can be used together with the ideas in [25] to obtain reasonably good
estimates for the best constant in all other cases of p, q > 1, and it leads to
simple necessary and sufficient conditions for (1.2).

Our results indicate that there are some basic differences between weighted
Poincaré estimates in one dimension and in higher dimensions. For exam-
ple, in the one dimensional case, our main result shows that the weight w
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in (1.2) cannot vanish to arbitrarily high order at an interior point of [a, b],
in contrast to the situation in higher dimensions. See Remark 5 at the end
of Section 1 for some further discussion of this point.

As corollaries of our one dimensional results, we obtain necessary and
sufficient conditions for some special Poincaré estimates in higher dimen-
sions; see Section 4. Also, in the Appendix, we use the one dimensional
results to study solutions of some ordinary differential equations with given
average value, as opposed to given initial value.

Acknowledgement.We would like to thank the referee for his helpful
suggestions and for the correction of some mistakes.

In what follows, C denotes various positive constants which may dif-
fer from place to place. Sometimes we will use C(α,β, . . .) instead of C
to emphasize that a particular constant depends on α, β, . . .. By a weight
w we always mean a nonnegative measurable function that is finite almost
everywhere. We will also denote the measure arising from w by w, and
sometimes we write dw instead of w(x)dx. For any interval [c, d], we set
µ[c,d] = ∫ d

c µ(x)dx. We use the conventions that 1/p + 1/p′ = 1 when
1 ≤ p <∞, and that 0×∞ = 0.

The following theorem is the main result of the paper.

Theorem 1.4 Let −∞ < a < b < ∞, µ and w be weights on [a, b], and
v be a nonnegative finite Borel measure on [a, b] with v[a,b] > 0. Let 1 ≤ p,
q <∞, and define Kp,q(µ, v,w) in three ranges as follows:

K1,q(µ, v,w) = 1
v[a, b]

∥∥∥(µ[·, b]v[a, ·]q + µ[a, ·]v[·, b]q)1/qw−1
∥∥∥
L∞[a,b],

Kp,q(µ, v,w) = 1
v[a, b]

 sup
a<x<b

µ[x, b]1/q
(∫ x

a
v[a, t]p

′
w(t)1−p

′
dt
)1/p′


+ sup

a<x<b

µ[a,x]1/q
(∫ b

x
v[t, b]p

′
w(t)1−p

′
dt
)1/p′


if 1 < p ≤ q <∞, and if 1 ≤ q < p <∞ and 1/r = 1/q − 1/p, let

Kp,q(µ, v,w) = 1
v[a,b]

({∫ b
a
µ[x, b]r/q

(∫ x
a
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

× v[a,x]p′w(x)1−p′ dx
}1/r

+
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+

∫ b
a
µ[a,x]r/q

(∫ b
x
v[t, b]p

′
w(t)1−p

′
dt
)r/q′

× v[x,b]p
′
w(x)1−p

′
dx

}1/r .
Then (∫ b

a

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
f dv

∣∣∣∣∣
q

µ(x)dx
)1/q

(1.5)

≤ C
(∫ b

a
|f ′(x)|pw(x)dx

)1/p

for all Lipschitz continuous functions f on [a, b] if and only if Kp,q(µ, v,w) <
∞. Moreover, if Bp,q(µ, v,w) is the smallest possible constant C in (1.5), then
K1,q(µ, v,w) = B1,q(µ, v,w) and

Kp,q(µ, v,w)
2

≤ Bp,q(µ, v,w) ≤ C0(p, q)Kp,q(µ, v,w) if 1 < p ≤ q <∞,
Bp,q(µ, v,w) ≤ C0(p, q)Kp,q(µ, v,w) if 1 ≤ q < p <∞,

where C0(p, q) = (1 + q/p′)1/q(1 + p′/q)1/p′ if p ≤ q, and C0(p, q) =
q1/q(p′)1/q′ if q < p.

Before proceeding, we make a few comments about this result. Some
other comments are listed in the remarks at the end of this section. First,
if v is not a Delta measure, we will show (see case (ii) in the proof of the
theorem) that if Kp,q(µ, v,w) <∞ for some 1 ≤ p, q <∞, then µ ∈ L1[a, b].
Next, Theorem 1.4 has analogues in case [a, b] is unbounded and also in
case p = 1, q = ∞; these are discussed in the remarks at the end of Section
2. Finally, although we have restricted ourselves to Lipschitz continuous
functions, the result is still valid for absolutely continuous ones.

The definition of Kp,q(µ, v,w) in Theorem 1.4 is complicated because it
depends on various ranges of p and q, but it has a fairly simple form in each
range. For easy comparison, we now state some useful propositions about
Hardy-type inequalities obtained by combining some results in [25].

Proposition 1.6 Let µ and w be weights on [a, b], −∞ ≤ a < b ≤ ∞.
Let

S(p, q, µ,w) = sup
a<x<b

µ[x, b]1/q
∥∥w−1/p∥∥

Lp′ [a,x] if 1 ≤ p ≤ q <∞,
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S(p, q, µ,w) =
(∫ b

a
µ[x, b]r/q

(∫ x
a
w(t)1−p

′
dt
)r/q′

w(x)1−p
′
dx

)1/r

if 1 ≤ q < p <∞, 1/r = 1/q − 1/p.

Then (∫ b
a

∣∣∣∣∫ x
a
f(t)dt

∣∣∣∣q µ(x)dx
)1/q

≤ C
(∫ b

a
|f(x)|pw(x)dx

)1/p

for all f ∈ Lpw[a, b]

if and only if S(p, q, µ,w) < ∞. Moreover, if CB is the best constant for the
inequality, then S(p, q, µ,w) ≤ CB ≤ C0(p, q)S(p, q, µ,w) if p ≤ q and
(q/r)1/q′C0(p, q)S(p, q, µ,w) ≤ CB ≤ C0(p, q)S(p, q, µ,w) if q < p, where
C0(p, q) is as in Theorem 1.4 and C0(p, q) = 1 if either p = 1 or q = 1.

Furthermore, a similar theorem holds for
∫ b
x f(t)dt instead of

∫ x
a f(t)dt:

Proposition 1.7 Let µ and w be weights on [a, b], −∞ ≤ a < b ≤ ∞.
Let

T(p, q, µ,w) = sup
a<x<b

µ[a,x]1/q
∥∥w−1/p∥∥

Lp′ [x,b]

if 1 ≤ p ≤ q <∞, and

T(p, q, µ,w) =
∫ b

a
µ[a,x]r/q

(∫ b
x
w(t)1−p

′
dt
)r/q′

w(x)1−p
′
dx

1/r

if 1 ≤ q < p <∞, 1/r = 1/q − 1/p.

Then (∫ b
a

∣∣∣∣∣
∫ b
x
f(t)dt

∣∣∣∣∣
q

µ(x)dx
)1/q

≤ C
(∫ b

a
|f(x)|pw(x)dx

)1/p

for all f ∈ Lpw[a, b]

if and only if T(p, q, µ,w) < ∞. Moreover, if CB is the best constant for the
inequality, then T(p, q, µ,w) ≤ CB ≤ C0(p, q)T(p, q, µ,w) if p ≤ q and
(q/r)1/q′C0(p, q)T(p, q, µ,w) ≤ CB ≤ C0(p, q)T(p, q, µ,w) if q < p, where
C0(p, q) is as in Theorem 1.4 and C0(p, q) = 1 if either p = 1 or q = 1.
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Even though it is assumed in [25] that the weights µ and w in the pre-
vious two propositions are positive almost everywhere, it is not difficult to
check that the propositions remain valid if µ and w are just nonnegative.

