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SHARP ESTIMATES ON MINIMUM TRAVELLING WAVE SPEED
OF REACTION DIFFUSION SYSTEMS MODELLING

AUTOCATALYSIS∗

XINFU CHEN† AND YUANWEI QI‡

Abstract. This article studies propagating wave fronts in an isothermal chemical reaction
A + 2B → 3B involving two chemical species, a reactant A and an autocatalyst B, whose diffusion
coefficients, DA and DB , are unequal due to different molecular weights and/or sizes. Explicit
bounds v∗ and v∗ that depend on DB/DA are derived such that there is a unique travelling wave
of every speed v ≥ v∗ and there does not exist any travelling wave of speed v < v∗. New to the
literature, it is shown that v∗ ∝ v∗ ∝ DB/DA when DB ≤ DA. Furthermore, when DA ≤ DB , it is
shown rigorously that there exists a vmin such that there is a travelling wave of speed v if and only
v ≥ vmin. Estimates on vmin significantly improve those of early works. The framework is built upon
general isothermal autocatalytic chemical reactions A + nB → (n + 1)B of arbitrary order n ≥ 1.

Key words. cubic autocatalysis, travelling wave, minimum speed, reaction diffusion

AMS subject classifications. 34C20, 34C25, 92E20

DOI. 10.1137/060665749

1. Introduction. In this paper we consider an isothermal autocatalytic chemical
reaction step governed by the cubic reaction relation

A + 2B → 3B with rate kab2.

Here, k > 0 is the reaction rate, and a and b are the concentrations of reactant A and
autocatalyst B, respectively. Well documented in the literature, the cubic reaction re-
lation has appeared in several important models of real chemical reactions, e.g., almost
isothermal flames in the carbon-sulphide-oxygen reaction (Voronkov and Semenov
[22]), iodate-arsenous acid reactions (Saul and Showwalter [19]), hydroxylamine-
nitrate reactions (Gowland and Stedman [10]), as well as other applications (Aris,
Gray, and Scott [1] and Sel’kov [20]).

Experimental observations demonstrate the existence of propagating chemical
wave fronts in chemical systems for which cubic catalysis forms a key step [11, 12, 13,
24]. These wave fronts, or travelling waves, arise due to the interaction of reaction
and diffusion. Quite often when a quantity of autocatalyst is added locally into an
expanse of reactant which is initially at uniform concentration, the ensuing reaction
is observed to generate wave fronts which propagate outward from the initial reaction
zone, consuming fresh reactant ahead of the wave front as it propagates. This is the
phenomenon to be addressed in this paper.

For this purpose, we consider a one-dimensional slab geometry and the following
partial differential equations (PDEs) that govern mass concentration and molecular
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438 XINFU CHEN AND YUANWEI QI

diffusion for the cubic reaction scheme:

∂a

∂t
= DA

∂2a

∂x2
− kab2,

∂b

∂t
= DB

∂2b

∂x2
+ kab2,

where DA and DB are the constant diffusion rates of A and B, respectively. Initial
conditions, in accordance with the observed experiments, are

a(x, 0) = a0, b(x, 0) = g(x) ∀x ∈ R,

where a0 is a positive constant representing the initial uniform distribution of A and
g(x) is a nonnegative function with compact support. It is not very difficult to derive
from the PDEs that the solution has the following behavior at x = ±∞:

a(x, t) → a0, b(x, t) → 0 as |x| → ∞ ∀ t ≥ 0.

Introducing dimensionless parameters, dependent and independent variables

D =
DB

DA
, ā =

a

a0
, b̄ =

b

a0
, t = ka2

0t, x = x

√
ka2

0

DA
, ḡ :=

g

a0
,

and dropping the bars, the initial value problem takes the dimensionless form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
=

∂2a

∂x2
− ab2, x ∈ R, t > 0,

∂b

∂t
= D

∂2b

∂x2
+ ab2, x ∈ R, t > 0,

a(x, 0) = 1, b(x, 0) = g(x), x ∈ R, t = 0.

(1.1)

Here D measures the rate of diffusion of the autocatalyst relative to that of the
reactant.

