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Abstract: Greedy expansions with prescribed coefficients were introduced by V. N. Temlyakov in a general

case of Banach spaces. In contrast to Fourier series expansions, in greedy expansions with prescribed

coefficients, a sequence of coefficients { } =∞cn n 1 is fixed in advance and does not depend on an expanded

element. During the expansion, only expanding elements are constructed (or, more precisely, selected from

a predefined set – a dictionary). For symmetric dictionaries, V. N. Temlyakov obtained conditions on a

sequence of coefficients sufficient for a convergence of a greedy expansion with these coefficients to an

expanded element. In case of a Hilbert space these conditions take the form∑ = ∞=
∞

cn n1 and∑ < ∞=
∞

cn n1
2 .

In this paper, we study a possibility of relaxing the latter condition. More specifically, we show that the

convergence is guaranteed for ( )=c on n

1
, but can be violated if ≍cn n

1
.
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1 Introduction

We consider greedy expansions with prescribed coefficients in Hilbert spaces. This type of greedy expansion

was initially introduced by V. N. Temlyakov [1,2] (see also [3]) in a more general case of Banach spaces. In

case of Hilbert spaces, the definition of greedy expansions with prescribed coefficients (further — just

greedy expansions) takes the following form.

Definition 1.1. Let H be a Hilbert space over �, D be a symmetric unit-normed dictionary in H (i.e.,

=D Hspan , all elements in D have a unit norm, and if g ∈ D, then −g ∈ D). Additionally, let { } ⊂ ( ]=
∞t 0, 1n n 1

be a weakness sequence and { } ⊂ ( +∞)=
∞c 0,n n 1 be a sequence of expansion coefficients. For an expanded

element f ∈ H remainders { } ⊂=∞r Hn n 0 and expanding elements { } ⊂=∞e Dn n 1 are defined as follows.

First, r0 is set to f. Then, if rn−1 ⊂ H ( ∈n �) has already been defined, an (arbitrary) element which

satisfies the condition ( ) ≥ ( )−
∈
−r e t r e, sup ,n n n

e D
n1 1 is selected as en, and rn is defined as rn−1 − cnen.
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The series ∑ ( )=
∞

c e fn n n1 is called a greedy expansion of f in the dictionary D with the prescribed coeffi-

cients { } =∞cn n 1 and the weakness sequence { } =∞tn n 1.

It immediately follows from the definition of a greedy expansion that

∑= − ( ) ( ∈ )
=

r f c e f N ,N

n

N

n n

1

�

and hence the convergence of the expansion to an expanded element is equivalent to the convergence of

remainders rn to zero.

As a selection of an expanding element en is potentially not unique, there may exist different realiza-

tions of a greedy expansion for a given expanded element f and a given dictionary D. Furthermore, if tn = 1

for at least one ∈n �, greedy expansion may turn out to be nonrealizable due to the absence of an element

e ∈ D which provides ( )
∈
−r esup ,

e D
n 1 .

In this paper, we consider only symmetric unit-normed dictionaries and the weakness sequence

= ( ∈ )t n1n � .

Earlier we have shown [4, Theorem 2] (see also [1] or [2] for the case of Banach spaces) that if∑ = ∞=
∞

cn n1

and∑ < ∞=
∞

cn n1
2 , then a greedy expansion of f converges to f (in other words, all realizations of this expan-

sion converge to f).

Also, we have constructed an example [4, Theorem 3] which shows that a convergence can be violated

for a coefficient sequence { } =∞cn n 1 with ≤cn n

1
and ∑ = ∞=

∞
cn n1 . However, the absence of convergence has

been shown only for one of the possible realizations of this expansion.

In this paper, we present improvements for both the negative and the positive results.

2 Main results

An improvement of the negative result can be stated as follows.

Theorem 2.1. There exist a Hilbert space H, a symmetric unit-normed dictionary D ⊂ H, an element f ∈ H and

a monotonic sequence ≍cn n

1
such that a greedy expansion of f in the dictionary D with the prescribed

coefficients { } =∞cn n 1 has a unique realization and it does not converge to f.