The same proofs lead to the following analogues of these propositions
obtained by replacing f and w by fτ and w/τp respectively.

Theorem 1.8 Let µ, τ, and w be weights on [a, b], −∞ ≤ a < b ≤ ∞,
and let

S(p, q, µ, τ,w) = sup
a<x<b

µ[x, b]1/q
∥∥τw−1/p∥∥

Lp′ [a,x]

if 1 ≤ p ≤ q <∞, and

S(p, q, µ, τ,w)

=
(∫ b

a
µ[x, b]r/q

(∫ x
a
τ(t)p

′
w(t)1−p

′
dt
)r/q′

τ(x)p
′
w(x)1−p

′
dx

)1/r

if 1 ≤ q < p <∞, 1/r = 1/q − 1/p.

Then (∫ b
a

∣∣∣∣∫ x
a
f(t)τ(t)dt

∣∣∣∣q µ(x)dx
)1/q

≤ C
(∫ b

a
|f(x)|pw(x)dx

)1/p

for all f ∈ Lpw[a, b]

if and only if S(p, q, µ, τ,w) < ∞. Moreover, if CB is the best constant for the
inequality, then

S(p, q, µ, τ,w) ≤ CB ≤ C0(p, q)S(p, q, µ, τ,w)
if p ≤ q,

(q/r)1/q
′
C0(p, q)S(p, q, µ, τ,w) ≤ CB ≤ C0(p, q)S(p, q, µ, τ,w)

if q < p,

where C0(p, q) is as before.
Also, let

T(p, q, µ, τ,w)

= sup
a<x<b

µ[a,x]1/q
∥∥τw−1/p∥∥

Lp′ [x,b] if 1 ≤ p ≤ q <∞,
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and
T(p, q, µ, τ,w)

=
∫ b

a
µ[a,x]r/q

(∫ b
x
τ(t)p

′
w(t)1−p

′
dt
)r/q′

τ(x)p
′
w(x)1−p

′
dx

1/r

if 1 ≤ q < p <∞, 1/r = 1/q − 1/p.

Then (∫ b
a

∣∣∣∣∣
∫ b
x
f(t)τ(t)dt

∣∣∣∣∣
q

µ(x)dx
)1/q

≤ C
(∫ b

a
|f(x)|pw(x)dx

)1/p

for all f ∈ Lpw[a, b]

if and only if T(p, q, µ, τ,w) < ∞. Moreover, if CB is the best constant in the
inequality, then

T(p, q, µ, τ,w) ≤ CB ≤ C0(p, q)T(p, q, µ, τ,w)
if p ≤ q,

and (
q
r

)1/q′

C0(p, q)T(p, q, µ, τ,w) ≤ CB ≤ C0(p, q)T(p, q, µ, τ,w)

if q < p,

where C0(p, q) is as before.

Our proof of the sufficiency part of the main theorem is based on Theo-
rem 1.8 together with the simple observation (see (2.1)) that

f(x)− 1
v[a,b]

∫ b
a
f dv(1.9)

= 1
v[a,b]

[∫ x
a
v[a, z]f ′(z)dz −

∫ b
x
v[z, b]f ′(z)dz

]
.

However, it turns out to be harder to prove the necessity part of Theorem
1.4.

Remarks 1.10.
1. Our result allows the possibility that there exists a proper subinterval
[c, d] of [a, b] such that µ(x) = 0 outside [c, d]. In that case, note
that
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(∫ b
a

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
f dv

∣∣∣∣∣
q

dµ
)1/q

=
(∫ d

c

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
f dv

∣∣∣∣∣
q

dµ
)1/q

,

and that 1/(v[a, b])
∫ b
a f dv may not be the average of f over [c, d].

2. Since

sup
a<x<b

µ[x, b]1/q
∥∥∥v[a, .]w−1

∥∥∥
L∞[a,x] = esssup

a<x<b
µ[x, b]1/qv[a,x]w(x)−1,

and
sup
a<x<b

µ[a,x]1/q
∥∥∥v[., b]w−1

∥∥∥
L∞[x,b] = esssup

a<x<b
µ[a,x]1/qv[x, b]w(x)−1,

the case p = 1 of Theorem 1.4 is not very different from the case p > 1,
except that we are able to get the exact constant just as in [25].

3. It is possible to compute some values of K1,q(1,1,1) explicitly, and to
estimate others. In fact, K1,q(1,1,1) = 1

2(b − a)1/q for 1 ≤ q ≤ 3 and
K1,q(1,1,1) > 1

2(b − a)1/q for q > 3; see the appendix. Moreover, it is
quite easy to check that K1,4(1,1,1) = (1/12)1/4(b − a)1/4.

4. We can compare our conditions to some well-known weight condi-
tions. First note that for any 1 ≤ p, q <∞, we clearly have

Kp,q(µ, v,w) ≤ 2µ[a,b]1/q
∥∥w−1/p∥∥

Lp′ [a,b].

Hence it follows easily that Kp,p(w,v,w) ≤ C|b−a| ifw ∈ Ap (Muck-
enhoupt Ap weights [13]) and v is a finite nonnegative measure on
[a, b]. Moreover, Kp,q(µ, v,w) ≤ C|b − a|1/q+1/p′ if v is a finite non-
negative measure on [a, b] and (µ,w) ∈ Ap,q, i.e., if (see Torchinsky
[35])

µ(I)1/q
∥∥w−1/p∥∥

Lp′ (I) ≤ C|I|1/q+1/p′ for any interval I in IR.

However, even in the very special case when µ = w = v and p = q, our
result provides us with many more weights than Ap weights. In fact,
we now know that (1.5) holds when w = µ = v and p = q provided w
is in L1[a, b] and
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sup
a<x<b

{
w[x,b]1/p

∥∥w[a, ·]w−1/p∥∥
Lp′ [a,x]

+ w[a,x]1/p ∥∥w[·, b]w−1/p∥∥
Lp′ [x,b]

}
<∞.

Without the (bounded) factorsw[a, ·] andw[·, b], this would be valid
for any Ap weight w, but the presence of these factors allows other
weights.

Similarly, let us show that when 1 ≤ p ≤ q < ∞ and w(t) = µ(t) =
v(t) = |t − a|α1|t − b|α2 , then (1.5) holds if and only if α1, α2 > −1
and αi(1/p−1/q) ≤ 1−(1/p−1/q) for i = 1, 2. It suffices to check the
case µ(t) = v(t) = w(t) = |t − a|α1 . First, if p > 1, then by Theorem
1.4,

Kp,q(w,w,w) <∞ if and only if

both α1 > −1 and |x − a|(α1+1)/q|x − a|[α1(1−p′)+1]/p′ ≤ C <∞
for x near a

(when α1(1−p′)+1 = 0, we need |x−a|(α1+1)/q| ln |x−a‖ ≤ C, which
is always true for x near a since α1 > −1), and this holds if and only if
α1 > −1 and (α1 + 1)(1/q + 1/p′)−α1 ≥ 0. Also, if p = 1, then

K1,q(w,w,w) < ∞ if and only if

both α1 > −1 and |x − a|(α1+1)/q/|x − a|α1 ≤ C <∞
for x near a,

which holds if and only if (α1 + 1)/q −α1 ≥ 0. Hence, when 1 ≤ p ≤
q <∞ and w(t) = |t − a|α1 , we obtain that

Kp,q(w,w,w) < ∞ ⇐⇒ α1 > −1 and α1

(
1
p
− 1
q

)
≤ 1−

(
1
p
− 1
q

)
.

