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Abstract In this paper we study the Bessel process R
(μ)
t with index μ �= 0 starting from

x > 0 and killed when it reaches a positive level a, where x > a > 0. We provide sharp
estimates of the transition probability density p

(μ)
a (t, x, y) for the whole range of space

parameters x, y > a and every t > 0.

Keywords Transition probability density · Heat kernel · Bessel process · Sharp estimate ·
Half-line
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1 Introduction

Let R
(μ)
t be the Bessel process with index μ �= 0. The transition probability density

(with respect to the Lebesgue measure) of the process is expressed by the modified Bessel
function in the following way

p(μ)(t, x, y) = 1

t

(y

x

)μ

y exp

(
−x2 + y2

2t

)
I|μ|

(xy

t

)
, x, y, t > 0. (1.1)

Our main goal is to describe behaviour of densities of the transition probabilities for the
process R

(μ)
t killed when it leaves a half-line (a,∞), where a > 0. Note that if the process
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starts from x > a then the first hitting time T
(μ)
a of a level a is finite a.s. when μ < 0 but it

is infinite with positive probability when μ > 0. The density kernel of the killed semi-group
is given by the Hunt formula

p(μ)
a (t, x, y) = p(μ)(t, x, y) − E(μ)

x

[
t > T (μ)

a ; p(μ)

(
t − T (μ)

a , R
(μ)

T
(μ)
a

, y

)]
, (1.2)

where x, y > a and t > 0. The main result of the paper is given in

Theorem 1 Let μ �= 0 and a > 0. For every x, y > a and t > 0 we have

p(μ)
a (t, x, y)

μ≈
[

1 ∧ (x − a)(y − a)

t

] (
1 ∧ xy

t

)|μ|− 1
2
(y

x

)μ+ 1
2 1√

t
exp

(
− (x − y)2

2t

)
.

(1.3)

Here f (t, x, y)
μ≈ g(t, x, y) means that there exist positive constants c1 and c2 depend-

ing only on the index μ such that c1 ≤ f/g ≤ c2 for every x, y > a and t > 0. Since the
constants are independent of a > 0, one can pass to the limit with a → 0+ and obtain the
well-known estimates of p(μ)(t, x, y). Since the function Iμ(z) behaves as a power func-
tion at zero and that some exponential term appears in the asymptotic expansion at infinity
(see Preliminaries for the details), the behaviour of p(μ)(t, x, y) depends on the ratio xy/t .
Note that similar situation takes place in the case of p

(μ)
a (t, x, y), which depends on xy/t

as well. It can be especially seen in the proof of Theorem 1, where different methods and
arguments are applied to obtain estimates (1.3), whenever xy/t is large or small. Finally,
taking into account the behaviour of p(μ)(t, x, y), one can rewrite the statement of Theorem
1 in the following way

p
(μ)
a (t, x, y)

p(μ)(t, x, y)

μ≈
(

1 ∧ (x − a)(y − a)

t

)(
1 ∨ t

xy

)
, x, y > a, t > 0, (1.4)

where the expression on the right-hand side of Eq. 1.4 should be read as the description
of the behaviour of p

(μ)
a (t, x, y) near the boundary a. Since x − a is just the distance of

x to the boundary of the considered set, we can see that the first factor of the right-hand
side of Eq. 1.4 is also present in the estimates provided in [27], but the second expression
is not. This is a consequence of the appearance of the different constants in the exponential
terms in Thm 1.1 and Thm. 1.2 in [27]. Note also that estimates of the heat kernels of
a domain are sometimes expressed in terms of survival probabilities Px(T > t), i.e. the
probability that the process starting from x does not exit the set before time t . For example,
two-sided Gaussian type estimates for the Dirichlet heat kernel in an inner uniform domain
in a Harnack-type Dirichlet space are provided in [17] (see Thm 5.16), where the considered
Dirichlet kernel is shown to be bounded by the expression Px(T > t)Py(T > t)p(ct, x, y).
Here p(t, x, y) stands for the global heat kernel, but in the lower and upper bounds the time
t is scaled by different constants. To compare this result to Eq. 1.4 recall that the survival
probabilities in our case were estimated in [3] (see Eq. 2.8) and for μ > 0 we have

P(μ)
x

(
T (μ)

a > t
) μ≈ x − a

x
, x < t, and P(μ)

x

(
T (μ)

a > t
) μ≈ 1 ∧ x − a√

t
, x ≥ t .

Thus, it is easy to see that

p(μ)
a (t, x, y)

μ≈ P(μ)
x

(
T (μ)

a > t
)

P(μ)
y

(
T (μ)

a > t
)

p(μ)(t, x, y), xy ≤ t,
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but we can not rewrite Eq. 1.4 in that form in the whole range of parameters, i.e. in general
some additional factor appears (take for example t < a and x, y such that x − a ≤ √

t ≤
y − a but (x − a)(y − a) ≥ t). This is one again the consequence of the fact that we do not
scale the time variable in our estimates, which make them very precise, but do not allow us to
annihilated the extra factors of that type by the exponential terms. The non-exponential part
of Eq. 1.3 depends on the expressions xy/t and (x−a)(y−a)/t and consequently it can not
be factorize (compare also with Thm. 5.11 in [17] or Thm. 5.7 in [26], where the estimates
are given in terms of the harmonic profile), i.e. it is not comparable to f (x, t)f (y, t)y2μ+1

for some function f .
There are several ways to define the function p

(μ)
a (t, x, y) hence our result and its appli-

cations can be considered from different points of view. It seems to be the most classical
approach to define the heat kernel p

(μ)
a (t, x, y) as the fundamental solution of the heat

equation
(
∂t − L(μ)

)
u = 0 (see [15]), where L(μ) is the Bessel differential operator. In the

most classical case, i.e. when the operator L(μ) is replaced by the classical Laplacian, the
problem of finding description of the heat kernel has a very long history (see for example
[26] and the references within) and goes back to 1980s and the works of E.B. Davies (see
[10–13]). However, as we mentioned above, the known results for Dirichlet Laplacian on
the subsets of Rn (see [27]) or in general on Riemannian manifolds (see [26] for the refer-
ences) are only qualitatively sharp, i.e. the constants appearing in the exponential terms in
the upper and lower estimates are different. Note that in our result these constants are the
same and consequently, the exponential behaviour of the density is very precise. Such sharp
estimates seems to be very rare.

Note also that the operator L(μ) plays an important rôle in harmonic analysis, since it
directly corresponds to Bessel-Fourier expansions (see [5–9, 24, 25] and references therein).
However, since the set (a,∞) is unbounded, our consideration corresponds to the case
when the spectrum is continuous. This operator on the set (0, 1) and the estimates of the
corresponding Fourier-Bessel heat kernel were studied recently in [24] and [25], but once
again the results presented there are only qualitatively sharp, i.e. the estimates are not sharp
whenever |x −y|2 >> t . Another essential difference between the case of bounded sets and
our case is that in the first one, we can limit our considerations to t ≤ 1, by the application
of the intrinsic ultracontractivity. However, the most interesting part of Theorem 1 (with
difficult proof) seems to be when t is large.

