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1. INTRODUCTION 

The aim of this article is to consider the following question: 
Let II ' ... , Ik be polynomials in n variables and assume that they have no 

common zero in e . Then Hilbert's Nullstellensatz guarantees the existence of 
polynomials gl ' ... , gk such that 

The usual proofs of this result, however, give no information about the gi's; for 
instance they give no bound on their degrees. This question was first considered 
by G. Hermann [H]. She used elimination theory to get a bound on the degree of 
the gi's which was doubly exponential in the number of variables. Her results 
were later improved in [MW] and in [Th]. All these produce bounds that are 
doubly exponential in the number of variables. 

A major breakthrough was achieved by Brownawell [B 1] who proved the 
following result: 

1.1. Theorem. Let II ' ... ,Ik E qXI ' ... , xn] be such that the J;'s have no 
common zero. Assume that deg J; :::; D, Then one can find polynomials g I ' ... , 

gk E qXI ' ... , xn] such that 

and 

deggi :::; n. min(k, n)· Dmin(k ,n) + min(k, n)· D, 
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964 JANOS KOLLAR 

Brownawell uses results from transcendental number theory to get the fol-
lowing estimate: 

1.2. Theorem. Given fl ' ... ,fk as above then 

max Lt;(x)1 :::: constant '1IxIII-(n-I)Dmmldi 
I 

where Ilxll = Jlx~1 + ... + Ix~l. 
Having this estimate one can use some results of Skoda [Sk] to get the bound 

on the degree of the g/s. We refer to the article of Brownawell for more details 
and for further references. In all characteristics Shiffman [Sh] recently improved 
the bound given previously; his bound is however still doubly exponential in the 
number of variables. 

Here a completely algebraic method of estimating the degree of the gi's will 
be presented. The proof is mostly elementary ideal theory in homogeneous 
polynomial rings. The only nonstandard method we use is the definition and 
elementary properties of local cohomology groups. For this [G] can serve as a 
good reference. The proof will work in all characteristics and in most cases gives 
the best possible result. Roughly speaking we eliminate the factor n· min( k , n) 
from 1.1. 

The above problem will turn out to be a special case of a more general re-
sult comparing ideals and their radicals. To formulate this result it is most 
convenient to start with two definitions. 

1.3. Definition. Given a field K and natural numbers nand d l ' ... ,dk let 

N(n, dl ' ... ,dk) = min {Sl for any polynomials fl' .... fk E K[xi ..... x n ] 

such that deg fi = di and such that they have no 

common roots in the algebraic closure of K. 

there are polynomials gl .... ,gk E K[XI ..... x n] 

such that L fi gi = 1 and m~x { deg(fi gi)} ::; s } . 

(Note that K is suppressed in the notation since it will turn out to be unimportant.) 

1.4. Definition. Given a field K and natural numbers nand d I •...• d k let 

N' (n . d l •...• dk) = min {Sl for any homogeneous polynomials II' ... . I k E 

K[xo . .... x n ] such that degJ: = di we have 

( JUl' .... Ik)) S <;; UI •...• Ik) } . 
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Now we can formulate our main result as follows: 

1.5. Theorem. Given a field K and natural numbers nand d, > 
assume that all the di are different from 2. Then 

{ 
d,····· dk 

N'(n,d" ... ,dk) = d, ·····dn_, ·dk ~k> n ~ 1; 
d, + dk - 1 if k > n - 1. 

ifk::;n; 

965 

1.6. Remarks. (i) By definition, a polynomial h belongs to (/" ... J k) iff 
we can write h = L gJ"i for some polynomials gi. If we fix the degree of the 
gi and we consider the coefficients of the gi as unknowns we get a system of 
linear equations in these unknowns. Thus solvability in a field extension implies 
solvability in the base field. This shows that it is sufficient to prove 1.5 for K 
algebraically closed. 

(ii) The assumption that all the d i are different from 2 is purely technical; I 
expect that it is not necessary. My proof works if at most three of the d i are 
equal to 2, but in general the proof gives a bigger upper bound. 

1.7. Corollary. Given f, ' ... ,fk and hE K[x, ' ... ,xn ], assume that h van-
ishes on all common zeroes of f, ' ... ,fk (in the algebraic closure of K). Let 
di = degfi and assume that none of the di is 2. Then one can find g, ' ... ,gk E 
K[x, ' ... ,xn] and a natural number s satisfying 

LgJ"i =h s 

such that 

s ::; N' (n , d, ' ... ,d k) and deg gJ; ::; (1 + deg h) . N' (n , d, ' ... ,d k) . 