In particular, if p = q and w = µ = v = |t − a|α1|t − b|α2 , the only
restriction needed is α1, α2 > −1.

5. From the observations in the previous remark, we see there are cases
when the weight w vanishes to high order at the endpoints a, b. How-
ever, it follows from the finiteness of Kp,q(µ, v,w) that if µ > 0 almost
everywhere and v[a,x], v[x, b] > 0 for all a < x < b, then w1−p′ is
locally integrable in (a, b), i.e., integrable away from the end points.
In this case, w cannot vanish at any interior point of [a, b] to order
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≥ p − 1 if p > 1 (order > 0 if p = 1). This behavior is quite different
from the situation in IR

n when n > 1, wherew can vanish to arbitrarily
high order; see [10] and [22].

6. If µ[a,b] <∞, then

(∫ b
a

∣∣∣∣∣f(x)− 1
µ[a,b]

∫ b
a
f(y)dµ(y)

∣∣∣∣∣
q

dµ(x)
)1/q

≤ 2
(∫ b

a

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
f dv

∣∣∣∣∣
q

dµ(x)
)1/q

,

and it follows that Kp,q(µ, µ,w) < ∞ if Kp,q(µ, v,w) < ∞. Moreover,
K1,q(µ, µ,w) ≤ 2K1,q(µ, v,w).

Our result implies that we have the following inequality:

Theorem 1.11 Let 1 ≤ p, q < ∞ and µ and w be weights on [a, b],
and let v be a nonnegative finite measure on [a, b] with v[a,b] > 0 such that
Kp,q(µ, v,w) <∞. If µ[a,b] <∞, then∥∥f∥∥Lqµ[a,b] ≤ C{∥∥f∥∥L1

v[a,b] +
∥∥f ′∥∥Lpw[a,b]}

for all absolutely continuous functions f on [a, b].

2. PROOF OF THE MAIN THEOREM. Let f be an absolutely continu-
ous function on [a, b]. We have

f(x)− 1
v[a,b]

∫ b
a
f dv(2.1)

= 1
v[a,b]

∫ b
a
[f (x)− f(y)]dv(y) = 1

v[a,b]

∫ b
a

∫ x
y
f ′(z)dzdv(y)

= 1
v[a,b]

[∫ x
a

∫ x
y
f ′(z)dzdv(y)−

∫ b
x

∫ y
x
f ′(z)dzdv(y)

]

= 1
v[a,b]

[∫ x
a
v[a, z]f ′(z)dz −

∫ b
x
v[z, b]f ′(z)dz

]
by Fubini’s Theorem

= 1
v[a,b]

(∫ b
a

{
v[a, z]f ′(z)χ[a,x](z)− v[z, b]f ′(z)χ[x,b](z)

}
dz
)
.

We now handle the case p = 1. By Minkowski’s integral inequality,
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(∫ b
a

∣∣∣∣∣f(x)− 1
v[a, b]

∫ b
a
f dv

∣∣∣∣∣
q

µ(x)dx
)1/q

≤ 1
v[a, b]

∫ b
a

[∫ b
a

∣∣∣v[a, z]f ′(z)χ[a,x](z)− v[z, b]f ′(z)χ[x,b](z)∣∣∣q
µ(x)dx

]1/q

dz

= 1
v[a, b]

∫ b
a

[∫ b
a

{
|v[a, z]f ′(z)|qχ[a,x](z)+ |v[z, b]f ′(z)|qχ[x,b](z)

}

µ(x)dx
]1/q

dz

= 1
v[a, b]

∫ b
a
[v[a, z]qµ[z, b]+ v[z, b]qµ[a, z]]1/q |f ′(z)|dz

= 1
v[a, b]

∫ b
a

1
w(z)

[v[a, z]qµ[z, b]+ v[z, b]qµ[a, z]]1/q

|f ′(z)|w(z)dz
≤ K1,q(µ, v,w)

(∫ b
a
|f ′(z)|w(z)dz

)
.

This proves (1.5) for p = 1 with C = K1,q(µ, v,w).
We now show that K1,q(µ, v,w) is indeed the smallest constant. First,

given weights µ, w and nonnegative measure v, suppose there exists CB > 0
such that (∫ b

a

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
f dv

∣∣∣∣∣
q

µ(x)dx
)1/q

(2.2)

≤ CB

(∫ b
a
|f ′(x)|w(x)dx

)
for all absolutely continuous functions f on [a, b]. For each n ∈ N, let
us define wn(x) = w(x) + 1/n. Let α be a Lebesgue point of 1/wn such
that a < α < b and v[a,α] + v[α,b] = v[a,b] (the last equality holds
except at most for a countable set of α). Note that since at least one of
v[a,α] or v[α,b] is strictly positive (recall that v[a,b] > 0 by hypothesis),
we may assume without loss of generality that v[a,α] > 0. Next, for any
0 < ε <min{α−a,b−α}, let

fε(x) =


−
∫ α
x

v[α,b]
v[a,α]

χ[α−ε,α](t)

εwn(t)
dt if a ≤ x ≤ α

∫ x
α

χ[α,α+ε](t)

εwn(t)
dt if α < x ≤ b.
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Note that v[a,α− ε]→ v[a,α) = v[a,α], v[α+ ε, b]→ v(α,b] = v[α,b],
and

1
ε

∫ α
α−ε

wn(t)−1 dt and 1
ε

∫ α+ε
α

wn(t)−1 dt → wn(α)−1,

since α is a Lebesgue point of w−1
n . Hence as ε → 0, we see that

1
v[a,b]

∫ b
a
fε dv → 0, and

(∫ b
a

∣∣∣∣∣fε(x)− 1
v[a,b]

∫ b
a
fε(y)dv(y)

∣∣∣∣∣
q

µ(x)dx
)1/q

→
((
v[α,b]
v[a,α]

)q
µ[a,α]+ µ[α,b]

)1/q

wn(α)−1.

On the other hand,∫ b
a
|f ′ε(z)|wn(z)dz = v[α,b]

v[a,α]

∫ α
α−ε

1
ε
dx + 1

ε

∫ α+ε
α

dx

= v[α,b]
v[a,α]

+ 1 = v[a,b]
v[a,α]

.

Since wn ≥ w, it is clear that (2.2) holds with wn instead of w. Hence

CB ≥ (v[α,b]qµ[a,α]+ µ[α,b]v[a,α]q)1/q
wn(α)v[a, b]

.

Thus CB ≥ K1,q(µ, v,wn). We now let n → ∞ to obtain CB ≥ K1,q(µ, v,w).
This completes the proof when p = 1.

We now consider the case 1 < p <∞. First, by (2.1) we have

(∫ b
a

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
f dv

∣∣∣∣∣
q

µ(x)dx
)1/q

≤ 1
v[a,b]

(∫ b
a

∣∣∣∣∫ x
a
v[a, z]f ′(z)dz

∣∣∣∣q µ(x)dx
)1/q

+
(∫ b

a

∣∣∣∣∣
∫ b
x
v[z, b]f ′(z)dz

∣∣∣∣∣
q

µ(x)dx
)1/q ,

C0(p, q)
v[a, b]

{
S(p, q, µ, v[a, ·],w)+ T(p, q, µ, v[·, b],w)}∥∥f ′∥∥Lpw[a,b]

= C0(p, q)Kp,q(µ, v,w)
∥∥f ′∥∥Lpw[a,b] by Theorem 1.8.