The third and our principal motivation comes from the theory of stochastic processes and
the interpretation of p

(μ)
a (t, x, y) as a transition density function of the killed semi-group

related to the Bessel process R
(μ)
t . From this point of view, the present work is a natural

continuation of the research started in [4] (see also [2]), where the integral representation
of the density q

(μ)
x,a (t) of T

(μ)
a were provided together with its some asymptotics descrip-

tion. The sharp estimates of the density for the whole range of parameters with the explicit
description of the exponential behaviour was given in [3]. For the in-depth analysis of the
asymptotic behaviour of q

(μ)
x,a (t) see [18–20].

The case μ = 0 is excluded from our consideration and it will be addressed in the
subsequent work. As it is very common in this theory, this case requires different methods
and should be considered separately. In particular, some logarithmic behavior is expected
whenever xy < t .

The paper is organized as follows. In Preliminaries we introduce some basic notation and
recall properties and known results related to modified Bessel functions as well as Bessel
processes, which are used in the sequel. In particular, using scaling property and absolute
continuity of the Bessel processes we reduced our consideration only to the case μ > 0 and
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a = 1. After that we turn to the proof of Theorem 1, which is split into two main parts, i.e.
in Section 3 we provide estimates whenever xy/t is large and in Section 4 we prove (1.3)
for xy/t small. In both cases the result is given in series of propositions.

2 Preliminaries

2.1 Notation

The constants depending on the index μ and appearing in theorems and propositions are
denoted by capitals letters C

(μ)
1 , C

(μ)
2 , . . .. We will denote by c1, c2, . . . constants appearing

in the proofs and to shorten the notation we will omit the superscript (μ), however we will
emphasize the dependence on the other variables, if such occurs.

2.2 Modified Bessel Function

The modified Bessel function of the first kind is defined as (see [14] 7.2.2 (12))

Iμ(z) =
∞∑

k=0

( z

2

)μ+2k 1

k!�(k + μ + 1)
, z > 0, μ > −1.

It is well-known that whenever z is real the function is a positive increasing real function.
Moreover, by the differentiation formula (see [14] 7.11 (20))

d

dz

(
Iμ(z)

zμ

)
= Iμ+1(z)

zμ
, z > 0 (2.1)

and positivity of the right-hand side of Eq. 2.1 we obtain that z → z−μIμ(z) is also
increasing.

The asymptotic behavior of Iμ(z) at zero follows immediately from the series represen-
tation of Iμ(z)

Iμ(z) =
( z

2

)μ 1

�(μ + 1)
+ O(zμ+2), z → 0+, (2.2)

where the behaviour at infinity is given by (see [14] 7.13.1 (5))

Iμ(z) ∼ ez

√
2πz

(1 + O(1/z)) , z → ∞. (2.3)

Some parts of the proof strongly depends on the estimates of the ratio of two modified
Bessel functions with different arguments. Here we recall the results of Laforgia given in
Theorem 2.1 in [21]. For every μ > −1/2 we have

Iμ(y)

Iμ(x)
<

(y

x

)μ

ey−x, y ≥ x > 0. (2.4)

Moreover, whenever μ ≥ 1/2, the lower bound of similar type holds, i.e. we have

Iμ(y)

Iμ(x)
≥

(
x

y

)μ

ey−x, y ≥ x > 0. (2.5)

2.3 Bessel Processes

In this section we introduce basic properties of Bessel processes. We follow the notation
presented in [22] and [23], where we refer the reader for more details.
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We define a Bessel process R
(μ)
t with index μ ∈ R as a linear diffusion having the half

of the Bessel differential operator

L(μ) = d2

dx2
+ 2μ + 1

x

d

dx
, x > 0,

as its infinitesimal generator. Note that the state space of R
(μ)
t and the domain of L(μ)

depend on μ and the boundary condition at 0 (see [1] for details). To make the definition
complete, we impose the killing condition at 0, when −1 < μ < 0 (it is when zero is a non-
singular point). Then the density of the transition probability (with respect to the Lebesgue
measure) is given by Eq. 1.1. However, as it was mentioned in Introduction, the behaviour
of the diffusion at zero is of no importance to the results. We write P(μ)

x and E(μ)
x for the

probability law and the corresponding expected value of R
(μ)
t on the canonical path space

with starting point R
(μ)
0 = x > 0. The filtration of the coordinate process is denoted by

F (μ)
t = σ {R(μ)

s : s ≤ t}. The laws of Bessel processes with different indices are absolutely
continuous and the corresponding Radon-Nikodym derivative is described by

dP(μ)
x

dP(ν)
x

∣∣∣∣∣
Ft

=
(

w(t)

x

)μ−ν

exp

(
−μ2 − ν2

2

∫ t

0

ds

w2(s)

)
, (2.6)

where x > 0, μ, ν ∈ R and the above given formula holds P(ν)
x -a.s on {T (ν)

0 > t}. Here

T
(μ)

0 denotes the first hitting time of 0 by R
(μ)
t .

For x > 0 we define the first hitting of a given level a > 0 by

T (μ)
a = inf{t > 0 : R

(μ)
t = a}.

Notice that for μ ≤ 0 we have T
(μ)
a < ∞ a.s., but for μ > 0 the variable T

(μ)
a is infinite with

positive probability. We denote by q
(μ)
x,a (s) the density function of T

(μ)
a . The sharp estimates

of q
(μ)
x,a (s) were obtained in [3]. We recall this result for a = 1, which implies the result for

every a > 0, due to the scaling property of Bessel processes. More precisely, it was shown
that for every x > 1 and t > 0 we have

q
(μ)
x,1 (s)

μ≈ (x − 1)

(
1 ∧ 1

x2μ

)
e−(x−1)2/(2t)

t3/2

x2|μ|−1

(t + x)|μ|−1/2
, μ �= 0. (2.7)

Note that in Theorem 2 in [3] there is a misprint in the formulation of the result and the
expression t |μ|−1/2 + x|μ|−1/2 appears instead of (t + x)|μ|−1/2, which makes a difference
for |μ| < 1/2. However, the proofs provided in [3] corresponds to the correct version given
above (see Lemma 4 therein). The above-given bounds imply the description of the survival
probabilities (see Theorem 10 in [3])

P(μ)
x (∞ > T

(μ)
1 > t)

μ≈ x − 1√
x ∧ t + x − 1

1

tμ + x2μ
, x > 1, t > 0. (2.8)

The main object of our study is the density of the transitions probabilities for the Bessel
process starting from x > a killed at time T

(μ)
a . Taking into account the Hunt formula (1.2)
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and the fact that continuity of the paths implies R
(μ)

T
(μ)
a

= a a.s., we can represent p(μ)
a (t, x, y)

in terms of p(μ)(t, x, y) and q
(μ)
x,a (s) in the following way

p(μ)
a (t, x, y) = p(μ)(t, x, y) − r(μ)

a (t, x, y) (2.9)

= p(μ)(t, x, y) −
∫ t

0
p(μ)(t − s, a, y)q(μ)

x,a (s)ds. (2.10)

The scaling property of a Bessel process together with Eq. 2.10 imply that

p(μ)
a (t, x, y) = 1

a
p

(μ)
1 (t/a2, x/a, y/a), x, y > a, t > 0. (2.11)

Moreover, the absolute continuity property (2.6) applied for μ > 0 and ν = −μ gives

p
(−μ)
1 (t, x, y) =

(
x

y

)2μ

p
(μ)
1 (t, x, y), x, y > 1, t > 0.