An improvement of the positive result can be stated as follows.

Theorem 2.2. Let H be a Hilbert space and D be a symmetric unit-normed dictionary in H. Let a sequence

{ } =∞cn n 1 satisfy the conditions

(1) ( )= ( → ∞)c o nn n

1
,

(2) ∑ = ∞=
∞

cn n1 .

Then for every element f all realizations of its greedy expansion in the dictionary D with the prescribed

coefficients { } =∞cn n 1 converge to f.

3 Proof of Theorem 2.1

Let r0 ∈ H be an arbitrary vector with ∥ ∥ =r0
1

2
.
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Let us consider the inequality

−
−
> −

∥ ∥
+ +

+

+

c

c

c c

r
1

2
.

n
c

n
c

n n1 2

2

1

0
2

n

n

2

1
(1)

For =cn n

1
the left part of (1) equals

− + ( → ∞)
n

O
n

n1
1

2

1
,

2








and the right part equals

−
∥ ∥
+ ( → ∞)

n r
O

n
n1

1

2

1
.

0
2 2








Hence, as ∥ ∥ =r0
1

2
, there exists a number N, that for all n > N the inequality (1) holds.

Now, let us consider the inequality

( ) ( )− > − ++
+ +c c

n
1

8
.n

c
n

c

2

2

1 2

2

2

n n1 2








(2)

For =cn n

1
the left part of (2) equals

+ + ( → ∞)
n n

O
n

n
1

4

1

4

1
,

2 3








and the right part equals

+ ( → ∞)
n

O
n

n
1

4

1
.

3








Hence, there exists a numberM, that for all n >M the inequality (2) holds. Thus, we can reenumerate (shift)

a sequence:

≔ + { }c c ,n n N Mmax , ,9 (3)

and as a result obtain a sequence for which the inequalities (1) and (2) hold for all ∈n �.

Let αn denote
( )
∥ ∥
−
−

arccos
r e

r

,n n

n

1

1
(i.e., an angle between rn−1 and en), and hn denote ∥ ∥−r αsinn n1 . Let e−1, e0 be

vectors (which will be included in the dictionary D), such that r0, e−1, e0 lie on the same plane, (e0, r0) =

(e−1, r0) and the angle between r0 and e0 is greater than
−
∥ ∥arccos
c

r

c
1

2

2

0
(the inequality <−

∥ ∥
+ +

1
c

r

n
cn

n

1
2

2 for every n=0,

1, 2,… will be proven further).

We construct the example inductively. First, as e1we take an (arbitrary) element of Hwhich satisfies the

following conditions:

(1) the angle between e1 and r0 equals =
−
∥ ∥α arccos
c

r1

c
1

2

2

0
;

(2) the projection of e1 on the plane ⟨e−1, e0⟩ is collinear to r0.

We then set r1 to r0 − c1e1.

Let vectors e−1, e0, e1,…, en and r0, r1, r2,…, rn have already been constructed. Then as en+1 we take an

(arbitrary) element of H which satisfies the following conditions:

(1) the angle between en+1 and rn equals =+
−
∥ ∥
+ +

α arccosn

c

r1
n

cn

n

1
2

2 ;

(2) the projection of en+1 on the subspace ⟨e−1, e0, …, en⟩ is collinear to rn;

and define rn+1 as rn − cn+1en+1.

We note that in this construction the angle αn+1 is equal to the angle between en+1 and the subspace

⟨e−1, e0, …, en⟩.
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Let D be defined as { } ∪ {− }=−
∞

=−
∞e en n n n1 1. It is sufficient to show that for each n = 0, 1, 2,… the element en+1

is the only vector from D that can be selected as an expanding element at the step n, and that ∥rn∥ ↛ 0

as n → ∞.

We split the proof of these assertions into the following steps. First, we show that ∥rn∥ ↛ 0. Second, we

show that at the step (n + 1) the vector −en cannot be selected as an expanding element. Third, we show the

same for vectors ek and −ek, k > n + 1. As (− )+e r,n n1
 and ( )e r,n n

 are obtuse (where ( )a b, is the angle between

vectors a and b), vectors −en+1 and en also cannot be selected as expanding elements at the step (n + 1). And

finally, we show that it also holds for vectors ek and −ek, k < n.