1.8. Remark. It is very interesting to compare the above result with a con-
struction of Mayr and Meyer [MM]. They show that in the above situation it is 
possible that h = L gJ; has a solution but the degree of the gi grows doubly 
exponentially in the number of variables. It is quite surprising that if we allow 
taking a power of h then the solution will have lower degree. 

1.9. Corollary. Let f, ' ... ,fk E K[x, ' ... ,xn] such that they have no com-
mon zero in the algebraic closure of K. Let di = deg 1; and assume that none 
of the di is 2. Then one can find g" ... ,gk E K[x" ... ,xn ] such that 
deggJ"i::; N'(n,d" ... ,dk) satisfying 

L g i1; = 1. 

In particular, N(n, d, ' ... ,dk) = N' (n ,d, ' ... ,dk). 
If k = n, then there are no solutions with deg gJ"i < N(n, d, ' ... ,dk) if 

and only if the closures of the hypersurfaces 1; = 0 in ]p'n intersect in one point 
only, the Zariski tangent space of the intersection is one dimensional and it is 
not contained in the hyperplane at infinity. 
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This corollary in turn at once gives an improved version of Theorem 1.2. It 
is, however, not too hard to give a direct proof that removes the restriction on 
the degrees. This gives the following: 

1.1 O. Proposition. Let II ' ... ,Ik E C[x i ' ... ,xn ] such that the 1; have only 
finitely many common zeroes. Let d j = deg Ij and assume that n ~ 2. Then 

max{I1;(x)I.llx ll-d,} ~ constant 'lIxll- N (n ,d l , ••• • dd 
I 

if IIxll is sufficiently large. Moreover the above exponent is best possible. 

1.11. Remarks. (i) It is easy to see that an estimate of the above type holds 
if it holds after restriction to any algebraic curve in en (this is the valuative 
criterion of integral dependence, cf. [Te, 1.3.4]). The latter makes perfect sense 
even in characteristic p, and 1.10 is also true over any field if we adopt this 
definition. 

(ii) Brownawell informed me that he recently proved a result similar to 1.10. 
(iii) The results of Brownawell [Bl] not only bound the degree of the polyno-

mials 1; but they can be used to make the constant in 1.10 effective provided 
we know the height of the coefficients of the gj ; in this direction see [B2]. 

1.12. Remark. In the context of 1.4 it is clear that the computation of 
N' (n , d I ' ... ,d k) tells us something about the primary decomposition of the 
ideal (/1' ... ,Jk )· The primary decomposition is not unique, thus it is better 
to view it in the following way: 

The module M = K[xo ' ... ,Xn]/(/I ' ... ,Jk) can be filtered by submodules 
M j = (sections whose support has dimension at most i). The quotient M) M i _ 1 
is the "well defined part" of the i-dimensional primary components. 1.5 can 
be interpreted as a statement that these quotients are not too big "in every 
direction." Unfortunately I do not know any technically precise and meaningful 
interpretation of this last claim. 

The ideal result would be a bound on the length of these qoutients. This is 
however too much to hope for. Here is a simple example. 

In four homogeneous variables let q be the equation of a smooth quadric 
Q. Let CeQ be the union of k disjoint lines. Let hi' hz be degree k 
homogeneous polynomials such that hi = h2 = 0 defines a curve CuD where 
D is also smooth, CUD has only nodes and D intersects Q only along C. 
If '* denotes the cone over * then we have an exact sequence 

0--> &'/5( -C n D) --> K[xo ' ... ,x3]/(h l ,h2) --> K[xo ' ... ,x3]/(q ,hi' h2) --> O. 

If m denotes the maximal ideal of the origin then we have 
o I -- I 

Hm(K[xO ' ••• ,x3]/(q, hi' h2)) = H m(&'/5( -C n D)) = Hm(&'/5)' 

Since C and D are linked the latter group is dual to H!(&,c) which can be 
computed easily. This gives that the length of H~(K[xo' ... ,x3]/(q, hi' hz)) 
is (k;I). For large k this is larger than the Bezout number 2e . 
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2. PRELIMINARY REMARKS 

2.1. Proof of 1.7. Introduce a new variable Xo and let ~ be the homoge-
nization of 1; and h the homogenization of h. Since h vanishes on all 
the common zeroes of the 1;, we see that h vanishes on all the common ze-
roes of ~ that lie outside the hyperplane at infinity. Therefore xoh vanishes 
on all common zeroes of ~ and hence xoh is contained in the radical of 
(fl' ... ,Jk)· Therefore, by 1.5, (xoh)S is contained in (fl' ... ,Jk) for some 
s ~ N' (n ,dl ' .•• ,dk ). Thus there are homogeneous polynomials g; such that 
E ~g; = (xoh)S . We can assume that 

deg~g; = s· degxoh ~ N' (n, d l ' ... ,dk )· (1 + degh). 