These two properties show that it is enough to prove Theorem 1 only for a = 1 and μ > 0.
To shorten the notation we will write q

(μ)
x (s) = q

(μ)
x,1 (s). Since we consider the densities

with respect to the Lebesgue measure (not with respect to the speed measure m(dx) =
2x2μ+1dx) the symmetry property of p

(μ)
1 (t, x, y) in this case reads as follows:

p
(μ)
1 (t, x, y) =

(y

x

)2μ+1
p

(μ)
1 (t, y, x), x, y > 1, t > 0. (2.12)

Finally, for μ = 1/2 one can compute p
(μ)
1 (t, x, y) explicitly from Eq. 2.10, by using

I1/2(z) =
√

2
πz

sinh(z) and the fact that q
(1/2)
x (s) is a density of 1/2-stable subordinator.

More precisely, since

q
(1/2)
x (t) = x − 1

x

1√
2πt3

exp

(
− (x − 1)2

2t

)
, (2.13)

p(1/2)(t, x, y) = 1√
2πt

y

x

(
exp

(
− (x − y)2

2t

)
− exp

(
− (x + y)2

2t

))
, (2.14)

we obtain

r
(1/2)

1 (t, x, y) =
∫ t

0
q

(1/2)
x (s)p(1/2)(t − s, 1, y)ds

= x − 1

x

y

2π
(H(t, (x − 1)2, (y − 1)2) − H(t, (x − 1)2, (y + 1)2)),

where

H(t, a, b) =
∫ t

0

1√
t − s

1√
s3

exp
(
− a

2s

)
exp

(
− b

2(t − s)

)
ds, a, b > 0.
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Making the substitution w = 1/s − 1/t and using formula 3.471.15 in [16] we get

H(t, a, b) = 1√
t

exp

(
−a + b

2t

)∫ ∞

0
w−1/2 exp

(
−a

2
w − b

2t2w

)
dw

=
√

2π

ta
exp

(
− (

√
a + √

b)2

2t

)
. (2.15)

Hence we have

r
(1/2)

1 (t, x, y) = 1√
2πt

y

x

[
exp

(
− (x + y − 2)2

2t

)
− exp

(
− (x + y)2

2t

)]
(2.16)

which together with Eqs. 2.10 and 2.14 give

p
(1/2)

1 (t, x, y) = 1√
2πt

y

x

(
exp

(
− (x − y)2

2t

)
− exp

(
− (x + y − 2)2

2t

))
. (2.17)

One can also obtain this formula using the relation between 3-dimensional Bessel pro-
cess (i.e. with index μ = 1/2) and 1-dimensional Brownian motion killed when leaving a
positive half-line. Note also that

p
(1/2)

1 (t, x, y) ≈
(

1 ∧ (x − 1)(y − 1)

t

)
y

x

1√
t

exp

(
− (x − y)2

2t

)
. (2.18)

which is exactly (1.3) for μ = 1/2.
We end this section providing very useful relation between densities q

(μ)
x (t) with

different indices, which once again follows from the absolute continuity property.

Lemma 1 For every x > 1 and t > 0 we have

xμ−1/2q(μ)
x (t) ≤ q

(1/2)
x (t) ≤ xν−1/2q(ν)

x (t), (2.19)

whenever ν ≤ 1/2 ≤ μ.

Proof The second inequality in Eq. 2.19 was given in Lemma 4 in [3]. To deal with the
left-hand side of Eq. 2.19 we use Eq. 2.6 to obtain for every δ > 0 and 0 < ε ≤ δ2/2 ∧ 1

xμ−1/2E(μ)
x [t − ε ≤ T

(μ)
1 ≤ t] ≤ E(1/2)

x

[
t − ε ≤ T

(1/2)

1 ≤ t; (Rt )
μ−1/2

]

≤ (1 + δ)μ−1/2 E(1/2)
x

[
t − ε ≤ T

(1/2)

1 ≤ t
]

+ Fε(x, t), (2.20)

where, by Strong Markov property

Fε(x, t) = E(1/2)
x

[
t − ε ≤ T

(1/2)

1 ≤ t, Rt ≥ 1 + δ; (Rt )
μ−1/2

]

= E(1/2)
x

[
t − ε ≤ T

(1/2)

1 ≤ t; E(1/2)

1

[
R

t−T
(1/2)
1

≥ 1 + δ;
(
R

t−T
(1/2)
1

)μ−1/2
]]

=
∫ t

t−ε

q
(1/2)
x (u)

∫ ∞

1+δ

yμ−1/2p(1/2)(t − u, 1, y) dydu.
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By Eq. 2.14, for every r ∈ (0, ε) we have

∫ ∞

1+δ

yμ−1/2p(1/2)(r, 1, y) dy ≤ 1√
2πr

∫ ∞

1+δ

exp

(
− (y − 1)2

2r

)
yμ+1/2 dy

≤ 1√
2πr

exp

(
− δ2

4r

) ∫ ∞

1+δ

exp

(
− (y − 1)2

4

)
yμ+1/2 dy

≤ 1√
2πε

exp

(
− δ2

4ε

)∫ ∞

1+δ

exp

(
− (y − 1)2

4

)
yμ+1/2 dy,

where the last inequality follows from ε ≤ δ2/2. It implies that Fε(t, x)/ε vanishes when
ε goes to zero. Consequently, dividing both sides of Eq. 2.20 by ε and taking a limit when
ε → 0, we arrive at

xμ−1/2q(μ)
x (t) ≤ (1 + δ)μ−1/2q

(1/2)
x (t).

Since δ was arbitrary, the proof is complete.

3 Estimates for xy/t Large

We begin this Section with the application of the absolute continuity property of Bessel
processes and the formula (2.17) which give the upper bounds for μ ≥ 1/2 and lower
bounds for ν ≤ 1/2. These bounds are sharp whenever xy ≥ t .

Proposition 1 Let μ ≥ 1/2 ≥ ν > 0. For every x, y > 1 and t > 0 we have

(
x

y

)μ− 1
2

p
(μ)
1 (t, x, y) ≤ p

(1/2)

1 (t, x, y) ≤
(

x

y

)ν− 1
2

p
(ν)
1 (t, x, y). (3.1)

Proof From the absolute continuity property (2.6) we get that for every μ ≥ ν > 0 and
every Borel set A ⊂ (1,∞) we have

∫

A

p
(μ)
1 (t, x, y)dy = 1

xμ−ν
E(ν)

x

[
T

(ν)
1 > t, Rt ∈ A; (Rt )

μ−ν exp

(
−μ2 − ν2

2

∫ t

0

ds

R2
s

)]

≤ 1

xμ−ν
E(ν)

x

[
T

(ν)
1 >t, Rt ∈A;(Rt )

μ−ν
]
=

∫

A

(y

x

)μ−ν

p
(ν)
1 (t, x, y) dy.