156 SENG-KEE CHUA & RICHARD L. WHEEDEN

This proves (1.5) for 1 < p <∞, 1 ≤ q <∞, with C = C0(p, q)Kp,q(µ, v,w).
We will prove the converse by modifying the approach in [25]. Suppose

1 < p <∞, 1 ≤ q <∞, and there exists CB > 0 such that(∫ b
a

∣∣∣∣∣f(x)− 1
v[a,b]

∫ b
a
f dv

∣∣∣∣∣
q

µ(x)dx
)1/q

(2.3)

≤ CB

(∫ b
a
|f ′(x)|pw(x)dx

)1/p

for all Lipschitz continuous functions f on [a, b]. Given any n ∈ N, again
let wn(x) = w(x)+ 1/n. For any a < α < b, let

f1(x) =
∫ x
a
v[a, t]p

′−1wn(t)1−p
′
χ[a,α](t)dt,

f2(x) =
∫ x
a
v[t, b]p

′−1wn(t)1−p
′
χ[α,b](t)dt.

Then, clearly, f1, f2 are Lipschitz continuous on [a, b], and since wn > w,
we have (2.3) for f1 and f2, with w replaced by wn. Note that, by (2.1), the
q-th power of the left-hand side of (2.3) with f = f1 is

1
v[a,b]q

∫ b
a

∣∣∣∣∣
∫ x
a
f ′1(t)v[a, t]dt −

∫ b
x
f ′1(t)v[t, b]dt

∣∣∣∣∣
q

µ(x)dx

≥ 1
v[a,b]q

∫ b
α

∣∣∣∣∫ x
a
f ′1(t)v[a, t]dt

∣∣∣∣q µ(x)dx as f ′1(t) = 0 for t > α

= 1
v[a,b]q

∫ b
α

∣∣∣∣∫ α
a
v[a, t]p

′
wn(t)1−p

′
dt
∣∣∣∣q µ(x)dx

= 1
v[a,b]q

(∫ b
α
µ(x)dx

)(∫ α
a
v[a,x]p

′
wn(x)1−p

′
dx

)q
.

On the other hand, we have∫ b
a
|f ′1(x)|pwn(x)dx =

∫ α
a
v[a,x]p

′
wn(x)1−p

′
dx.

Hence by (2.3) for f1,

v[a,b]CB ≥
(∫ b

α
µ(x)dx

)1/q (∫ α
a
v[a,x]p

′
wn(x)1−p

′
dx

)1/p′

.

We now let n→∞ and see by the monotone convergence theorem that

1
v[a,b]

(∫ b
α
µ(x)dx

)1/q (∫ α
a
v[a,x]p

′
w(x)1−p

′
dx

)1/p′

≤ CB.(2.4)
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By applying a similar argument to f2, we obtain

1
v[a,b]

(∫ α
a
µ(x)dx

)1/q (∫ b
α
v[x, b]p

′
w(x)1−p

′
dx

)1/p′

≤ CB.(2.5)

Hence, CB ≥ 1
2Kp,q(µ, v,w) for the case 1 < p ≤ q <∞.

It remains only to show that (1.5) implies Kp,q(µ, v,w) < ∞ when 1 ≤
q < p <∞. Suppose 1 < q < p < ∞ and recall that 1/r = 1/q − 1/p. Let us
consider two cases:

◗ Case (i): v = Kδα with a ≤ α ≤ b, K > 0, i.e., v is a Delta measure,

v(E) =
{
K if α ∈ E,

0 if α 6∈ E.

In this case, note that by (2.1),

∫ b
a

∣∣∣∣∣f(x)−
∫ b
a
fdv/v[a, b]

∣∣∣∣∣
q

µ(x)dx

=
∫ α
a

∣∣∣∣∫ α
x
f ′(y)dy

∣∣∣∣q µ(x)dx + ∫ b
α

∣∣∣∣∫ x
α
f ′(y)dy

∣∣∣∣q µ(x)dx
= I+ II.

Therefore,

I
1/q, II1/q ≤ CB

(∫ b
a
|f ′(y)|pw(y)dy

)1/p

for all Lipschitz continuous functions on [a, b]. Hence,

I
1/q ≤ CB

(∫ α
a
|f ′(y)|pw(y)dy

)1/p

II
1/q ≤ CB

(∫ b
α
|f ′(y)|pw(y)dy

)1/p

for all Lipschitz continuous functions on [a, b]. Thus, from the estimate
for I,

(∫ α
a

∣∣∣∣∫ α
x
g(y)dy

∣∣∣∣q µ(x)dx
)1/q

≤ CB
(∫ α

a
|g(y)|pw(y)dy

)1/p
(2.6)
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for all bounded functions g on [a,α]. Since any nonnegative function in
Lpw[a,α] is a pointwise limit of a monotone increasing sequence of bounded
functions, (2.6) is then true for all functions g in Lpw[a,α]. Hence by the
Hardy-type inequalities (Propositions 1.6 and 1.7), we have

(
q
r

)1/q′

C0(p, q)
(∫ α

a
µ[a,x]r/q

[∫ α
x
w(t)1−p

′
dt
]r/q′

w(x)1−p
′
dx

)1/r

≤ CB.

Similarly, using the estimate for II, we have

(
q
r

)1/q′

C0(p, q)
(∫ b

α
µ[x, b]r/q

[∫ x
α
w(t)1−p

′
dt
]r/q′

w(x)1−p
′
dx

)1/r

≤ CB.

Since

v[x,b]
v[a, b]

=
{

1 if a ≤ x ≤ α
0 if α < x ≤ b

and v[a,x]
v[a, b]

=
{

1 if α ≤ x ≤ b
0 if a ≤ x < α

,

we obtain(∫ α
a
µ[a,x]r/q

[∫ α
x
w(t)1−p

′
dt
]r/q′

w(x)1−p
′
dx

)1/r

+
(∫ b

α
µ[x, b]r/q

[∫ x
α
w(t)1−p

′
dt
]r/q′

w(x)1−p
′
dx

)1/r

= Kp,q(µ, v,w).

Hence Kp,q(µ, v,w) ≤ CCB <∞.

◗ Case (ii): v is not a Delta measure. Then (recall that v is nonnegative)
clearly there exists a ≤ α0 < b such that 0 < v[a,α0] < v[a, b]. Hence
by choosing an appropriate α0 < α < b, we have v[a,α) and v(α,b] > 0.
Thus ∫ b

α
v[x, b]p

′
w(x)1−p

′
dx,

∫ α
a
v[a,x]p

′
w(x)1−p

′
dx > 0.

Hence by (2.4) and (2.5), we have
∫ b
a µ(x)dx <∞.

Let us now show that the first part of Kp,q(µ, v,w) is finite, i.e., that∫ b
a
µ[x, b]r/q

(∫ x
a
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

(2.7)

v[a,x]p
′
w(x)1−p

′
dx <∞.
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We may assume that µ[a,b] > 0. Let a < b0 ≤ b such that µ[b0, b] = 0 and
µ[x,b] > 0 for a ≤ x < b0. If∫ b0

a
v[a,x]p

′
w(x)1−p

′
dx = 0,

then the left-hand side of (2.7) is equal to zero. Now, suppose∫ b0

a
v[a,x]p

′
w(x)1−p

′
dx > 0.