Now we can dehomogenize the above relation to obtain the required result. 

2.2. Case n = 1 . In this case everything is very easy and is left to the reader. 
In the sequel we always assume that in fact n 2: 2 . 

2.3. Example. We give an example to show that N(n, d l ' ... ,dk ) and 
N' (n ,dl ' ••• ,dk ) are at least as big as 1.5 claims. The example is a slight 
modification of the one given by Masser, Philippon, and Brownawell [B 1]. 

Given any nand d l ' ... ,dn consider the polynomials 
dl d2 -1 d2 dn-I-I dn- I dn-I dn 

XI,XIXn -x2 "",xn_2xn -xn_l,xn_Ixn -xo' 

We denote them by l;. Clearly deg l; = d;. Their only common zero is along 
the line Xo = ... = xn_1 = O. If we set xn = 1 , then we get 

K[xo' ... ,Xn]!(ll ' ... ,In ,xn - 1) = K[xo]!(Xo)n d,. 

Therefore we see that Xo is in the radical of (ll ' ... ,In)' but (xo)nd;-I is not 
contained in (ll ' ... ,In)' 

Now if we have K, n, and d; and k 2: n then arrange the d; in such a 
way that dn is the smallest and take ~ = l; for i ~ n and ~ = appropriate 
multiple of In for i > n. This gives the necessary lower bound in 1.5. If k < n 

then we can consider the above example with k variables and consider these 
as polynomials in n variables. This shows the required lower bound for 1.5. 

We can dehomogenize Xo to get the required examples for 1.9 and 1.10. 

2.4. Example. Assume now that k = n which is somehow the main case. 
Assume furthermore that the hypersurfaces F; = (~ = 0) in IP'n intersect in 
only finitely many points. By Bezout's Theorem the intersection is then a zero 
dimensional scheme of length Il d; and its homogeneous ideal is generated by 
the ~. If a polynomial h vanishes on all the points of this intersection then 
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hOd, is contained in its ideal. Moreover if hOd,-1 is not contained in the 
ideal then the intersection has only one closed point, its Zariski tangent space 
is one dimensional and it is not contained in the tangent space of h = 0 at that 
point. This in particular shows the last part of 1.9 if we can prove that in case 
of equality the intersection is zero dimensional. 

It is not easy to come up with many such examples. One might take for 
instance an elliptic plane curve C and on it a flex 0 and a point P such that 
m(P - 0) = 0 in the Picard group. Then there is a degree m curve D such 
that enD = P . If the order of P - 0 is exactly m and 3 ,.( m then any such 
D is irreducible. Variants of this idea give a few more cases, but 2.3 is the only 
large series of examples that I know of. Since it is related to constructing curves 
with torsion points on them, this is not too surprising. 

2.5. Remark. There are some easy cases when the proof of the theorems can 
be reduced to a simpler case. If for instance one of the 1; is reducible, then we 
can replace the 1; with one factor at a time and get a solution of the original 
problem this way. If one of the fi is linear then we can eliminate one variable. 
Thus 1.5 reduces to the case when d i ::::: 3 for e.very i. We will assume this in 
the proof. 

Next we prove an easy lemma that will be needed in the proof. 

2.6. Lemma. Let Z c]p'n be a zero dimensional subscheme, and let h be a 
degree d homogeneous polynomial nowhere zero on Z. Let .5 be the homoge-
neous ideal of Z. Then 

k+d 
(XO'''''xn ) c(.5,h) 

if one of the following conditions is satisfied: 
(i) k::::: length Z; 

(ii) There are hypersurfaces F1 , ••• ,Fn of degrees d l , ••• , dn such that 
their intersection T is zero dimensional, Z is the union of some con-
nected components of T and k ::::: L(di - 1) . 