Hence

p
(μ)
1 (t, x, y) ≤

(y

x

)μ−ν

p
(ν)
1 (t, x, y). (3.2)

Taking μ ≥ 1/2 and ν = 1/2 gives the left-hand side of Eq. 3.1 and taking ν ≤ 1/2 and
μ = 1/2 gives the right-hand side of Eq. 3.1.

The absolute continuity can also be used to show the estimates for small times t in a very
similar way. Note that if t < 1 then we always have xy > t . The proof of the main Theorem
will be provided in subsequent propositions without the assumption that t is bounded, but
we present this simple proof to show that for xy ≥ t the estimates for small t are just an
immediate consequence of the absolute continuity of Bessel processes.
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Proposition 2 Let μ > 0. For every x, y > 1 and t ∈ (0, 1] we have

p
(μ)
1 (t, x, y)

μ≈
(

1 ∧ (x − 1)(y − 1)

t

) (y

x

)μ+1/2 1√
t

exp

(
− (x − y)2

2t

)
. (3.3)

Proof Let μ ≥ ν > 0. Taking Borel set A ⊂ (1,∞) and t ≤ 1 we have

∫

A

p
(μ)
1 (t; x, y)dy = 1

xμ−ν
E(ν)

x

[
T

(ν)
1 > t; Rt ∈ A; (Rt )

μ−ν exp

(
−μ2 − ν2

2

∫ t

0

ds

R2
s

)]
.

Since inf{Rs : s < t} > 1 on {T (ν)
1 > t} we can write

∫

A

p
(μ)
1 (t, x, y)dy ≥ 1

xμ−ν
E(ν)

x

[
T

(ν)
1 > t; Rt ∈ A; (Rt )

μ−ν exp

(
−μ2 − ν2

2
t

)]

≥ exp

(
−μ2 − ν2

2

) ∫

A

(y

x

)μ−ν

p
(ν)
1 (t, x, y)dy.

Hence we get

p
(μ)
1 (t, x, y) ≥ exp

(
−μ2 − ν2

2

) (y

x

)μ−ν

p
(ν)
1 (t, x, y).

Now taking μ ≥ 1/2 and ν = 1/2 together with Eq. 2.17 and the result of Proposition 1
gives the proof of Eq. 3.3 for μ ≥ 1/2. Analogous argument applied for μ < 1/2 ends the
proof.

Next proposition together with Proposition 1 provide the estimates for x, y bounded
away from 1. Notice that if x, y > c > 1 and xy > t then

(x − 1)(y − 1)

t
≥

(
1 − 1

c

)2
xy

t
≥

(
1 − 1

c

)2

. (3.4)

and consequently the right-hand side of Eq. 1.4 is comparable with a constant which means
that p

(μ)
1 (t, x, y) is comparable with p(μ)(t, x, y).

Proposition 3 Let μ ≥ 1/2 ≥ ν > 0. Then there exist constants C
(ν)
1 , C

(μ)
2 > 0 and

C
(μ)
3 > 1 such that

C
(ν)
1

(
x

y

)ν+1/2

p
(ν)
1 (t, x, y) ≤ 1√

t
exp

(
− (x − y)2

t

)
≤ C

(μ)
2

(
x

y

)μ+1/2

p
(μ)
1 (t, x, y),

whenever xy ≥ t and the upper bounds are valid with additional assumption x, y > C
(μ)
3 .

Proof Since the modified Bessel function Iμ(z) is positive, continuous and behaves like
(2πz)−1/2ez at infinity (see Eq. 2.3) there exists constants c1 = c1(μ) > 1 such that

1

c1

√
t

2πxy
exp

(xy

t

)
≤ Iμ

(xy

t

)
≤ c1

√
t

2πxy
exp

(xy

t

)
,
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whenever xy ≥ t . Hence, taking into account general estimate p
(ν)
1 (t, x, y) ≤ p(ν)(t, x, y)

(which is an immediate consequence of the definition (1.2)), we get

p
(ν)
1 (t, x, y) ≤ p(ν)(t, x, y)

ν≈ 1√
2π

1√
t

(y

x

)ν+1/2
exp

(
− (x − y)2

t

)
.

This ends the proof for small indices 0 ≤ ν ≤ 1/2.
Now let μ ≥ 1/2. Consequently, once again applying above given estimate of Iμ(xy/t)

to Eq. 1.1 we arrive at

(y

x

)μ−1/2
p(1/2)(t, x, y)≥p(μ)(t, x, y)≥ 1

c1

1√
2πt

(y

x

)μ+1/2
exp

(
− (x − y)2

2t

)
, xy ≥ t,

(3.5)
where the first inequality is just Eq. 3.1. Moreover, by Eq. 2.19, we have

q(μ)
x (t) ≤ q

(1/2)
x (t)

xμ−1/2
= x − 1

xμ−1/2

1√
2πt3/2

exp

(
− (x − 1)2

2t

)
, t > 0, x > 1.

and it together with left-hand side of Eqs. 3.5 and 2.16 imply

r
(μ)
1 (t, x, y) =

∫ t

0
q(μ)
x (s)p(μ)(t−s, 1, y) ds ≤

(y

x

)μ−1/2
∫ t

0
q

(1/2)
x (s)p(1/2)(t−s, 1, y) ds

=
(y

x

)μ−1/2
r
(1/2)

1 (t, x, y)

= 1√
2πt

(y

x

)μ+1/2
(

exp

(
− (x + y − 2)2

2t

)
− exp

(
− (x + y)2

2t

))
.

Let C
(μ)
3 =

(
1 −

√
2c1

2c1+1

)−1
and taking into account right-hand side of Eqs. 3.5 and 3.4

(with c = C
(μ)
3 ) we obtain for x, y > C

(μ)
3 that

r
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≤ c1 exp

(
(x − y)2

2t

) (
exp

(
− (x + y − 2)2

2t

)
− exp

(
− (x + y)2

2t

))

= c1

(
exp

(
−2(x − 1)(y − 1)

t

)
− exp

(
−2xy

t

))

≤ c1

(
exp

(
−c2

2xy

t

)
− exp

(
−2xy

t

))
,

where

c2 =
(

1 − 1

C
(μ)
3

)2

= 2c1

2c1 + 1
< 1.

Taking into account the general estimate

e−c2z − e−z ≤ 1 − c2

c2
, z > 0, c2 < 1

we arrive at

r
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≤ c1

1 − c2

c2
= 1

2
.
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Consequently, using Eq. 3.5

p
(μ)
1 (t, x, y) ≥ 1

2
p(μ)(t, x, y) ≥ 1

2c1

1√
2πt

(y

x

)μ+1/2
exp

(
− (x − y)2

2t

)
.

Now we turn our attention to the case when x and y are bounded. The next proposition,
however, is much more general.