In the special case D = 1, the function a + b satisfies a linear heat equation and
can be solved explicitly; thus the system is reduced to a single nonlinear equation.
For scalar equations, significant results are established and rich theories are available;
see, for example, the works of Aronson and Weinberger [2], Chen and Guo [7], Fife
and McLeod [8], and Sattinger [18] and the excellent review paper by Xin [23] for
detailed information on single equations. The primary concern of the present paper
is the case D �= 1, which arises when the chemical species involved have different
molecular weights and/or sizes. In particular, enzyme reactions may involve large
enzyme molecules and smaller substrate molecules, leading to significantly different
rates of diffusion. The system (1.1) also arises in epidemiology (Bailey [3]), where a
represents the population density of healthy individuals and b the population density
of infected individuals; again, when healthy individuals are significantly more or less
mobile than the infected, D is far away from unity.

The wave front propagating phenomenon corresponds to the following behavior
of solutions to (1.1): After a certain time of initiation, there are two wave fronts
expanding towards x = ±∞ at a certain speed v. In between the two fronts, the
reactant is consumed and thus a ≈ 0; since each unit of reactant consumed produces
exactly one unit of autocatalyst, one can expect that b ≈ 1 inside the wave front.
Outside the wave front, the reactant mixture is basically unstirred; thus a ≈ 1 and b ≈
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SHARP ESTIMATES ON MINIMUM TRAVELLING WAVE SPEED 439

0. Focusing on the right-hand front, one expects that (a(x, t), b(x, t)) = (α(z), β(z)),
where z = x− vt and (α, β) solves the following system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αzz + vαz = αβ2, α ≥ 0 ∀ z ∈ R,

Dβzz + vβz = −αβ2, β ≥ 0 ∀ z ∈ R,

limz→∞( α(z), β(z) ) = (1, 0),

limz→−∞( α(z), β(z) ) = (0, 1).

(1.2)

Here v > 0 is the constant travelling speed.
The Travelling Wave Problem. Given v > 0, find (α, β) ∈ [C2(R)]2 that satisfies

(1.2).
In this paper we study the existence and nonexistence of the travelling waves,

which can be generated from the initial value problem (1.1) as just described. One
of the most important questions in the study of (1.2) is the existence of a minimum
speed travelling wave and the estimate of the minimum speed vmin. In particular, for
what range of v, in relation to D, does a travelling wave solution exist?

For quadratic autocatalytic (A+B → 2B), namely, for the travelling wave prob-
lem related to the dynamics

∂α

∂t
=

∂2α

∂x2
− αβ,

∂β

∂t
= D

∂2β

∂x2
+ αβ,

Billingham and Needham proved that there is a travelling wave if and only if v ≥ 2
√
D;

namely, the minimum wave speed is exactly 2
√
D (see also the works of Billingham,

Merkin, and Needham [4, 5, 14, 15, 16]). Focant and Gallay [9] investigated the
existence and stability of travelling waves when both the quadratic and cubic nonlin-
earities are present in the system.

For the cubic autocatalysis, i.e., for (1.2), the answer is far from complete. Based
on an invariant region argument, it was shown in [4] that a travelling wave exists if its
speed v ≥ 2

√
D. A more recent work [17] by one of the authors improved the result

of [4] to the following: for (1.2),

(a) there exists a solution if v ≥
{ √

2D − 1 when D ≥ 1,
√
D when D < 1;

(b) no solution exists if v ≤
{ √

D/6 when D ≥ 1,

D/
√

6 when D < 1.

This result, which comes out of a much more delicate analysis than that in [4], supplied
both upper and lower bounds on minimum wave speed; nevertheless, it is still far
from answering the key question of providing a good estimate of minimum speed. In
particular, it falls short of providing an accurate order of vmin in terms of small D.
Numerical simulation by the authors of [4] suggests that vmin ∝ D when D � 1.
Furthermore, it is well known that vmin = 1/

√
2 when D = 1, but neither the results

in [4] nor the results in [17] recover this special case from their results of the general
case. In this paper we shall provide affirmative answers to these questions and fill in
the gap between the general case and the special case of D = 1.

Theorem 1. Suppose D < 1. For the travelling wave problem (1.2),

(i) there exists a unique (up to translation) solution if v ≥ 4D√
1 + 4D

;
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440 XINFU CHEN AND YUANWEI QI

(ii) there does not exist any solution if v <
D√
2
.