Then there exists a < α < b0 such that∫ α
a
v[a,x]p

′
w(x)1−p

′
dx > 0.(2.8)

We will prove (2.7) by showing that both

∫ b
α
µ[x, b]r/q

(∫ x
a
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

v[a,x]p
′
w(x)1−p

′
dx < ∞,(2.9)

∫ α
a
µ[x, b]r/q

(∫ x
a
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

v[a,x]p
′
w(x)1−p

′
dx < ∞.(2.10)

By (2.8), there exists a < a′ < α such that v[a,a′] > 0. For each n ∈N,
we let bn = b0 − (b0 −α)/(2n). First note that bn > α, and∫ bn

a
µ[x, b]r/q

(∫ x
a
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

v[a,x]p
′
w(x)1−p

′
dx(2.11)

≤ µ[a,b]r/q
∫ bn
a

(∫ x
a
v[a, t]p

′
w(t)1−p

′
dt
)r/q′
v[a,x]p

′
w(x)1−p

′
dx

≤ Cµ[a,b]r/q
(∫ bn

a
v[a, t]p

′
w(t)1−p

′
dt
)1+(r/q′)

<∞

because µ[a,b] <∞ and the second factor in (2.11) is finite by (2.4) applied
with α = bn there, since the fact that bn < b0 implies µ[bn, b] > 0. Thus, it
is now clear that (2.10) holds.

We now show that (2.9) holds. Note that this will follow if we show that∫ b
α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

v[a,x]p
′
w(x)1−p

′
dx < ∞,∫ b

α
µ[x, b]r/qv[a,x]p

′
w(x)1−p

′
dx < ∞,
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since ∫ α
a
v[a, t]p

′
w(t)1−p

′
dt <∞.

Now recall that wn(x) = w(x)+ 1/n and let

g′n(x) =

= µ[x, b]r/pq
(∫ x

α
v[a, t]p

′
wn(t)1−p

′
dt
)r/pq′

v[a,x]p
′−1wn(x)1−p

′
χ[α,bn](x)

+ Knv[a,x]p′−1wn(x)1−p
′
χ[a′ ,α](x),

h′n(x) =
= µ[x, b]r/pqv[a,x]p

′−1wn(x)1−p
′
χ[α,bn](x)

+ Jnv[a,x]p′−1wn(x)1−p
′
χ[a′ ,α](x),

where Kn, Jn are finite constants chosen so that (clearly, gn and hn are
Lipschitz continuous on [a, b])

∫ α
a
g′n(x)v[a,x]dx = 2

∫ b
α
g′n(x)v[x, b]dx(2.12) ∫ α

a
h′n(x)v[a,x]dx = 2

∫ b
α
h′n(x)v[x, b]dx

(note that
∫α
a′ v[a,x]p

′wn(x)1−p
′ dx > 0 as v[a,a′] > 0). Then

Kn =

=
2
∫ bn
α
µ[x, b]r/pq

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/pq′

∫ α
a′
v[a,x]p

′
wn(x)1−p

′
dx

· v[a,x]
p′−1wn(x)1−p

′v[x, b]dx∫ α
a′
v[a,x]p

′
wn(x)1−p

′
dx

≤
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≤
2
{∫ bn

α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

v[a,x]p
′
wn(x)1−p

′
dx

}1/p

∫ α
a′
v[a,x]p

′
wn(x)1−p

′
dx

·
(∫ bn

α
v[x, b]p

′
wn(x)1−p

′
dx

)1/p′

by Hölder’s inequality

≤
2
{∫ bn

α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

v[a,x]p
′
wn(x)1−p

′
dx

}1/p

∫ α
a′
v[a,x]p

′
wn(x)1−p

′
dx

·
{∫ b

α
v[x, b]p

′
w(x)1−p

′
dx

}1/p′

and

Jn ≤
2
{∫ bn

α
µ[x, b]r/qv[a,x]p

′
wn(x)1−p

′
dx

}1/p{∫ b
α
v[x, b]p

′
w(x)1−p

′
dx

}1/p′

∫ α
a′
v[a,x]p

′
wn(x)1−p

′
dx

.

We now show that
∫ b
α v[x, b]p

′w(x)1−p′ dx < ∞. To this end, first ob-
serve that there exists a < β < b such that µ[a,β], µ[β, b] > 0. Now if
β > α, we have∫ b

α
v[x, b]p

′
w(x)1−p

′
dx =

∫ β
α
v[x, b]p

′
w(x)1−p

′
dx

+
∫ b
β
v[x, b]p

′
w(x)1−p

′
dx

and∫ β
α
v[x, b]p

′
w(x)1−p

′
dx ≤ v[a,b]p

′
∫ β
α
w(x)1−p

′
dx

≤ (v[a, b]/v[a,α])p
′
∫ β
α
v[a,x]p

′
w(x)1−p

′
dx

≤ C
∫ β
a
v[a,x]p

′
w(x)1−p

′
dx <∞,

by (2.4) since µ[β, b] > 0. Moreover,
∫ b
β v[x, b]p

′w(x)1−p′ dx <∞ by (2.5)
and the fact that µ[a,β] > 0. Finally, if α ≥ β, then∫ b

α
v[x, b]p

′
w(x)1−p

′
dx ≤

∫ b
β
v[x, b]p

′
w(x)1−p

′
dx <∞
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as we just observed.
Next note that

(2.13)
∫ b
a
|g′n(x)|pwn(x)dx

=
∫ b
α
|g′n(x)|pwn(x)dx +

∫ α
a
|g′n(x)|pwn(x)dx

=
∫ bn
α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

v[a,x]p
′
wn(x)1−p

′
dx

+ Kpn
∫ α
a′
v[a,x]p

′
wn(x)1−p

′
dx

≤
{∫ bn

α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

v[a,x]p
′
wn(x)1−p

′
dx

}

· (1+ 2pT)

by our estimate for Kn, where (since wn ≤ w1)

T =


∫ b
α
v[x, b]p

′
w(x)1−p

′
dx∫ α

a′
v[a,x]p

′
w1(x)1−p

′
dx


p/p′

<∞.

Similarly, we can show that∫ b
a
|h′n(x)|pwn(x)dx ≤

{∫ bn
α
µ[x, b]r/qv[a,x]p

′
wn(x)1−p

′
dx

}
(1+ 2pT).

On the other hand, note that g′n ≥ 0 and∫ b
α

∣∣∣∣∫ x
a
g′n(t)v[a, t]dt

∣∣∣∣q µ(x)dx(2.14)

= q
∫ b
α

∫ x
a

[∫ y
a
g′n(t)v[a, t]dt

]q−1
g′n(y)v[a,y]dyµ(x)dx

= q
∫ b
a

(∫ b
max{y,α}

µ
)(∫ y

a
g′n(t)v[a, t]dt

)q−1
g′n(y)v[a,y]dy

by Fubini’s theorem

≥ q
∫ b
α
µ[y,b]

(∫ y
a
g′n(t)v[a, t]dt

)q−1
g′n(y)v[a,y]dy.

Moreover, if α ≤ y ≤ bn,
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(2.15)
∫ y
a
g′n(t)v[a, t]dt

≥
∫ y
α
µ[t, b]r/(pq)

(∫ t
α
v[a, z]p

′
wn(z)1−p

′
dz
)r/(pq′)

× v[a, t]p′wn(t)1−p′ dt

≥ µ[y,b]r/(pq)
∫ y
α

(∫ t
α
v[a, z]p

′
wn(z)1−p

′
dz
)r/(pq′)

× v[a, t]p′wn(t)1−p′ dt

=
(

1+ r
pq′

)−1

µ[y,b]r/(pq)
(∫ y

α
v[a, t]p

′
wn(t)1−p

′
dt
)r/(pq′)+1

.