Proposition 4 For fixed m > 0 and μ ≥ 1/2 ≥ ν > 0 there exist constants C
(μ)
4 , C

(ν)
4 > 0

such that

C
(μ)
4

(
x

y

)μ+1/2

p
(μ)
1 (t, x, y) ≥

(
1 ∧ (x − 1)(y − 1)

t

)
1√
t

exp

(
− (x − y)2

2t

)

and
(

1 ∧ (x − 1)(y − 1)

t

)
1√
t

exp

(
− (x − y)2

2t

)
≥ C

(ν)
4

(
x

y

)ν+1/2

p
(ν)
1 (t, x, y)

whenever (x ∧ y)2 ≥ mt .

Proof By Eq. 2.12, without lost of generality, we can assume that 1 < x < y. We put
b = (x + 1)/2 and take μ ≥ 1/2. Using Eq. 2.6 and the fact that T

(1/2)
b ≤ T

(1/2)

1 we can
write for every Borel set A ⊂ (1,∞) that
∫

A

p
(μ)
1 (t, x, y)dy ≥ E(1/2)

x

[
t < T

(1/2)
b , Rt ∈ A;

(
Rt

x

)μ−1/2

exp

(
−μ2 − 1/4

2

∫ t

0

ds

R2
s

)]

Since up to time T
(1/2)
b we have

∫ t

0

ds

R2
s

≤ 4t

(x + 1)2
≤ 4t

x2
≤ 4

m
,

we obtain
∫

A

p
(μ)
1 (t, x, y)dy ≥ exp

(
−4μ2 − 1

2m

)
E(1/2)

x

[
t < T

(1/2)
b , Rt ∈ A;

(
Rt

x

)μ−1/2
]

,

which gives

p
(μ)
1 (t, x, y) ≥ exp

(
−4μ2 − 1

2m

)(y

x

)μ−1/2
p

(1/2)
b (t, x, y). (3.6)

From the other side, the scaling property (2.11) and the formula (2.18) give

p
(1/2)
b (t, x, y) = 1

b
p

(1/2)

1

(
t

b2
; x

b
,
y

b

)

≈ 1√
t

y

x
exp

(
− (x − y)2

2t

) (
1 ∧ (x − b)(y − b)

t

)

≈ 1√
t

y

x
exp

(
− (x − y)2

2t

) (
1 ∧ (x − 1)(y − 1)

t

)
,
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where the last equalities follows from

x − b = x − 1

2
,

y − 1

2
≤ y − b ≤ y − 1.

It ends the proof for μ ≥ 1/2.
For 1/2 ≥ ν > 0 and x > 2, using the asymptotic expansion (2.3), the desired inequality

just follows from

p
(ν)
1 (t, x, y) ≤ p(ν)(t, x, y)

m,ν≈ 1√
t

(y

x

)ν+1/2
exp

(
− (x − y)2

2t

)
,

which holds since xy ≥ x2 > mt . To get the result note that 1 ∧ (x − 1)(y − 1)/t is
comparable with constant, whenever x and y are bounded away from 1 and xy > mt . If
x ≤ 2, then t ≤ x2/m ≤ 4/m and consequently the same arguments as in Proposition 2
give that for every Borel set A ⊂ (1,∞) we have
∫

A

p
(ν)
1 (t, x, y)dy = E(1/2)

x

[
t < T

(1/2)

1 , Rt ∈ A;
(

Rt

x

)ν−1/2

exp

(
1/4 − ν2

2

∫ t

0

ds

R2
s

)]

≤ exp

(
1 − 4ν2

2m

)
E(1/2)

x

[
t < T

(1/2)

1 , Rt ∈ A;
(

Rt

x

)ν−1/2
]

and we obtain

p
(ν)
1 (t, x, y) ≤ exp

(
1 − 4ν2

2m

)(y

x

)ν−1/2
p

(1/2)

1 (t, x, y).

This together with the estimates for p
(1/2)

1 (t, x, y) finish the proof.

Since for x, y < C and xy ≥ t , for some fixed C > 1, we have

(x ∧ y)2

t
≥ xy

Ct
≥ 1

C
,

applying the results of Proposition 4 (with m = C−1) and Proposition 1 gives

Corollary 1 For every C > 1 we have

p
(μ)
1 (t, x, y)

μ,C≈
(

1 ∧ (x − 1)(y − 1)

t

)(y

x

)μ+1/2 1√
t

exp

(
− (x − y)2

2t

)

whenever x, y < C and xy ≥ t .

Finally, we end this section with two propositions related to the case when one of the
space variables is close to 1 and the other is large. We deal with this case separately for
μ < 1/2 and μ ≥ 1/2.

Proposition 5 For every ν ∈ (0, 1/2) there exists constant C(ν)
5 > 0 such that

p
(ν)
1 (t, x, y) ≤ C

(ν)
5

1√
t

(y

x

)ν+1/2
exp

(
− (x − y)2

2t

) (
1 ∧ (x − 1)(y − 1)

t

)

for 1 < x ≤ 2 ≤ y and xy ≥ t .
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Proof Using the right-hand side of Eq. 2.19, we get

q(ν)
x (s) ≥ x − 1√

2πs3

1

xν+1/2
exp

(
− (x − 1)2

2s

)
, 0 ≤ ν < 1/2, s > 0.

On the other side by monotonicity of Iν(z), for every s ∈ (0, t) we have

Iν

(
y

t − s

)
≥ Iν

(y

t

)
.

Hence, combining together above-given inequalities and the formula (1.1), we obtain

r
(ν)
1 (t, x, y) =

∫ t

0
q(ν)
x (s)

y1+ν

t − s
exp

(
− 1 + y2

2(t − s)

)
Iν

(
y

t − s

)
ds

≥
∫ t

0
q(ν)
x (s)

y1+ν

√
t − s

1√
t

exp

(
− 1 + y2

2(t − s)

)
Iν

(y

t

)
ds

≥ x − 1√
2π

(y

x

)ν+1
√

x

t
Iν

(y

t

)
H(t, (x − 1)2, 1 + y2)

=
√

x

t

(y

x

)ν+1
Iν

(y

t

)
exp

(
− (x − 1 + √

y2 + 1)2

2t

)
,

where the last equality follows from Eq. 2.15. Using Eq. 2.4 we obtain

p(ν)(t, x, y) = yν+1

t
exp

(
−x2 + y2

2t

)
1

xν
Iν

(xy

t

)

≤ yν+1

t
exp

(
− (x − y)2

2t

)
exp

(
−y

t

)
Iν

(y

t

)
,

which together with previously given estimates, Eq. 2.9 and finally Eq. 2.3 give

p
(ν)
1 (t, x, y) ≤ yν+1

t
exp

(
− (x − y)2

2t

)
exp

(
−y

t

)
Iν

(y

t

)
fy,t (x)

≤ c1
yν+1/2

√
t

exp

(
− (x − y)2

2t

)
fy,t (x), (3.7)

where

fy,t (x) = 1 − 1

xν+1/2
exp

(
− (x − 1)(

√
y2 + 1 + y − 1)

t

)
.

By elementary computation we can see that

−f ′
y,t (x) = 1

xν+3/2
exp

(
− (x − 1)(

√
y2 + 1 + y − 1)

t

)(√
y2 + 1 + y − 1

t
x+ν+1/2

)

≤ 1

xν+3/2

(
2xy

t
+ 1

)
≤ 4xy

t
≤ 16

y − 1

t
.