Clearly the above result provides a pretty satisfying bound on the range of wave
speeds. In particular, it shows that vmin(D) ∝ D for small D.

One of the important issues in discussing existence and nonexistence of a travelling
wave solution is whether the set of v of the speed for which existence holds is a single
interval. While there are heuristic and numerical arguments in [4] demonstrating that
the set of admissible wave speed is an interval [vmin,∞), for the moment we can only
supply a rigorous proof for the case D ≥ 1.

Theorem 2. Suppose D ≥ 1. There exists a positive constant vmin such that
(1.2) admits a solution if and only if v ≥ vmin. In addition, vmin satisfies the estimate

√
D

2
≤ vmin ≤

√
D

1 + 1/D
.

It is clear from Theorem 2 that in the special case of D = 1, (1.2) admits a
solution if and only if v ≥ 1/

√
2.

The general nth order isothermal autocatalytic chemical reaction step is governed
by the chemical reaction relation

A + nB → (n + 1)B with rate kabn.

We can use the same idea developed in this paper to establish lower bounds for the
existence of a travelling wave solution and upper bounds for nonexistence. For this
general case, the governing equations are, after proper scaling,

∂a

∂t
=

∂2α

∂x2
− abn,

∂b

∂t
= D

∂2b

∂x2
+ abn,

where D = DB/DA and the initial value is the same as that in (1.1). The correspond-
ing travelling wave problem is to solve⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αzz + vαz = αβn, α ≥ 0 ∀ z ∈ R,

Dβzz + vβz = −αβn, β ≥ 0 ∀ z ∈ R,

limz→∞( α(z), β(z) ) = (1, 0),

limz→−∞( α(z), β(z) ) = (0, 1).

(1.3)

Theorem 3. Suppose D < 1 and n ≥ 2. A unique (up to translation) travelling
wave solution exists for (1.3) if v ≥ 4D/

√
1 + 4D. On the other hand, there exists no

solution for (1.3) if v ≤ D/
√
K(n), where K(n) is a constant which increases with n.

In particular, K(1) = 1/4, K(2) = 2.
Theorem 4. Suppose D ≥ 1 and n ≥ 1. There exists a positive constant vmin

such that (1.3) admits a travelling wave if and only if v ≥ vmin. In addition, vmin is
bounded by √

D

K(n)
≤ vmin ≤

√
D

K(n)

1√
1 − (1 − 1

D )

√
4K(n)+1−1√
4K(n)+1+1

,

where K(n) is the same constant as in Theorem 3.
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SHARP ESTIMATES ON MINIMUM TRAVELLING WAVE SPEED 441

We note in passing the recent works to study the spatiotemporal profiles of L1

initial values by Bricmont, Kupiainen, and Xin [6] and the steady-state solutions by
Shi and Wang [21].

The organization of this paper is as follows. Section 2 contains preliminary anal-
ysis and an outline of our approach. The case D ≥ 1 is discussed in section 3, and
the case D < 1 in section 4.

2. Preliminary.

2.1. A scalar equation. First we review the existence of a travelling wave
solution of unit speed to the equation

uzz + uz = ku(1 − u)n, 0 ≤ u ≤ 1 on R, u(−∞) = 0, u(∞) = 1.(2.1)

Here n ≥ 1 is a parameter, and k is a positive constant. We seek upper bounds on k
for the existence of a solution. Since a solution, if it exists, satisfies uz > 0 on R, we
can write u′ = Q(u) and work on the (u,Q) phase plane. The resulting equation on
the phase plane is {

QQ′ + Q = ku(1 − u)n ∀u ∈ [0, 1],

Q(0) = 0, Q > 0 on (0, 1).
(2.2)

There is a one-to-one correspondence between solutions to (2.1) and solutions to (2.2)
satisfying the additional requirement Q(1) = 0.

Lemma 2.1. For each n ≥ 1 and k > 0, there exists a unique solution Q =
Q(n, k; ·) to (2.2). In addition, there exists a positive constant K(n) such that
Q(n, k; 1) = 0 if k ∈ (0,K(n)] and Q(n,K; 1) > 0 if k ∈ (K(n),∞). Consequently,
(2.2) admits a solution if and only if k ∈ (0,K(n)].