1. Due to the law of cosines

∥ ∥ = ∥ ∥ + − ∥ ∥

= ∥ ∥ + − −

= ∥ ∥ − + > ∥ ∥ − +

− −

−
+

− + − +

r r c r c α

r c c c
c

r c c c r c c

2 cos

2
2

n n n n n n

n n n n
n

n n n n n n n

2
1

2 2
1

1
2 2 1

1
2 2

1 1
2 2

1
2








(4)

(the last inequality holds due to monotonicity of the sequence { } =∞cn n 1). Hence, using (3), which directly

implies that <c1
2 1

9
, we get the inequality

∥ ∥ > ∥ ∥ − > − =r r c
1

4

1

9

5

36
.n

2
0

2
1
2

We see that < < ⋅ <−
∥ ∥ ∥ ∥
+ +

1
c

r

c

r

1

3

6

5

n
cn

n n

1
2

2 1 and, additionally, that the sequence {∥ ∥} =∞rn n 0 is monotonically

decreasing. Thus, ∥rn∥ ↛ 0, which completes the first part of the proof.

2. Next, we note that αn+1 < γn where = ( − )
∥ ∥γ arccosn
r e

r

,n n

n
(i.e., an angle between rn and −en, see Figure 1),

which implies that a vector −en is not selected at the step (n + 1) of the algorithm. Indeed, it immediately

follows from the inequality

− >+
+ +c

c c

2 2
,n

n n
1

2 1

which is a direct corollary of the monotonicity of the { } =∞cn n 1.

3. Here we show that vectors en+2, −en+2 are not selected at the step (n + 1). As αn+1 is the angle between

the vector en+1 and the subspace ⟨e−1, e0, …, en⟩, it is sufficient to show that αn+1 < αn+2, i.e.,

−
∥ ∥

>
−
∥ ∥

+ +

+

+ +c

r

c

r
.

n
c

n

n
c

n

1 2 2 2

1

n n2 3

(5)

Figure 1: Selection of en.
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Using (2), (3) and (4) we can note that the following inequalities hold:

( ) ( )
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
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


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
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

which is equivalent to (5). Similarly, vectors ek and −ek(k > n + 2) are not selected at this step.

4. Now, it remains to prove that if k < n, then the angles (− )e r,k n
 and ( )e r,k n

 exceed αn. We prove it inducti-

vely by n. The induction base holds as the angle between e0 and r0 exceeds α1. Let βn
k be the {( )r emin , ,n k



( − )}r e,n k
 , and let xn be the angle between rn and rn−1 (Figure 1). Without loss of generality let = ( − )+ +β r e,

n
k

n k1 1
.

Due to the spherical law of cosines [5, Chapter 12] we get

=+β γ xcos cos cos ,
n
k

n
k

n1

where = ( − )γ r e,
n
k

n k
. As ∥ ∥ >rn

2 5

36
, ∥ ∥ >+rn 1

2 5

36
and < <c cn

2
1
2 1

9
, then ∥rn∥ > cn and ∥rn+1∥ > cn. Therefore, the

angle xn is acute. Thus, the sign of +βcos
n
k

1
coincides with the sign of γcos

n
k, therefore, =γ β

n
k

n
k.

Due to the induction assumption, the inequality >α βcos cosn n
k holds (in the case of k = n − 1 this

inequality holds due to the point 2 of the proof). Hence, it is sufficient to show that

>+α α xcos cos cos .n n n1 (6)

Let us prove the inequality (6). The following series of inequalities holds:

( ) ( )
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




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










(7)

Combining (7) and (6), we see that it is sufficient to prove that

−
∥ ∥

>
−
∥ ∥

⋅
∥ ∥∥ ∥

∥ ∥ −+

− −

+
+ +c

r

c

r r r
r c

c1

2
,

n
c

n

n
c

n n n
n n

n1 2 2

1 1

2 1

n n2 1


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




which is equivalent to the inequality

−
−
>
∥ ∥
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−

+
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+
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c r
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2
.
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We have already shown (see step 1 of the proof) that the sequence {∥ ∥} =∞rn n 0 is monotonically decreasing.