Here we have used the following inequalities
√

y2 + 1 + y − 1 < 2y, xy ≥ t, 1 < x ≤ 2 ≤ y.
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Thus, by the mean value theorem, there exists d = dx,y,t ∈ (1, x) such that

fy,t (x) = (1 − x)f ′
y,t (d) ≤ 16

(x − 1)(y − 1)

t
. (3.8)

Hence, combining Eqs. 3.7 with 3.8 and fy,t (x) ≤ 1, we obtain finally

p
(ν)
1 (t, x, y) ≤ 16c1

(
1 ∧ (x − 1)(y − 1)

t

)
yν+1/2

√
t

exp

(
− (x − y)2

2t

)

≤ c12ν+9/2
(

1 ∧ (x − 1)(y − 1)

t

)(y

x

)ν+1/2 1√
t

exp

(
− (x − y)2

2t

)
,

where the last inequality follows from 16xν+1/2 ≤ 2ν+9/2 whenever x ≤ 2.

Proposition 6 For every μ ≥ 1/2 and c > 1 there exists constant C
(μ)
6 (c) > 0 such that

for every 1 < x ≤ c and y ≥ 5c(μ + 1) we have

p
(μ)
1 (t, x, y) ≥ C

(μ)
6 (c)

1√
t

(y

x

)μ+1/2
exp

(
− (x − y)2

2t

) (
1 ∧ (x − 1)(y − 1)

t

)
,

whenever xy ≥ t .

Proof Let us fix μ ≥ 1/2. For every 0 < s < t , using Eq. 2.4, we have

Iμ

(
y

t − s

)
< Iμ

(y

t

)(
t

t − s

)μ

exp

(
y

t − s

)
exp

(
−y

t

)

and consequently

p(μ)(t − s, 1, y)

p(μ)(t, 1, y)
<

(
t

t − s

)μ+1

exp

(
− (y − 1)2

2

(
1

t − s
− 1

t

))
= gy(t − s)

gy(t)
,

where

gy(w) =
(

1

w

)μ+1

exp

(
− (y − 1)2

2w

)
, w > 0.

Note that

g′
y(w) =

(
1

w

)μ+2

exp

(
− (y − 1)2

2w

) (
(y − 1)2

2w
− (μ + 1)

)
.

Since x ≤ c, y ≥ 5c(μ + 1) > 2 and xy ≥ t we have 4(y − 1) ≥ 2y ≥ 2t/c. Moreover
y − 1 ≥ 4c(μ + 1). Thus

(y − 1)2

2t
≥ 4c(μ + 1)(y − 1)

2t
≥ μ + 1.

It means that under our assumptions on x, y and t the function gy(w) is increasing on (0, t)

and consequently gy(t − s) ≤ gy(t) for every 0 < s < t . Thus, it enable us to write

r
(μ)
1 (t, x, y) =

∫ t

0
q(μ)
x (s)p(μ)(t − s, 1, y)ds ≤ p(μ)(t, 1, y)

∫ t

0
q(μ)
x (s)ds

≤ x−μ exp

(
x2 − 1

2t

)
Iμ (y/t)

Iμ (xy/t)
p(μ)(t, x, y),
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where the last inequality comes from fact that
∫ t

0 q
(μ)
x (s)ds ≤ ∫ ∞

0 q
(μ)
x (s)ds = x−2μ.

The above-given ratio of modified Bessel functions can be estimated from above by using
Eq. 2.5 as follows

Iμ

(y

t

)
≤ Iμ

(xy

t

)
exp

(
− (x − 1)y

t

)
xμ.

Consequently

r
(μ)
1 (t, x, y) ≤ p(μ)(t, x, y) exp

(
− (x − 1)(2y − x − 1)

2t

)
.

Finally observe that 2y − x − 1 > y − 1 and we arrive at

p
(μ)
1 (t, x, y) ≥

(
1 − exp

(
− (x − 1)(y − 1)

2t

))
p(μ)(t, x, y)

μ≈
(

1 ∧ (x − 1)(y − 1)

t

)
1√
t

(y

x

)μ+1/2
exp

(
− (x − y)2

2t

)
.

This ends the proof.

The proof of Eq. 1.3 in the case xy ≥ t can be deduced from above-given propositions in
the following way. Let μ ≥ 1/2 and without any loss of generality we assume that x ≤ y.
The upper bounds for every x, y > 1 are given in Proposition 1. From Proposition 3 we
know that the lower bounds are valid for x, y > C

(μ)
3 . If x ≤ C

(μ)
3 and y ≥ 5C

(μ)
3 (μ + 1)

then the lower bounds are given in Proposition 6. Finally, taking C = 5C
(μ)
3 (μ + 1) in

Corollary 1we get the lower bounds in the remaining range of the parameters x and y. The
proof for ν ≤ 1/2 is obtained in the same way.

4 Estimates for xy/t Small

In this section we provide estimates of p
(μ)
1 (t, x, y) whenever xy < t . Note also that

Eq. 1.3 can be written in the following shorter way

p
(μ)
1 (t, x, y)

μ≈ x − 1

x

y − 1

y

(
y2

t

)μ+1/2
1√
t

exp

(
−x2 + y2

2t

)
,

whenever xy < t . The main difficulty is to obtain the estimates when one of the space
parameters is close to 1 and the other is large, i.e. tends to infinity. In this case we have to
take care of cancellations of two quantities appearing in Eq. 2.9 but also not to lose a control
on the exponential behaviour. We begin with the upper bounds.

Proposition 7 For every μ > 0, there exists constant C(μ)
7 > 0 such that

p
(μ)
1 (t, x, y) ≤ C

(μ)
7

x − 1

x

y − 1

y

(
y2

t

)μ+1/2
1√
t

exp

(
−x2 + y2

2t

)
,

whenever xy ≤ t .
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Proof If x, y > 2 the result follows immediately from the general estimate p
(μ)
1 (t, x, y) ≤

p(μ)(t, x, y) and Eq. 2.2 which gives

p(μ)(t, x, y) ≈
(

y2

t

)μ+1/2
1√
t

exp

(
−x2 + y2

2t

)
,

xy

t
≤ 1. (4.1)

Note that for every x, y > 0 and t > 0 there exists c1 > 0 such that

p(μ)(t, x, y) ≤ c1
y2μ+1

tμ+1
. (4.2)

If xy < t , then it immediately follows from Eq. 4.1 by estimating the exponential term by
1. For xy ≥ t we use the asymptotic behaviour (2.3) to show that

p(μ)(t, x, y) ≈ 1√
t

(y

x

)μ+1/2
exp

(
−|x − y|2

2t

)
≤ y2μ+1

tμ+1

(
t

xy

)μ+1/2

≤ y2μ+1

tμ+1
(4.3)

In particular, for all z, w > 1 and 1 < y < 2 there exists c2 > 0 such that

p(μ)(t/3, z, w) ≤ c2

(
w

y

)2μ+1 1

tμ+1
. (4.4)

The Chapman-Kolmogorov equation and estimating the middle term using Eq. 4.4 give

p
(μ)
1 (t, x, y) =

∫ ∞

1

∫ ∞

1
p

(μ)
1 (t/3, x, z)p

(μ)
1 (t/3, z, w)p

(μ)
1 (t/3, w, y)dzdw

≤ c3

tμ+1

∫ ∞

1
p

(μ)
1 (t/3, x, z)dz

∫ ∞

1

(
w

y

)2μ+1

p
(μ)
1 (t/3, w, y)dw

= c3

tμ+1
P (μ)

x (T
(μ)
1 > t/3)P (μ)

y (T
(μ)
1 > t/3).