Proof. Let 
Mz(k) = im[Ho(&ll'n (k)) ------> HO(&z(k))], 

and consider the multiplication map 

Clearly 
k+d h (xo ' ... , xn) C (.5, ) 

iff mj is surjective for j ::::: k. The multiplication map is injective since h is 
nowhere zero on Z; thus mk is surjective if Mz(k) = HO(&z(k)). In case (i) 
let S be a connected component of Z and let m be the ideal of the closed 
point of S . Then 

HO(&ll'n(k)) ------> HO(&ll'n/mk+l(k)) ------> HO(&s(k)) 
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is surjective for k ~ length S since m'ength S &'s = 0 . For the same reason one 
can find a hypersurface of degree length S such that it is zero on S (scheme 
theoretically), and not zero at the other points of Z. Multiplying such polyno-
mials together we get the required surjectivity. 

In the second case we know by Macaulay (see e.g. [GH, Chapter 5]) that 

HO(&'ll'n(k)) --+ HO(&'T(k)) 

is surjective in the required range and hence so is the similar map for Z. This 
proves the lemma. 

3. PROOF OF THEOREM 1.5 

3.1. Now consider our polynomials 1;. We can rearrange them so that d, is 
the smallest and then d2 ~ d3 ~ ... ~ dk . We can now also replace 1; for 
i ~ 2 by a general linear combination of Ii' .,. ,Ik . This rearrangement will 
be used for the rest of the proof. Let Fi = (1; = 0) and let R = F, n ... n Fk 
with reduced scheme structure and Ie gz be the homogeneous ideal of R. Let 
U be the open set lP'n \ R . Let 

Zi = the closure of (U n F, n··· n Fi)' 

By the assumptions Zi n U is a complete intersection of codimension i. We 
can write 

U" .. · ,f) =Jz nf { , ( 

where Y'z, is the homogeneous ideal of Zi and ~ is a homogeneous ideal 
whose cosupport is in R. Of course in general ~ is not unique. Let 

a = min{slgzs annihilates Jz IU, ' ... ,f)}· 
{ , { 

By assumption 5z, is the whole ring and thus ak tells us which power of h 
is in the ideal of the 1;. Therefore our task is to estimaste the ai from above. 
This will be done as follows. 

3.2. Inductive step. Consider the following decomposition: 

(5z, ,fi+') = 5z,t' n~+, n g;+, 
where ~+, is the intersection of the primary components of codimension i + 1 
whose cosupport is in Rand g;+, is the intersection of the primary components 
whose cosupport has codimension at least i + 2. Note that the cosupport of 
g;+, is in R. Note also that ~+, is uniquely defined. 

Let 
k i+, = min{slgzs is contained in ~+,} 

and let 
ei+, = min{slgzs annihilates5z,+, n~+,/(5z, ,1;+,)}. 

Therefore gzk,+ I +cit I annihilates 
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Also 9tai annihilates 

(.7z i ,1;+I)/(fl' ... ,1; ,1;+1)' 

Putting all these together we get that 9tki+ 1 +e,+1 +ai annihilates 

.7zi+)(fl ' ... ,1; ,1;+1)' 

Therefore ai+1 :::; k i+1 + ei+1 + ai • 
k i+1 is at most as big as the degree of the scheme defined by ~+1 and so 

it is easy to deal with. The difficult part is to understand ei+1 ' which comes 
from the embedded primes. This will be accomplished in the following way. 

3.3. Definition. Given a scheme S and an ideal 9t we define 

nil(9t ,S) = {min t I 'VZ c R and 'Vi < codimz S we have 9t t • H~(&,s) = O}. 
3.4. Lemma. Let X be a pure dimensional affine scheme, let f be a nonzero 
divisor, and let 9t be an ideal. Let R = Spec&'xl9t. Let 

(f) = J n % n ~ , 
where J is the intersection of isolated primary ideals whose cosupport is not in 
R, % is the intersection of isolated primary ideals whose cosupport is in R, 
and ~ is the intersection of embedded primary ideals. Furthermore let X' be 
the scheme defined by J . 

Assume that 9tk is contained in % and that cosupp ~ is contained in R 
(e.g. this holds if X is Cohen-Macaulay outside R). 

Then 
nil(9t ,X') :::; 3nil(9t ,X) + k. 

Proof. The exact sequences 

0--> &'x L &'x --> &'xl(f) --> 0 
and 

0--> J l(f) --> &'xl(f) --> &'x1 --> 0 
give rise to the following cohomology sequences 

H~(&,x) --> H~(&'xl(f)) --> H~+I(&,X) 

and 
H~(&'xl(f)) --> H~(&'xl) --> H~+I(J l(f))· 

Therefore 9t2ni1 (,)i' ,Xl annihilates H~(&'xl(f)) and we have to estimate which 
power of 9t will annihilate H~+1 (J I(f)). For this it is sufficient to know 
which power of 9t annihilates J l(f). To see this consider the sequence 

0--> J n% l(f) --> J l(f) --> J IJ n% --> O. 