Therefore, it is sufficient to show that

−
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

or, equivalently
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1
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And due to the monotonicity of the sequence {∥ ∥} =∞rn n 0, it is sufficient to prove that

−
−
> −

∥ ∥
+ +

+

+

c

c

c c

r
1

2
,

n
c

n
c

n n1 2

2

1

0
2

n

n

2

1

which coincides with (1). It completes the proof of this step and the theorem in general.

4 Proof of Theorem 2.2

For every non-zero element f ∈ H, let ( ) = ( )∥ ∥F gf
f g

f

,
and let rD(f) = ( ) =

∈

( )

∥ ∥
∈

F gsup
g D

f

f g

f

sup ,
g D

.

We split the proof of Theorem 2.2 into two parts.

1. First, we show that

∥ ∥ =
→∞

rlim inf 0.
n

n

Let us assume the contrary, i.e.,

∥ ∥ >
→∞

rlim inf 0.
n

n

If there exists a number k > 0 such that ∥rk∥ = 0, then it is obvious that a greedy expansion converges to

an expanded element. Otherwise, there exists a number r > 0, such that for every ∈k �

∥ ∥ ≥r r.k (8)

Let Sk be the kth partial sum of the sequence { } =∞cn n 1, i.e., = ∑ =S ck j
k

j1 . Then the following lemma holds.

Lemma 4.1. Let the conditions of Theorem 2.2 hold together with the inequality ∥rk∥ ≥ r > 0 ( ∈ )k � . Then

( ) =
→∞

−S r rlim inf 0.
n

n D n 1

Proof. Assume the contrary. In this case, there exists a number c > 0, such that

( ) ≥ ( ≥ )−r r S c k 1 .D k k1 (9)

We note that

∑ ∑

∑ ∑

∥ ∥ = ( ) = ( − − )
= ∥ ∥ − ( ) + = …

= ∥ ∥ − ( ) +

= ∥ ∥ − ∥ ∥ ( ) +

− −

− −

=
−

=

=
− −

=

r r r r c e r c e

r c r e c

r c r e c

r
c

S
r r r S c

, ,

2 ,

2 ,

2 .

n n n n n n n n n

n n n n n

k

n

k k k

k

n

k

k

n
k

k
k D k k

k

n

k

2
1 1

1
2

1
2

0
2

1

1

1

2

0
2

1

1 1

1

2

Taking into account formulas (8) and (9), we get that

∑ ∑∥ ∥ ≤ ∥ ∥ − +
= =

r r cr
c

S
c2 .n

k

n
k

k k

n

k
2

0
2

1 1

2
(10)

It is known (see [6, Chapter 11]) that if ∑ = ∞=
∞

ck k1 , then we have ∑ = ∞=
∞
k

c

S1
k

k
. Hence, (10) implies that

∑ = ∞=
∞

ck k1
2 .

Next, as there exists a number a > 0 such that <ck
a

k
for all ∈k �, there exists a number A > 0, such that

<S A kk . As ( )=c ok
k

1
, there exists a function f(k), such that =

( )
ck

k f k

1
and f(k)→∞ as k→∞. Therefore,

∑ ∑ ∑=
( )
≥

( )= = =

c

S k f k S Akf k

1 1
.

k

n
k

k k

n

k k

n

1 1 1

(11)
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We note that the equality

∑ ∑= ( )
= ∞

=

∞

=

∞
c

kf k

1

k

k

k1

2

1
2

implies that

∑ ( ) = ∞=

∞

kf k

1
.

k 1

(12)

Combining (10), (11) and (12) results in

∑ ∑ ∑< ∥ ∥ ≤ ∥ ∥ −
( )
+

( )
= ∥ ∥ −

( )
−
( )
→ −∞

= = =
r r cr

Akf k kf k
r

kf k

cr

A f k
0 2

1 1 1 2 1
.n

k

n

k

n

k

n
2

0
2

1 1
2 0

2

1











It contradicts our assumption. Thus, the proof of Lemma 4.1 is complete. □

Now, let us proceed to the proof of Theorem 2.2.