In addition, K(n) is a strictly increasing function of n and K(1) = 1
4 ,K(2) = 2.

Proof. The existence of Q and K follows by the comparison principle. The exact
value of K(1) is calculated by a known fact that the function K(1)u(1−u) is concave,
and thus the minimum wave speed v = 1 satisfies 1 = 2

√
K(1); hence K(1) = 1/4.

In the case n = 2, the exact solution is given by Q = u(1 − u); thus K(2) = 2. We
omit details, because it is a standard argument.

2.2. Basic properties of travelling waves. Suppose (v, α, β) solves (1.3).
Then [αz + vα+Dβz + vβ]z = 0, so that αz +Dβz + v(α+ β) is a constant function.
Using the boundary conditions, we find that

αz + Dβz + v(α + β − 1) = 0 on R.

With the new variable w = βz, (1.3) is equivalent to the following third order ODE
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αz = v(1 − α− β) −Dw,

βz = w,

wz = −D−1(αβn + vw),

limz→∞(α(z), β(z), w(z)) = (1, 0, 0),

limz→−∞(α(z), β(z), w(z)) = (0, 1, 0).

(2.3)

It is clear that in the (α, β, w) phase space, there are two equilibrium points: (0, 1, 0)
and (1, 0, 0). The following are a few basic properties of travelling wave solutions.
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442 XINFU CHEN AND YUANWEI QI

Proposition 1. The systems (1.3) and (2.3) are equivalent. Any solution (α, β)
to (1.3) or (α, β, w) to (2.3) has the following properties:

(1) αz > 0 > βz on R.
(2) α + β < 1 on R if D < 1, α + β ≡ 1 if D = 1, and α + β > 0 if D > 1.
(3) v =

∫∞
−∞ α(z)βn(z) dz > 0.

(4) The equilibrium point (0, 1, 0) of (2.3) is a saddle with a two-dimensional
stable manifold and a one-dimensional unstable manifold. The eigenvalues
and associated eigenvectors are

λ1 = −vD−1, eλ1 = (0,−1,−λ1)
T ,

λ2 = − 1
2 (
√
v2 + 4 + v), eλ2 = (λ2(Dλ2 + v),−1,−λ2)

T ,

λ3 = 1
2 (
√
v2 + 4 − v), eλ3

= (λ3(Dλ3 + v),−1,−λ3)
T .

(5) When n > 1, the equilibrium point (1, 0, 0) is degenerate; it has a two-
dimensional stable manifold and a one-dimensional center manifold. The
eigenvalues and associated eigenvectors are

μ1 = −v, eν1
= (1, 0, 0)T ,

μ2 = −vD−1, eν2
= (0,−1,−vD−1)T ,

μ3 = 0, eν3
= (1,−1, 0)T .

All items except (3) were proved in [4]. The equation in property (3) is obtained by
integrating the equation involving αzz in (1.3) with the boundary conditions α(∞) = 1
and α(−∞) = 0.

The third property in the proposition demonstrates that v > 0. The fourth
property clearly tells us that the travelling wave we are looking for is indeed the one-
dimensional unstable manifold associated with the equilibrium (0, 1, 0). Hence, given
v > 0, a travelling wave of speed v, if it exists, is unique up to a translation.

2.3. New setting—A nonautonomous 2×2 system. Unlike in earlier works
[4, 17], here we shall use a transformation to turn the third order autonomous system
(2.3) into a second order nonautonomous system, using u := 1−β as the independent
variable. This is allowed since for the solution of interest, βz < 0, and thus z → 1−β(z)
has an inverse. To make the resulting system as simple as possible, we also scale the
other variables. Hence, we introduce

u = 1 − β, A =
Dα

v2
, y =

vz

D
, κ :=

D

v
.

The system of differential equations (1.3) becomes{
uyy + uy = A(1 − u)n on R,

Ay = κ2(u + uy) −DA on R.

Since uy > 0 for the solution of interest, we can use u as the independent variable.
Introducing P (u) = uy, we have an equivalent system of second order nonautonomous
(singular) ODEs: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

PP ′ = A[1 − u]n − P ∀u ∈ [0, 1],

PA′ = κ2[P + u] −DA ∀u ∈ [0, 1],

P (u) > 0, A(u) > 0 ∀u ∈ (0, 1),

P (0) = 0, A(0) = 0.