Here the last equality follows from the symmetry property (2.12). Since, by Eq. 2.8 and
the fact that

∫ ∞
0 q

(μ)
x (u)du = x−2μ, whenever xy < t and 1 < x, y < 2 we have

P (μ)
x (T

(μ)
1 >t/3)=P (μ)

x (∞>T
(μ)

1 >t/3)+P (μ)
x (T

(μ)
1 =∞)≈ x − 1

tμ
+1− 1

x2μ
≈ x − 1,

which ends the proof of the upper-bound in this case.
Now assume that y ≥ 2, 1 < x ≤ 2 and xy ≤ t . The other case x ≥ 2, 1 < y ≤

2 follows from the symmetry condition mentioned above. Using once again the fact that∫ ∞
0 q

(μ)
x (u)du = x−2μ and Eq. 2.9, we can write

p
(μ)
1 (t, x, y) ≤ p(μ)(t, x, y) −

∫ 1/2

0
q(μ)
x (u)p(μ)(t − u, 1, y)du

= J1(t, x, y) + J2(t, x, y) + J3(t, x, y),

where

J1(t, x, y) = p(μ)(t, x, y) − 1

x2μ
p(μ)(t, x, y) + P(μ)

x (∞ > T
(μ)

1 > 1/2)p(μ)(t, x, y),

J2(t, x, y) = P(μ)
x (T

(μ)
1 ≤ 1/2)(p(μ)(t, x, y) − p(μ)(t, 1, y)),

J3(t, x, y) =
∫ 1/2

0
q(μ)
x (u)(p(μ)(t, 1, y) − p(μ)(t − u, 1, y)), du.
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It is obvious that for 1 < x < 2 we have

J1(t, x, y) ≤ c4(x − 1)p(μ)(t, x, y).

To deal with J2(t, x, y) note that the differentiation formula (2.1), the asymptotic behavior
(2.2) and positivity of Iμ(z) give

d

dx

[
e−x2/2t

(
t

xy

)μ

Iμ

(xy

t

)]
= −x

t
e−x2/2t

(
t

xy

)μ

Iμ

(xy

t

)

+e−x2/2t y

t

(
t

xy

)μ

Iμ+1

(xy

t

)

≤ c5e
−x2/2t

(xy

t

)2 ≤ c5,

whenever xy < t . Consequently, by mean value theorem, we obtain

J2(t, x, y) ≤ (p(μ)(t, x, y) − p(μ)(t, 1, y)) ≤ c5(x − 1)

(
y2

t

)μ+1/2
1√
t
e−y2/2t .

Finally, the bounds of J3(t, x, y) follow from the estimates for the derivative of p(μ)(t, 1, y)

in t . Using once again Eq. 2.1 and skipping the negative components we have

h(t, y)
def= d

dt

(
1

tμ+1
e− 1+y2

2t

(
t

y

)μ

Iμ

(y

t

))

= e−(1+y2)/(2t) Iμ(y/t)

tyμ

(
−μ + 1

t
+ 1 + y2

2t2
− y

t

Iμ+1(y/t)

Iμ(y/t)

)

≤ e−(1+y2)/(2t) Iμ(y/t)

tyμ

1 + y2

2t2
≤ c6e

−(1+y2)/(2t) 1

tμ+1
,

whenever y < t . Thus, there exists c = cμ,u,y ∈ (t − u, t) such that

J3(t, x, y) =
∫ 1/2

0
q(μ)
x (u)uy2μ+1h(cμ,u,y, y)du

≤ c6y
2μ+1

∫ 1/2

0
q(μ)
x (u)ue−(1+y2)/(2c) 1

cμ+1
du

≤ c6e
−(1+y2)/(2t) y2μ+1

(t/2)μ+1

∫ 1/2

0
uq(μ)

x (u)du.

Taking into account the upper bounds given in Eq. 2.7 we get

∫ 1/2

0
uq(μ)

x (u)du ≤ c7
x − 1

xμ+1/2

∫ 1/2

0
e−(x−1)2/(2u) du

u1/2
≤ c8(x − 1).

This ends the proof.

The proof of the lower bounds is split into two parts. Next proposition corresponds to the
case when y > x > 1 and (y − 1)2/t is large. Moreover, we enlarge the region and assume
that xy < mt for a given m ≥ 1. It is forced by the lower bounds given in Proposition 6,
where it is required to have xy/t sufficiently large but also by the proof of Proposition 9.
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Proposition 8 For every μ > 0 and m ≥ 1, there exists constant C(μ)
8 (m) > 0 such that

p
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≥ C

(μ)
8 (m)

x − 1

x
, y > x > 1,

whenever xy < mt and (y−1)2

t
≥ 2(μ + 1).

Proof Using Eq. 2.4 we have

r
(μ)
1 (t, x, y)

p(μ)(t, 1, y)
=

∫ t

0
q(μ)
x (s)

p(μ)(t − s, 1, y)

p(μ)(t, 1, y)
ds

=
∫ t

0
q(μ)
x (s)

t

t − s
exp

(
−1 + y2

2t

s

t − s

)
Iμ(y/(t − s))

Iμ(y/t)
ds

≤
∫ t

0
q(μ)
x (s)

(
t

t − s

)μ+1

exp

(
− (y − 1)2

2t

s

t − s

)
ds.

Now, for every s < t we can write

(
t

t − s

)μ+1

exp

(
− (y − 1)2

2t

s

t − s

)
= fy(t − s)

fy(t)
, (4.5)

where fy(w) = w−μ−1e−(y−1)2/2w . Then by simple calculation we get f ′
y(w) =

w−μ−2e−(y−1)2/2w
(

(y−1)2

2w
− (μ + 1)

)
and consequently fy(w) is increasing on(

0,
(y−1)2

2(μ+1)

)
. It implies that right-hand side of Eq. 4.5 is smaller than 1 whenever

(y−1)2

t
≥ 2(μ + 1) and as consequence we obtain

r
(μ)
1 (t, x, y)

p(μ)(t, 1, y)
≤

∫ t

0
q(μ)
x (s)ds (4.6)

Now notice that

p
(μ)
1 (t, x, y)

p(μ)(t, x, y)
= 1 − p(μ)(t, 1, y)

p(μ)(t, x, y)

r
(μ)
1 (t, x, y)

p(μ)(t, 1, y)
,

where from Eqs. 4.6 and 1.1 we get

p
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≥ 1 − xμ exp

(
x2 − 1

t

)
Iμ(y/t)

Iμ(xy/t)

∫ t

0
q(μ)
x (s) ds.