By assumption 9tk annihilates J IJ n% . Also if Z is the support of J n 
% l(f) then 

J n % I(f) = H~(J n% l(f)) = H~(&'xl(f)) ~ H~(&,x); 
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thus ~nil(,'h'.x) annihilates J n % / (f). Putting these together we get the 
conclusion of the lemma. 

3.5. Counting losses. For notational simplicity we assume that k ~ n. The 
other case is the same. Now consider our sequence of hypersurfaces Fi for 
i = 1 , ... ,n. We have defined our schemes Zi and we have a well-defined se-
quence of integers kl ' ... ,kn . Since Z 1 is a hypersurface we have nil(~ ,Z i) 
= O. Thus we get recursive upper bounds for nil(~ ,Zi)' To get estimates for 
the numbers aj we look at the map 

o 1 J n%/(f) = Hz(J n%/(f)) '-+ Hz(&z ). J J J J J J )-1 

Thus we get that ej ::::; nil(~ ,Zj_I)' This in turn yields the following estimate 
n 

an ::::; ~)ki + nil(~ ,Zi_I)) 
i=1 

::::; t (ki + I:k j • 3i- 1- J) 
i=1 j=l 

= t k i • (1 +t 3j - i - 1) 

i=1 J=z+1 

n 3n - i + 1 
=,Lki • 2 . 

i=1 

3.6. Counting gains. Zn is a zero dimensional subscheme and we would like 
to compute its degree. This can be done using the formula 

degZ i+1 = d i+1 • degZi - deg&ll'n/~+l' 

Now h is contained in the radical of ~+l and this ideal is unmixed. Therefore 

~deg&rnj.%'+1 .%. . 
E i+I' 

in particular, k i+1 ::::; deg&l'n/~+1 . Thus we get 

degZ i+ 1 ::::; d i+ 1 • degZi - k i + 1 . 

Using this repeatedly, we obtain the following estimate 
n n n 

degZn ::::; II di - ,Lki • II dj" 
i=1 i=1 j=i+i 

Since we assumed that dJ ~ 3 , this gives that 
n n 

II '"""" n-i-i d deg Z n ::::; d i - ~ k i • 3 n . 
i=1 i=1 
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The following is a routine computation: 
3.7. Lemma. 

3n - i 1 kz. + < k. 3n- i - 1 • d 2 - z n° 
and 

d k 3n - i + 1 < k . 3n - i - 1 • d n+ i' 2 - z n° 
unless i = n - 1 and k i = 1 or 2. 

3.8. Case k :::; n. In this case for ak we get the following formula (note that 
Zk is empty) 

k 3n-i k 
a < ~ k . + 1 < ~ k ,3n - i - 1 ,d 
k-~z 2 -~z n 

i=1 i=1 
k k :::; II d i - degZk = II d i . 

i=1 i=1 
Thus we have the required bound. 
3.9. Case kl = . " = kn_ 1 = O. In this case the hypersurfaces Fi intersect in 
a zero dimensional subscheme of ]p>n • Thus we can use 2.6 to conclude that the 
multiplication map 

M~M k k+dn+ 1 

is surjective for k ~ 2::;= I (d i - 1). In particular, if we look at the quotient 

K[xo 0 ... 0 xn]/(fl 0 ... .fn+l ) 0 

then for t ~ dn+1 + 2::~=1 (di - 1) the degree d graded piece has support in H. 
n on d By Bezout the cosupport of ~ has length at most TIi=1 d i ' thus gz 1~1 I IS 

contained in ~. Since TI~=I d i ~ dn+1 + 2::;=1 (d i - 1) we see that 
on d gz 1~1 I E (/1 0 ... .fn+ I ). 

This is what we wanted to prove. 
3.10. Case k i > 0 for some i :::; (n - 1). By definition gzan annihilates 
~/(/I 0 ••• 0 fn) and therefore it also annihilates 

(~ .fn+1 )/(/1 0 ... .fn .fn+I ). 

On the other hand by 2.6 we know that gzdegZn+dn+1 is contained in (J f. ) n° n+1 . 
Therefore 

rman+degZn+dn+1 (f f) 
.7l E 1 0 ••• 0 n+ 1 . 