(2.4)
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SHARP ESTIMATES ON MINIMUM TRAVELLING WAVE SPEED 443

Lemma 2.2. For every D > 0 and κ > 0, (2.4) admits a unique solution. In
addition,

P (u) = λu + O(u2), A(u) = λ(1 + λ)u + O(u2) as u ↘ 0,(2.5)

where

λ := 1
2 (
√

4κ2 + D2 −D) (the only positive root to λ(λ + D) = κ2).

Furthermore, A′(u) > 0 for all u ∈ [0, 1), and there are only two possible cases:
(a) P (1) > 0: there does not exist any travelling wave solution to (1.3).
(b) P (1) = 0: there exists a travelling wave solution to (1.3), unique up to trans-

lation.
Proof. We divide the proof into several steps.
1. A solution to (2.4) corresponds exactly to the part of the one-dimensional

unstable manifold associated with the equilibrium point (0, 1, 0) of the autonomous
system (2.3) that has the property α, β > 0 and w < 0. Hence, for some δ ∈ (0, 1],
(2.4) admits a unique solution in [0, δ). The solution satisfies the asymptotic expansion
(2.5) and can be extended as long as P > 0.

2. It is easy to see that A cannot hit zero before P does, since otherwise, PA′ =
κ2(p + u) > 0 at A = 0 and P > 0, which is impossible. If limu↗δ P (u) = 0 at some
δ ∈ (0, 1), then lim infu↗δ P (u)P ′(u) ≤ 0, and thus A(δ) := limu↗δ A(u) = 0. But
the equation for A gives PA′ > κ2δ/2 > 0 for all u sufficiently close to δ from below,
which contradicts A(δ) = 0. Since the system has at most a linear growth in P and
A, the solution can be uniquely extended to [0, 1) and P > 0, A > 0 in (0, 1).

3. Now we show that A′ > 0 on [0, 1). From the asymptotic behavior (2.5),
A ∈ C1([0, 1)) and A′(0) = λ(λ + 1) > 0. Also a combination of the two equations in
(2.4) yields

P [κ2(P + u) −DA]′ = −D[κ2(P + u) −DA] + κ2A(1 − u)n.

Gronwall’s inequality then gives κ2(P + u) −DA > 0 in (0, 1). Thus,

0 < A < D−1κ2(P + u) in (0, 1), A′ > 0 in [0, 1).

4. Since (P +u)′ = A(1−u)n/P > 0 in (0, 1), P +u is strictly increasing in (0, 1)
so that limu↗1 P (u) exists. To show that it is finite, observe that when P ≥ 1,

[P + u]′ ≤ P [P + u]′ = A(1 − u)n ≤ D−1κ2(P + u)(1 − u)n.

This implies that P + u is bounded uniformly in u ∈ [0, 1); thus P (1) := limu↗1 P (u)
exists and is finite. Consequently, A(1) := limu↗1 A(u) also exists and is finite.

5. If P (1) > 0, we have a classical solution of (2.4) on [0, 1]. Since a travelling
wave is required to have u = 1−β ≤ 1, we see that there is no travelling wave solution
to (1.3).

6. Suppose P (1) = 0. Since [P+u]′ > 0 in (0, 1), we have P (u)+u < P (1)+1 = 1;
i.e., P (u) < 1 − u for all u ∈ [0, 1). Since κ2(P + u) −DA > 0 in (0, 1), we see that

A(1) =

∫ 1

0

κ2[P (u) + u] −DA(u)

P (u)
du

≥
∫ 1

0

κ2[P (u) + u] −DA(u)

1 − u
du ≥

∫ 1

0

κ2[u− 1]

1 − u
du +

∫ 1

0

κ2 −DA(u)

1 − u
du.
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444 XINFU CHEN AND YUANWEI QI

Since DA(u) < DA(1) ≤ κ2(P (1)+1) = κ2 for all u ∈ (0, 1), for the last integral to be
convergent, we must have A(1) = κ2/D. It is then easy to see that α = DA/κ2 → 1
as u → 1. Transferring back to the original variable z, we then obtain a travelling
wave solution to (1.3).