By (2.1),

v[a,b]q
∫ b
a

∣∣∣∣∣gn(x)− 1
v[a,b]

∫ b
a
gndv

∣∣∣∣∣
q

µ(x)dx(2.16)

=
∫ b
a

∣∣∣∣∣
∫ x
a
g′n(t)v[a, t]dt −

∫ b
x
g′n(t)v[t, b]dt

∣∣∣∣∣
q

µ(x)dx

≥
∫ b
α

∣∣∣∣∣
∫ x
a
g′n(t)v[a, t]dt −

∫ b
x
g′n(t)v[t, b]dt

∣∣∣∣∣
q

µ(x)dx

≥ 1
2q

∫ b
α

∣∣∣∣∫ x
a
g′n(t)v[a, t]dt

∣∣∣∣q µ(x)dx by (2.12)

≥ C
∫ bn
α
µ[y,b]r/q

(∫ y
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

× v[a,y]p′wn(y)1−p′ dy,

by (2.14), (2.15), the definition of g′n and the fact that

1
r
= 1
q
− 1
p
.

Now, (2.3) applied to the function gn, together with (2.13) and (2.16),
implies that
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(2.17) v[a, b]CB

≥ C

{∫ bn
α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

v[a,x]p
′
wn(x)1−p

′
dx

}1/q

{∫ bn
α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

v[a,x]p
′
wn(x)1−p

′
dx

}1/p

· 1
(1+ 2pT)1/p

= C
{∫ bn

α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
wn(t)1−p

′
dt
)r/q′

v[a,x]p
′
wn(x)1−p

′
dx

}1/r

.

Next, since by Hölder’s inequality,∫ b
a

∣∣∣∣∣hn(x)− 1
v[a,b]

∫ b
a
hn dv

∣∣∣∣∣µ(x)dx
≤
(∫ b

a

∣∣∣∣∣hn(x)− 1
v[a,b]

∫ b
a
hn dv

∣∣∣∣∣
q

µ(x)dx
)1/q

µ[a, b]1/q
′

and ∫ b
a

∣∣∣∣∣
∫ x
a
h′n(t)v[a, t]dt −

∫ b
x
h′n(t)v[t, b]dt

∣∣∣∣∣µ(x)dx
≥ 1

2

∫ b
α

∣∣∣∣∫ x
a
h′n(t)v[a, t]dt

∣∣∣∣µ(x)dx by (2.12)

= 1
2

∫ b
a
h′n(t)v[a, t]

(∫ b
max{t,α}

µ(x)dx
)
dt by Fubini’s theorem

≥ 1
2

∫ bn
α
µ[t, b]1+r/(pq)v[a, t]p

′
wn(t)1−p

′
dt by definition of h′n,

we have by (2.3) for the function hn,∫ bn
α
µ[t, b]1+r/(pq)v[a, t]p

′
wn(t)1−p

′
dt(∫ bn

α
µ[t, b]r/qv[a, t]p

′
wn(t)1−p

′
dt
)1/p ≤ CCBµ[a, b]1/q

′
.

Since 1+ r/(pq) = r/q − r/(pq′), we have

µ[a,b]−r/(qq
′)
(∫ bn

α
µ[t, b]r/qv[a, t]p

′
wn(t)1−p

′
dt
)1/p′

≤ CCB.(2.18)
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We now let n→∞ in (2.17) and obtain{∫ b0

α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

v[a,x]p
′
w(x)1−p

′
dx

}1/r

≤ CCB <∞.
Hence,{∫ b

α
µ[x, b]r/q

(∫ x
α
v[a, t]p

′
w(t)1−p

′
dt
)r/q′

v[a,x]p
′
w(x)1−p

′
dx

}1/r

≤ CCB <∞,
since the left-hand sides of the previous two estimates are the same. Simi-
larly, from (2.18),{∫ b

α
µ[x, b]r/qv[a,x]p

′
w(x)1−p

′
dx

}1/r
≤ CCB <∞.

As we noted before, it then follows that (2.9) holds. Consequently, since
we already verified (2.10), (2.7) holds, i.e., the first part of Kp,q(µ, v,w) is
finite in case 1 < q < p < ∞. Similarly, we can show that in this case the
second part of Kp,q(µ, v,w) is finite, i.e.,∫ b

a
µ[a,x]r/q

(∫ b
x
v[t, b]p

′
w(t)1−p

′
dt
)r/q′

v[x,b]p
′
w(x)1−p

′
dx

1/r

<∞.

Thus Kp,q(µ, v,w) <∞ if (1.5) holds and 1 < q < p <∞.
Finally, a similar argument can be used for the case q = 1, 1 < p < ∞,

and indeed most of its detail has already been done. This completes the
proof of Theorem 1.4. ❐

Remark 2.19.

1. Note that we can also take [a, b] to be an unbounded interval. The
same proof works except that we take bn to be a sequence of numbers
increasing to b0, wn(x) = w(x) + 1

n(1 + |x|2/(p
′−1)) and we need to

assume that the functions f involved are in L1
v[a, b] in addition to

being Lipschitz continuous.

2. In case p = 1 and q = ∞, we note that∣∣∣∣∣f(x)−
∫ b
a
f dv/v[a, b]

∣∣∣∣∣ ≤ K1,∞(1, v,w)
∫ b
a
|f ′(y)|w(y)dy

for all x in [a, b]
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for all Lipschitz continuous functions (and hence all absolutely con-
tinuous functions) f on [a, b], where

K1,∞(1, v,w) =
∥∥max{v[a, .], v[., b]}w−1∥∥

L∞[a,b].

Moreover, K1,∞(1, v,w) is the smallest possible constant for the in-
equality.

Proof. The inequality easily follows from (1.9). For the converse, a simple
modification of the case p = 1, 1 ≤ q < ∞ in the proof of Theorem 1.4
(using the same fε) will do the job. ❐

3. EXTENSION TO 2-DIMENSIONAL POINCARÉ INEQUALITIES. We
can now generalize the 1-dimensional inequalities to 2-dimensional ones
by standard methods. Of course the method can also give results for n-
dimensions, but to simplify the notation, we will only consider n = 2. First,
let us define some notation. Let 1 ≤ q1, q2 < ∞. If E is a measurable set
in IR × IR, and w is a weight of the form w(x,y) = w1(x)w2(y), we write
w = w1 ×w2 and say that w is a product weight. We then define

∥∥f∥∥
L(q1 ,q2)
w1×w2 (E)

=
(∫

IR

[∫
IR

|f(x,y)|q1χE(x,y)w1(x)dx
]q2/q1

w2(y)dy
)1/q2

and

∥∥f∥∥
L

Æ(q1 ,q2)
w1×w2 (E)

=
(∫

IR

[∫
IR

|f(x,y)|q2χE(x,y)w2(y)dy
]q1/q2

w1(x)dx
)1/q1

.

If v = v1×v2 is a product weight and I×J is a fixed rectangle in IR
2, we use

the notation

fv,av = 1
v(I × J)

∫
I×J
f (y1, y2)v1(y1)v2(y2)dy1 dy2

for the integral average of f over I × J with respect to v.
We now state a special type of Poincaré inequality in 2-dimensions, using

the same notation as in Theorem 1.4.
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Theorem 3.1 Let I × J = [a, b] × [c, d]. Let µ = µ1 × µ2, v = v1 × v2,
w = w1 × w2 be product weights on I × J such that µ, v ∈ L1(I × J). Let
1 ≤ p1, p2, q1, q2, s1 <∞. Then∥∥f − fv,av∥∥L(q1 ,q2)

µ1×µ2 (I×J)
(3.2)

≤ C1

∥∥∥∥ ∂f∂x1

∥∥∥∥
L(p1 ,q2)
w1×µ2 (I×J)

+ C2
µ1(I)1/q1

v1(I)1/s1

∥∥∥∥ ∂f∂x2

∥∥∥∥
L

Æ(s1 ,p2)
v1×w2 (I×J)

for all Lipschitz continuous functions f on I × J if and only if both

Kp1,q1(µ1, v1,w1) <∞ and Kp2,q2(µ2, v2,w2) <∞.