Since the function z−μIμ(z) is increasing on (0,∞)

Iμ (y/t)

Iμ (xy/t)
≤ 1

xμ
, x, y > 1 t ≥ 0.

This, together with P(μ)
x (T

(μ)
1 < ∞) = x−2μ, gives

p
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≥ 1 − 1

x2μ
exp

(
x2 − 1

t

)
. (4.7)
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Now we assume that 1 < x < (2em)1/(2μ) and t >
2(2em)1/μ

μ
. Then

p
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≥ 1 − 1

x2μ
exp

(
μ(x2 − 1)

2(2em)1/μ

)

The mean value theorem ensures the existence of a constant d ∈ (1, x) such that

1 − 1

x2μ
exp

(
μ(x2 − 1)

2(2em)1/μ

)
= 2μ(x − 1)

d2μ+1
exp

(
μ(d2 − 1)

2(2em)1/μ

) (
1 − d2

2(2em)1/μ

)

≥ c1(m)(x − 1),

where the last inequality comes from the fact that 1 < d < x < (2em)1/(2μ).

The next step is to take x ≥ (2em)(1/(2μ)) and t >
2(2em)1/μ

μ
. Since x2 < xy < mt using

Eq. 4.7 we get

p
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≥ 1 − 1

x2μ
em ≥ 1 − 1

2
≈ x − 1

x
.

Finally, we consider the case when x > 1, xy/m < t ≤ 2(2em)1/μ

μ
=: t0 and (y−1)2

t
≥

2(μ + 1). Using absolute continuity property (2.6) and (2.17), we can write

p
(μ)
1 (t, x, y) ≥ (e−t0(μ

2/2−1/8) ∧ 1)
(y

x

)μ−1/2
p

(1/2)

1 (t, x, y)

μ,m≈
(

1 ∧ (x − 1)(y − 1)

t

)(y

x

)μ+1/2 1√
t

exp

(
−x2 + y2

2t

)

≥
(

1 ∧ (x − 1)
√

2(μ + 1)/m

t0

) (
y2

t

)μ+1/2
1√
t

exp

(
−x2 + y2

2t

)

μ,m≈ x − 1

x
p(μ)(t, x, y).

This ends the proof.

We end this section with the proof of the lower bounds, whenever ((y ∨ x) − 1)2/t is
small. Note that in the proof of the next proposition we use the lower bounds of p

(μ)
1 (t, x, y)

for xy ≥ t obtained previously in Section 3 as well as the result of Proposition 8. As
previously, due to the symmetry, it is enough to assume that y > x > 1.

Proposition 9 For every μ > 0 there exists constant C(μ)
9 > 0 such that

p
(μ)
1 (t, x, y)

p(μ)(t, x, y)
≥ C

(μ)
9

x − 1

x

y − 1

y
, y > x > 1,

whenever xy < t and (y−1)2

t
≤ 2(μ + 1).
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Proof Let xy < t and y > x > 1. At the beginning we additionally assume that t ≥ 4.
Note that there exists c1 > 0 such that for every s > 1/2 we have e−s ≥ c1s

μ+1/2e−2s .
This, together with the lower bounds of p

(μ)
1 (t, z, w) for z, w ≥ √

t (then zw ≥ t) obtained
in Section 3, enable us to write

p
(μ)
1 (t, z, w) ≥ c2

(
1 ∧ (z − 1)(w − 1)

t

) (
w

z

)μ+1/2 1√
t

exp

(
−|z − w|2

2t

)

≥ c2

4

(
w

z

)μ+1/2 1√
t

exp

(
−z2

2t

)
exp

(
−w2

2t

)

≥ c2c
2
1

4

(wz

t

)μ+1/2
(

w2

t

)μ+1/2
1√
t

exp

(
−z2

t

)
exp

(
−w2

t

)

≥ c3

(
w2

t

)μ+1/2
1√
t

exp

(
−z2

t

)
exp

(
−w2

t

)
.

Consequently, using the Chapmann-Kolmogorov equation and Eq. 2.12, we get

p
(μ)
1 (3t, x, y) =

∫ ∞

1

∫ ∞

1
p

(μ)
1 (t, x, z)p

(μ)
1 (t, z, w)p

(μ)
1 (t, w, y)dzdw

≥
∫ ∞
√

t

∫ ∞
√

t

p
(μ)
1 (t, x, z)p

(μ)
1 (t, z, w)p

(μ)
1 (t, w, y)dzdw

≥ c3

(
y2

t

)μ+1/2
1√
t

∫ ∞
√

t

p
(μ)
1 (t, x, z)e−z2/t dz

∫ ∞
√

t

(
w

y

)2μ+1

p
(μ)
1 (t, w, y)e−w2/t dw

= c3

(
y2

t

)μ+1/2
1√
t
F

(μ)
t (x)F

(μ)
t (y),

where

F
(μ)
t (x) :=

∫ ∞
√

t

p
(μ)
1 (t, x, z)e−z2/t dz.

Since for t ≥ 4 and (y−1)2

t
≤ 2(μ + 1) we have

x2

t
≤ y2

t
≤

(
2 ∧ 4

(y − 1)2

t

)
≤ c4

and consequently

p(μ)(3t, x, y) ≈
(

y2

t

)μ+1/2
1√
t
, xy < t,
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it is enough to show that F
(μ)
t (x) ≥ c5

x−1
x

for every x > 1. However, for z ≥ b
√

t , with

b = 2
√

2(μ + 1), and t ≥ 4 we have (z−1)2

t
≥ 1

4
z2

t
≥ 2(μ + 1). We can use the lower

bounds given in Proposition 8 with m = 2b and obtain

F
(μ)
t (x) ≥

∫ 2bt/x

b
√

t

p
(μ)
1 (t, x, z)e−z2/t dz

≥ c6
x − 1

x
√

t

∫ 2bt/x

b
√

t

(
z2

t

)μ+1/2

e−z2/2t e−z2/t dz ≥ c7
x − 1

x
√

t

∫ 2bt/x

b
√

t

e−2z2/t dz

= c7
x − 1

x

∫ 2b
√

t/x

b

e−2u2
du ≥ c7

x − 1

x

∫ 2b

b

e−2u2
du.

Finally, for t ≤ 4, the same computations as in the end of the proof of the previous
Proposition (but with t0 = 4) gives

p
(μ)
1 (t, x, y) ≥ c7(e

−4(μ2/2−1/8) ∧ 1)

(
1 ∧ (x − 1)(y − 1)

t

)

×
(

y2

t

)μ+1/2
1√
t

exp

(
−x2 + y2

2t

)

μ≈ x − 1

x

y − 1

y
p(μ)(t, x, y),

where the last approximation follows from the fact that (x −1)(y −1) < xy ≤ t ≤ 4 which
gives

1 ∧ (x − 1)(y − 1)

t
= (x − 1)(y − 1)

t
= (x − 1)(y − 1)

xy

xy

t
≈ (x − 1)(y − 1)

xy
.
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