In what follows, we shall estimate upper and lower bounds of A/u; thus Lemma
2.1 can be applied to generate upper and lower bounds of vmin.

3. The case D ≥ 1. In this section we deal with the case of D ≥ 1.
Lemma 3.1. Suppose D ≥ 1. Then DA(u) ≥ κ2u for all u ∈ [0, 1]. Conse-

quently, there is no travelling wave solution to (1.3) when κ2 > DK(n), i.e., when
v <

√
D/K(n).

Proof. If D = 1, A(u) = κ2u for all u ∈ [0, 1]. When D > 1, for every u ∈ (0, 1),

P [DA− κ2u]′ = −D[DA− κ2u] + (D − 1)κ2P > −D[DA− κ2u].

In addition, when u is sufficiently small, DA(u) = D(1+λ)λu+O(u2) > [D+λ]λu =
κ2u. Applying Gronwall’s inequality, we derive that DA > κ2u on (0, 1).

Now suppose κ2 > DK(n). Let k̂ ∈ (K(n), k2/D). Then A(u) ≥ k̂u on [0, 1] so
that

PP ′ + P = A(1 − u)n ≥ k̂u(1 − u)n ∀u ∈ [0, 1].

We compare P (u) and the solution Q(n, k̂;u) given in Lemma 2.1. Using a Taylor

expansion, we can show that P (u) > Q(n, k̂;u) for all u ∈ (0, ε] for some ε > 0. In
the interval [ε, 1] we can use the regular comparison principle to show that P (u) >

Q(n, k̂;u) for all u ∈ [ε, 1). In particular, P (1) ≥ Q(n, k̂; 1) > 0, so that there is no
travelling wave solution to (1.3). Since κ = D/v, the condition κ2 > DK(n) is the
same as v <

√
D/K(n).

Lemma 3.2. Suppose D > 1. Then,

A(u) < λ(1 + λ)u, P (u) < λu ∀u ∈ (0, 1).

Consequently, there exists a travelling wave solution to (1.3) when λ(λ + 1) ≤ K(n),
i.e., when

v ≥
√

D

K(n)

1√
1 − (1 − 1

D )

√
4K(n)+1−1√
4K(n)+1+1

.

Proof. A higher order Taylor expansion near u = 0 shows that A < λ(λ + 1)u
and P < λu for all sufficient small positive u. Set

B̂ = sup{b ∈ (0, 1) | P (u) < λu, A(u) < λ(1 + λ)u ∀u ∈ (0, b)}.

We show that B̂ = 1. Suppose on the contrary that B̂ < 1. Then either P (B̂)−λB̂ = 0
or A(B̂) − λ(1 + λ)B̂ = 0. In (0, B̂],

P [A− λ(1 + λ)u]′ = κ2(P + u) −DA− λ(1 + λ)P

= λ(D + λ)(P + u) −DA− λ(1 + λ)P

= −D[A− λ(1 + λ)u] + λ(D − 1)(P − λu)

≤ −D[A− λ(1 + λ)u].
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Gronwall’s inequality then implies that A < λ(λ + 1)u on (0, B̂]. Similarly, for all
u ∈ (0, B̂],

P [P − λu]′ = −(1 + λ)P + A(1 − u)n

= −(1 + λ)(P − λu) − λ(1 + λ)u + A(1 − u)n

< −(1 + λ)(P − λu).

Gronwall’s inequality shows that P < λu on (0, B̂]. We reach a contradiction. This
proves that B̂ = 1; i.e., P (u) < λu and A(u) < λ(1 + λ)u for all u ∈ (0, 1).

Suppose λ(1+λ) ≤ K(n). We can use comparison to show that P (u) ≤ Q(n,K(n);
u) for all u ∈ [0, 1] so that P (1) = 0. Namely, there exists a travelling wave solution
to (1.3).

Proof of Theorem 2. This is a special case of Theorem 4, by setting n = 2 and
acknowledging that K(2) = 2.

Proof of Theorem 4. The estimate of vmin, when it exists, follows from the above
two lemmas.