Lemma 4.1 and monotonicity of Sn imply that

( ) =
→∞

S r rlim inf 0.
n

n D n

Therefore, there exists a subsequence { } =∞nk k 1 such that

( ) =
→∞

S r rlim 0.
n

n D nk k

Let us consider a sequence of functionals{ } =∞Fr k 1nk
. The norm of each functional equals 1. As a unit sphere

is a weak compact (according to the Banach–Alaoglu theorem), there exists a weakly converging subse-

quence { } =∞Fr i 1nki
. For simplicity we denote Frnki

as Fi. As noted above, there exists a weak limit

≔
→∞

F Flim .
i

i

Due to the fact that the dictionary D is symmetric, for all sufficiently large i the following inequality

holds:

( )∑ ∑( ) = + = ∥ ∥ + ( ) ≥ −
= =

f r c e r c e r S r rF F F .i i n

j

n

j j n

j

n

j i j n D n

1 1

ki

ki

ki

ki

ki ki









 (13)

Passage to the limit results in an estimate F( f) ≥ r, which implies that F ≠ 0.

On the other hand, for every g from the dictionary D

( )
( )

( ) = ( ) ≤ =

(− ) = (− ) ≤ =
→∞ →∞

→∞ →∞

F g g r r

F g g r r

F

F

lim lim 0,

lim lim 0.

i
i

i
D n

i
i

i
D n

ki

ki

(14)

Hence, F(g) equals 0 for all g ∈ D and, due to completeness of D, we get that F = 0. We have come to

a contradiction, which proved the equality

∥ ∥ =
→∞

rlim inf 0.
n

n

Thus, we completed the first part of the proof of Theorem 2.2.

2. Now it remains to prove the following two lemmas.

Lemma 4.2. Let H be a Hilbert space, D be a symmetric unit-normed dictionary, f ∈ H be an expanded

element. For a greedy algorithm let αn denote
( )
∥ ∥
−
−

arccos
r e

r

,n n

n

1

1
and hn denote∥ ∥−r αsinn n1 (Figure 1). Then { } =∞hn n 1 is

a non-increasing sequence.
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Lemma 4.3. Let H be a Hilbert space, D be a symmetric unit-normed dictionary and f ∈ H be an expanded

element. Let a sequence { } =∞cn n 1 converge to zero. Then the equality

∥ ∥ =
→∞

rlim inf 0
n

n

(where { } =∞rn n 0 is a sequence of remainders of the greedy expansion of f in D with coefficients { } =∞cn n 0) implies that

rn → 0 (n → ∞).

Proof of Lemma 4.2. Let βn denote {( ) ( − )}r e r emin , , ,n n n n
 . Then = ∥ ∥h r βsinn n n. Since an expansion is greedy

with tn = 1, we have that αn+1 ≤ βn, and thus

= ∥ ∥ ≤ ∥ ∥ =+ +h r α r β hsin sin . □n n n n n n1 1

Proof of Lemma 4.3. Similar to Lemma 4.2, let hn denote∥ ∥−r αsinn n1 . Due to Lemma 4.2 a sequence { } =∞hn n 1 is

non-increasing.

Let us fix an arbitrary ε > 0. Then there exists a number ∈m �, such that for all n > m

<c
ε

2
.n (15)

If ∥ ∥ =
→∞

rlim inf 0
n

n , there exists a number k > m such that

∥ ∥ <−r
ε

2
.k 1

But then for all p ≥ k we have that

<h
ε

2
.p (16)

Furthermore, by induction we show that the estimate ∥rp∥ ≤ ε holds for all p ≥ k. Indeed, for p ≥ k either

∥ ∥ ≤ ∥ ∥ ≤−r r εp p 1

or (due to (15) and (16))

∥ ∥ ≤ + < + =r h c
ε ε

ε
2 2

.p p p
2 2 2

2 2
2

Hence, =
→∞

rlim 0
n

n . □

Thus, we have proved both Lemmas 4.2 and 4.3, and therefore, we completed the proof of Theorem 2.2.