Moreover, if C1 and C2 are the best constants for (3.2) for all f , then

Kpi,qi(µi, vi,wi)
2

≤ Ci ≤ C0(pi, qi)Kpi,qi(µi, vi,wi) if qi ≥ pi > 1,

Ci ≤ C0(pi, qi)Kpi,qi(µi, vi,wi) if pi > qi ≥ 1,

Ci = K1,qi(µi, vi,wi) if pi = 1,

where C0(pi, qi) is as usual.

Proof. We will take C0(1, q1) = C0(1, q2) = 1. By the triangle inequality,

(∫
J

[∫
I

∣∣∣∣∣f(x1, x2)− 1
v1(I)v2(J)

∫
I×J
f (y1, y2)v1(y1)v2(y2)dy1 dy2

∣∣∣∣∣
q1

· µ1(x1)dx1

]q2/q1

µ2(x2)dx2

)1/q2

≤
∫

J

[∫
I

∣∣∣∣f(x1, x2)− 1
v1(I)

∫
I
f (y1, x2)v1(y1)dy1

∣∣∣∣q1

µ1(x1)dx1

]q2/q1

· µ2(x2)dx2

)1/q2

+
∫

J

[∫
I

∣∣∣∣ 1
v1(I)

∫
I
f (y1, x2)v1(y1)dy1 − fv,av

∣∣∣∣q1

µ1(x1)dx1

]q2/q1

· µ2(x2)dx2

)1/q2

= S + T .

Next observe that by Theorem 1.4,
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S ≤
(∫

J
C0(p1, q1)q2Kp1,q1(µ1, v1,w1)q2

·
[∫

I

∣∣∣∣ ∂f∂x1

∣∣∣∣p1

w1(x1)dx1

]q2/p1

µ2(x2)dx2

1/q2

= C1

∫
J

[∫
I

∣∣∣∣ ∂f∂x1

∣∣∣∣p1

w1(x1)dx1

]q2/p1

µ2(x2)dx2

1/q2

.

Also, by Minkowski’s and Hölder’s inequalities,

T ≤ 1
v1(I)

(∫
J

[∫
I

(∫
I

∣∣f(y1, x2)

− 1
v2(J)

∫
J
f (y1, y2)v2(y2)dy2

∣∣∣∣∣v1(y1)dy1

)q1

· µ1(x1)dx1

]q2/q1

µ2(x2)dx2

)1/q2

= µ1(I)1/q1

v1(I)

(∫
J

[∫
I

∣∣f(y1, x2)

− 1
v2(J)

∫
J
f (y1, y2)v2(y2)dy2

∣∣∣∣∣v1(y1)dy1

]q2

· µ2(x2)dx2

)1/q2

≤ µ1(I)1/q1

v1(I)

∫
I

[∫
J

∣∣f(y1, x2)

− 1
v2(J)

∫
J
f (y1, y2)v2(y2)dy2

∣∣∣∣∣
q2

µ2(x2)dx2

]1/q2

v1(y1)dy1

≤ µ1(I)1/q1

v1(I)

[∫
I
C0(p2, q2)Kp2,q2(µ2, v2,w2)

(∫
J

∣∣∣∣ ∂f∂x2

∣∣∣∣p2

w2(x2)dx2

)1/p2

= C2
µ1(I)1/q1

v1(I)

∥∥∥∥ ∂f∂x2

∥∥∥∥
L
Æ(1,p2)
v1×w2 (I×J)

≤ C2
µ1(I)1/q1

v1(I)1/s1

∥∥∥∥ ∂f∂x2

∥∥∥∥
L
Æ(s1 ,p2)
v1×w2 (I×J)

.

The converse follows from the one variable case by considering separately
functions f(x1, x2) depending only on x1 or only on x2. This completes
the proof of our theorem. ❐
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The previous theorem has some interesting special cases, such as when
q1 = q2 = p1, s1 = p2 and when p1 = p2 = q1 = q2 = s1, µ1×µ2 = v1×v2 =
w1 ×w2. We now list these results. We will use the notation

Lp1
µ1×µ2(I × J) = L(p1,p1)

µ1×µ2 (I × J),
and

Lp2
v1×w2(I × J) = L(p2,p2)

v1×w2 (I × J) = L
Æ(p2,p2)
v1×w2 (I × J).

Theorem 3.3 Let I×J be a rectangle in IR
2. Let µ = µ1×µ2, v = v1×v2,

w = w1×w2 be product weights on I×J such that µ, v ∈ L1(I×J). Let 1 ≤ p1,
p2 <∞. Then∥∥f − fv,av∥∥Lp1

µ1×µ2 (I×J)(3.4)

≤ C1

∥∥∥∥ ∂f∂x1

∥∥∥∥
Lp1
w1×µ2 (I×J)

+ C2
µ1(I)1/p1

v1(I)1/p2

∥∥∥∥ ∂f∂x2

∥∥∥∥
Lp2
v1×w2 (I×J)

for all Lipschitz continuous functions f on I × J if and only if both
Kp1,p1(µ1, v1,w1) < ∞ and Kp2,p1(µ2, v2,w2) < ∞. Moreover, if C1 and C2

are the best constants for the inequality for all f , then

Kpi,p1(µi, vi,wi)
2

≤ Ci ≤ C0(pi, p1)Kpi,p1(µi, vi,wi) if p1 ≥ pi > 1,

Ci ≤ C0(pi, p1)Kpi,p1(µi, vi,wi) if pi > p1 ≥ 1,

Ci = K1,p1(µi, vi,wi) if pi = 1,

where C0(pi, p1) is as usual.

For the second case, since it can be easily stated in the case of IR
n, we will

do so.

Theorem 3.5 Let R be a parallelepiped in IR
n and 1 ≤ p < ∞. If w =

w1 ×w2 × · · · ×wn is a product weight in L1(R), then

∥∥f − fw,av∥∥Lpw(R) ≤ n∑
i=1
Ci
∥∥∥∥ ∂f∂xi

∥∥∥∥
Lpw(R)

(3.6)

for all Lipschitz continuous functions f on R if and only if all Kp,p(wi,wi,wi) <
∞ for all i. Moreover, if Ci’s are the best constants for the inequality for all f ,
then

Kp,p(wi,wi,wi)
2

≤ Ci ≤ p1/p(p′)1/p
′
Kp,p(wi,wi,wi) if p > 1,

Ci = K1,1(wi,wi,wi) if p = 1.
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4. APPENDIX. We now compute some values of K1,q(1,1,1), that is
when µ, v, and w are equal to 1 (the case of Lebesgue measure).

Lemma 4.1

max
0≤t≤1

tq(1− t)+ (1− t)qt


= 1

2q
if 1 ≤ q ≤ 3

>
1
2q

if q > 3

Proof. First note that it is obvious by setting t = 1
2 that the maximum

is at least (1
2)
q. We now show the converse. First, let us consider the case

1 ≤ q ≤ 2. Note that

tq(1− t)+ t(1− t)q = t(1− t)(tq−1 + (1− t)q−1).