On the other hand, by 3.7 we have 
n 3n-i + 1 n n 

an + degZn + dn+1 :::; Lki ' 2 + II di - Lki • 3n- i- l dn + dn+1 
i=1 i=1 i=1 
n 

:::; IIdio 
i=1 

unless kl = ... = k 2 = 0 0 k 1 = 1 or 2 . n- n-
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Thus except for these special cases the required inequality is again proved. 

3.11. Remaining cases. In the remaining cases the hypersurfaces FI ' ... ,Fn 
intersect in a curve C of degree c and in finitely many other points. Thus 
degZn = I1~=1 di - cdn - deg&'ll'n/~, and so, as in 3.10, we need the inequality 

n 
degZn + 2kn_ 1 + kn + dn+1 ::; II d i · 

i=1 

This is clearly satisfied if c ~ 3. Hence the remaining cases are when C has 
degree 1 or 2. In this case we are also done if by accident 

deg&'ll'n/~ ~ kn + 2. 

This indeed will be the case by excess intersection theory. Since C has degree 
at most two, it is a local complete intersection curve and so we can use 9.1.1 in 
[F] to conclude that 

FI n ... n Fn = C u (g d i - (t d i - n - 1) c - 2X(&,d) points, 

(some possibly embedded). From this we get that Spec&'ll'n/~ has at least 

points as a subscheme of &'c. Therefore 

provided n ~ 3. We are left with the case when n = 2. Here the common 
curve of intersection becomes a common irreducible factor for the 1; and so 
we are in the reducible case which can be treated by reducing it to a simpler 
case. This completes the proof of 1.5. 

3.12. The case oj equality. The preceeding argument shows that if 
gzN(n .d l •••• • d,)-I is not contained in (II ' ... ,Jk ) then we have either the case 
of 2.4 (which we want) or one of the cases treated in 3.11. In this latter case it 
is again clear that only some very special cases can give equality. These can be 
treated by ad hoc methods that are not worth writing down in detail. 

4. PROOF OF PROPOSITION 1.10 

It is clear that 1.10 is local around the points at infinity. If we change coor-
dinates to center around a point at infinity and pick x I as the equation of the 
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hyperplane at infinity then 1.10 is equivalent to the following: 

4.1. Proposition. Let fl ' ... ,fk be polynomials in en such that near the ori-
gin their common zero set is contained in (XI = 0). We may assume that k ~ n. 
Let di = deg 1;. Then 

maxl1;(x)l2: constant'lxllnd" 
I 

near the origin. 

Proof. We consider the ideal J generated by the 1; and we blow it up. Taking 
the closure we get an algebraic variety r c IP'n x IP'n-1 . Let p, respectively q, 
be the projections of r to IP'n , respectively IP'n-1 • By definition of the blow-up, 
p * J c &'r is locally free above the origin and it is generated by the sections 
p* 1;. 

Let E c r be any p-exceptional divisor such that the origin is contained in 
p(E) . Assume that we can prove the following: 

b.: Some p* fi vanishes along E with multiplicity at most I1 di (as a local 
section of &'r ). 

Since p(E) is contained in (XI = 0), P*XI vanishes along E, thus p*xPd, 
vanishes along every exceptional divisor with a multiplicity at least as large as 
some generating section of p * J . Therefore we can cover r above the origin 
with open sets such that within each subset we have 

p*xPd; = P*fi' (a regular function). 

Since p * does not change the value of a function, this implies 1.10. 
Thus we have to prove b.. If p(E) has positive dimension then a general 

affine en-I inside en intersects p(E) and we can test b. in one dimension 
less. Thus we are done by induction. Now we have to treat the main case when 
p(E) = the origin. 

Let (YI : ... : Yn) be coordinates on IP'n-1 • Let furthermore B, respectively 
A, be the cohomology classes of q* &'lI'n-1 (1) , respectively p * &'lI'n (1) , on IP'n-1 x 
IP'n • The multiplicity of vanishing of fl along E is bounded by 

[(/1 = 0))· [r]. Bn- I , 

where [ ] denotes the cohomology class. 
r is defined by equations yJj - Yj 1; = 0 (and maybe some others). Thus 

(/1 = 0) n r is defined by equations yJj = 0 and fl = O. Since IP'n-1 x IP'n is 
homogeneous, effective cycles intersect non negatively. Therefore 

n n 
n-I d II d n-I II [(/1 = 0)] . [r] . B ~ I A . (B + i A ). B = d i · 

i=2 i=1 

This proves b. and thereby 1.10. 
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