Remark 4.4. The statement of Theorem 2.2 does not cover the statement of [4, Theorem 2] entirely.

Proof. Indeed, let us construct a sequence { } =∞cn n 1 in the following way. Let

= { }

=
∈

∉

=
∞K k

c
n

n K

n K

,

1
, ,

1

2
, .

k

n

n

2
1









Then the sequence { } =∞cn n 1 satisfies the assumptions of Theorem [4, Theorem 2], but does not satisfy the

assumptions of Theorem 2.2. □
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5 Generalization

One of the disadvantages of a greedy expansion with the prescribed coefficients in case of tn ≡ 1 is that there

might be no greedy expansion for an expanded element. Another disadvantage is that (irrespective of tn) in

a general case selection of expanding element is not constructive.

We consider the following generalization of the greedy algorithm that eliminates these undesirable

properties. Let symmetric sets { } =∞Dn n 1 be an exhaustion of a dictionary D, i.e., Dn ⊂ Dn+1 for all ∈n �, and

⋃ =
=

∞
D D.

n
n

1

At the step n of a greedy algorithm we select an element en from Dn such that ( ) = ( )−
∈
−r e r e, sup ,n n

e D
n1 1

n

. In

other words, at the step n we consider Dn instead of D. If Dn is finite, then en always exists and can be

constructively selected by a simple exhaustive search. Let us call this modification of a greedy expansion

“a greedy expansion with prescribed coefficients in the exhaustion { } =∞Dn n 1.”

Let us note that for this modification the analogue of Theorem 2.2 holds. It can be stated in the follow-

ing way.

Theorem 5.1. Let H be a Hilbert space, D be a symmetric unit-normed dictionary and { } =∞Dn n 1 be its exhaustion.

If a sequence { } =∞cn n 1 satisfies conditions

(1) ( )= ( → ∞)c o nn n

1
,

(2) ∑ = ∞=
∞

cn n1 ,

then for every element f all realizations of its greedy expansion in the exhaustion { } =∞Dn n 1 with the prescribed

coefficients { } =∞cn n 1 converge to f.

Proof. The proof almost repeats the proof of Theorem 2.2. For clarity, we specify which parts of this proof

require adaptation.

1. We should change the statement of Lemma 4.1 in the following way:

( ) =
→∞

−S r rlim inf 0.
n

n D n 1n

The proof remains identical.

2. Next, we have that

( ) =
→∞

S r rlim inf 0,
n

n D nn

and we select a subsequence { } =∞nk k 1 in such a way that

( ) =
→∞

S r rlim 0.
n

n D nk nk k

3. Nestedness of sets Dn allows rewriting inequality (13) as follows:

( ) ≥ − ( )f r S r rF .i n D nki nki
ki

4. Now, we show that inequalities (14) hold. Let g ∈ D. Then there exists Dp such that g ∈ Dp. Hence, for

all >n pki we have that ( )( ) ≤g r rFi D nnki
ki
. Thus, the inequalities can be rewritten as follows:

( )
( )

( ) = ( ) ≤ =

(− ) = (− ) ≤ =
→∞ →∞

→∞ →∞

F g g r r

F g g r r

F

F

lim lim 0,

lim lim 0.

i
i

i
D n

i
i

i
D n

nki
ki

nki
ki

All other steps of this proof repeat the corresponding steps of the proof of Theorem 2.2. □
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6 Conclusion

In this paper, we presented improvements for both negative and positive results on the convergence of

greedy expansions with prescribed coefficients. These improvements, in particular, allowed to remove

completely a gap between positive and negative results.

We expect that the technique we used in this research is applicable also to greedy expansions with

errors in coefficient calculation [7], where a gap between negative and positive results still exists, and we

are going to present results for greedy expansions with errors in coefficient calculation in our subsequent

publications. We are also going to study a possibility of generalizing positive results to the case of

tn ≡ t ∈ (0, 1).
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