As can be seen easily by differentiation,

t(1− t) ≤ 1
4

and tq−1 + (1− t)q−1 ≤ 2
(1

2

)q−1

since 0 ≤ q − 1 ≤ 1, and the result follows.
Next let us look at the case 2 < q ≤ 3. Clearly, it suffices to show that if

0 < t < 1, then (2t)q(2−2t)+(2−2t)q(2t) ≤ 2. Hence, letting x = |1−2t|,
it suffices to show that (1+x)(1−x)q + (1+x)q(1−x) ≤ 2 for 0 < x < 1.
Let f(x) = (1+ x)q and g(x) = (1− x)q.

f(x) = 1+ qx + q(q − 1)
2

x2 + q(q − 1)(q − 2)
6

x3 + f
(4)(ξ)
24

x4

for some ξ ∈ (0, x),

g(x) = 1− qx + q(q − 1)
2

x2 − q(q − 1)(q − 2)
6

x3 + g
(4)(τ)
24

x4

for some τ ∈ (0, x).

Moreover,
f (4)(x), g(4)(x) ≤ 0 for 0 < x < 1,

since q ≤ 3. Hence,

(1+ x)(1− x)q + (1+ x)q(1− x)
≤ (1+ x)

(
1− qx + q(q − 1)

2
x2 − q(q − 1)(q − 2)

6
x3
)

+



Weighted 1-dimensional Poincaré Inequalities 171

+ (1− x)
(

1+ qx + q(q − 1)
2

x2 + q(q − 1)(q − 2)
6

x3
)

= 2+ q(q − 3)x2 − q(q − 1)(q − 2)
3

x4 ≤ 2

since q ≤ 3. Finally, note that f (4)(x), g(4)(x) ≥ 0 for 0 < x < 1 when
q > 3. Hence,

(1+ x)(1− x)q + (1+ x)q(1− x) ≥ 2+ q(q − 3)x2 − q(q − 1)(q − 2)
3

x4

which is strictly greater than 2 for some 0 < x < 1. This completes the
proof of the lemma. ❐

It is now easy to see that K1,q(1,1,1) = 1
2(b − a)1/q for 1 ≤ q ≤ 3 and

K1,q(1,1,1) > 1
2(b − a)1/q for q > 3.

Finally, let us discuss an application of our main theorem to a problem
of differential equations. While Hardy-type inequalities can be applied to
initial value problems for ordinary differential equations, our theorem can
be applied to ordinary differential equations with given average value.

Theorem 4.2 Let 1 < p < ∞, M, K > 0, −∞ < a < b < ∞, and
|b − a| ≤ K/M. Suppose

(A)



|F(x,y)| ≤ M
for x ∈ [a, b] and |y −y0| ≤ K,

|F(x,y1) − F(x,y2)| ≤ |g(x)| |y1 −y2|
for x ∈ [a, b], y1, y2 ∈ [y0−K, y0+K].

Let σ be a nonnegative weight and v be a nonnegative measure on [a, b] such
that v[a,b] > 0. If

λ = K1,p′(µ, v,1)
∥∥g∥∥Lpσ [a,b] < 1, µ = σ 1−p′ ,

then the ordinary differential equation u′(x) = F(x,u(x)), x ∈ [a, b], has a
unique absolutely continuous solution u : [a, b] → [y0 − K,y0 + K] such that∫ b
a udv/v[a, b] = y0.

Proof. Let u1(x) = y0 on [a, b] and for each n ∈N, define

un+1(x) = y0+ 1
v[a,b]

[∫ x
a
v[a, t]F(t,un(t))dt −

∫ b
x
v[t, b]F(t,un(t))dt

]
for x ∈ [a, b].
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Note that |u1(x)−y0| = 0 ≤ K and

|un+1(x)−y0| ≤
∫ b
a
|F(t,un(t))|dt ≤M(b − a) ≤ K,

by induction. Also, observe that u′n+1(x) = F(x,un(x)) almost everywhere,
and hence by (1.9) we get 1/(v[a, b])

∫ b
a un+1 dv = y0. So by Theorem 1.4

and then Hölder’s inequality, we have∥∥un+1 −un
∥∥
Lp
′
µ [a,b]

≤ K1,p′(µ, v,1)
∥∥u′n+1 −u′n

∥∥
L1[a,b]

= K1,p′(µ, v,1)
∥∥F(.,un(.))− F(.,un−1(.))

∥∥
L1[a,b]

≤ K1,p′(µ, v,1)
∥∥g∥∥Lpσ [a,b]∥∥un −un−1

∥∥
Lp
′
µ [a,b]

= λ
∥∥un −un−1

∥∥
Lp
′
µ [a,b]

.

Since∥∥u2 −u1
∥∥
Lp
′
µ [a,b]

= ∥∥u2 −y0
∥∥
Lp
′
µ [a,b]

≤ K1,p′(µ, v,1)
∥∥F(., y0)

∥∥
L1[a,b] <∞

by Theorem 1.4, clearly {un} is a Cauchy sequence in Lp
′
µ [a, b]. Thus there

exists u ∈ Lp
′
µ [a, b] such that un → u in Lp

′
µ [a, b] and hence there is a

subsequence {unk} → u almost everywhere. Moreover note that by Hölder’s
inequality,∫ b

a
|F(t,unk−1(t))− F(t,u(t))|dt ≤

∥∥g∥∥Lpσ [a,b]∥∥unk−1 −u
∥∥
Lp
′
µ [a,b]

→ 0.

Hence,

u(x) = lim
k→∞

unk(x)

= y0 + 1
v[a,b]

[∫ x
a
v[a, t]F(t,u(t))dt −

∫ b
x
v[t, b]F(t,u(t))dt

]

for almost every x ∈ [a, b]. So if we redefine u(x) to be the right-hand side
of the above equation then u is absolutely continuous, |u(x)−y0| ≤ K and
u′(x) = F(x,u(x)) almost everywhere.

Finally, let us prove the uniqueness of the solution. Suppose u and u0 are
absolutely continuous functions and u,u0 : [a, b] → [y0 − K,y0 + K] such
that u′(x) = F(x,u(x)), u′0(x) = F(x,u0(x)) for almost all x in [a, b] and∫ b
a udv =

∫ b
a u0 dv = y0v[a,b]. Then∥∥u−u0
∥∥
Lp
′
µ [a,b]

≤ K1,p′(µ, v,1)
∥∥F(.,u(.))− F(.,u0(.))

∥∥
L1[a,b]

≤ λ
∥∥u−u0

∥∥
Lp
′
µ [a,b]

.
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But ∥∥u−u0
∥∥
Lp
′
µ [a,b]

≤ ∥∥u−y0
∥∥
Lp
′
µ [a,b]

+ ∥∥u0 −y0
∥∥
Lp
′
µ [a,b]

is finite by Theorem 1.4, as F is bounded. Also λ < 1 and hence u = u0

almost everywhere. ❐

Remarks.

1. In case v is a Delta measure at a, our problem is just the usual initial
value problem.

2. In case p = 1 or ∞, it is easy to check that our theorem still holds for
σ = 1.

3. Using almost the same idea as in the proof of the previous theorem,
we can also obtain the following result:

Theorem 4.3 Under the same assumptions as in Theorem 4.2, but with
conditions (A) replaced by

(A′)
{ |F(x,y0)| ∈ L1[a, b],

|F(x,y1)− F(x,y2)| ≤ |g(x)| |y1 −y2| for x ∈ [a, b], y1, y2 ∈ IR,

there is an absolutely continuous functionu on [a, b] such that
∫ b
a udv/v[a, b] =

y0 and u′(x) = F(x,u(x)) almost everywhere. Moreover, the solution is
unique if µ = σ 1−p′ ∈ L1[a, b].
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