We notice that the set of admissible speed is a closed set. Indeed, if there is no
travelling wave of speed v̂ > 0, then the solution (P,A) to (2.4) with v = v̂ has the
property that P (1) > 0. It then follows by continuous dependence that for any v suffi-
ciently close to v̂, the solution to (2.4) also satisfies P (1) > 0. This implies that there
is no travelling wave of speed v for any v sufficiently close to v̂. Thus the complement
of the set of admissible speed is open; that is, the set of admissible speed is closed.

Hence, to show the existence of vmin, it suffices to show that if v1 > v0 and there
exists a travelling wave of speed v0, then there also exists a travelling wave of speed
v1. For this, we denote κi = D/vi and (Pi, Ai) the solution to (2.4) with κ = D/vi,
i = 0, 1. The existence of a travelling wave of speed v0 implies that P0(1) = 0. To
show that there exists a travelling wave of speed v1, it is necessary and sufficient to
show that P1(1) = 0. For this, it suffices to show that P1 < P0 in (0, 1).

Notice that κ1 < κ0. Denote by λi the positive root to λi(λi + D) = κ2
i . Then

λ1 < λ0. The asymptotic expansion for (P,A) then implies that there exists ε > 0
such that for u ∈ (0, ε], P1(u) < P0(u) and A1(u) < A0(u). In addition, for small u,
the functions αi := DAi/κ

2
i satisfy

α0 − α1 =

{
Dλ0(λ0 + 1)

κ2
0

− Dλ1(λ1 + 1)

κ2
1

}
u + O(u2)

= D

{
λ0 + 1

λ0 + D
− λ1 + 1

λ1 + D

}
u + O(u2)

; 6pt] =
D(D − 1)(λ0 − λ1)

(λ0 + D)(λ1 + D)
u + O(u2) > 0

since D > 1 and λ0 > λ1. Now let

B̂ = sup{b ∈ (0, 1) | P1(u) < P0(u) ∀u ∈ (0, b)}.

We claim that B̂ = 1. Suppose the contrary, B̂ < 1. Then P0(B̂) = P1(B̂) > 0.
First we claim that A0 > A1 on (0, B̂]. Suppose it is not true; then there is a

u1 ∈ (0, B̂] at which A0(u1) = A1(u1). Since κ0 > k1, there exists u2 ∈ (0, B1) such
that α0(u2) = α1(u2) and α0(u2)

′ ≤ α1(u2)
′. But, at u = u2,

[α0 − α1]
′ =

D(u− α0)

P0
− D(u− α1)

P1
=

D(α0 − u)(P0 − P1)

P0P1
> 0
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446 XINFU CHEN AND YUANWEI QI

since α0 − u = [DA0 − κ2
0u]/κ2

0 > 0 by Lemma 3.1 and P0 > P1 in (0, B̂) � u2. Thus,

we must have A0 > A1 in [0, B̂]. Consequently, we obtain from the equation for Pi

that

1
2 [P 2

1 − P 2
0 ]′ = [P0 − P1] + (A1 −A0)[1 − u]n < [P0 − P1] =

P 2
0 − P 2

1

P0 + P1
.

Gronwall’s inequality on [ε, B̂] then gives P 2
1 −P 2

0 < 0 on [ε, B̂], contradicting P0(B̂) =
P1(B̂). Hence, B̂ = 1 and P1 < P0 on (0, 1). This completes the proof of Theorem 4.

4. The case of D < 1. In this section, we establish the results on the case of
D < 1.

Lemma 4.1. Suppose D < 1. Then A > κ2u on (0, 1). Consequently, when
κ2 > K(n), i.e., v < D/

√
K(n), there is no travelling wave solution to (1.3).

Proof. Direct calculation shows that

P [A− κ2u]′ = κ2(P + u) −DA− κ2P = κ2(1 −D)u−D(A− κ2u)

> −D(A− κ2u) ∀u ∈ (0, 1).

Since A = λ(1 + λ)u + O(u2) > κ2u, for all sufficiently small positive u, Gronwall’s
inequality gives A > κ2u on [0, 1).

One can show that P (u) > Q(n, k2;u) for all u ∈ (0, 1) by first using an asymptotic
expansion at u = 0 for 0 < u ≤ ε and then a comparison principle for the differential
equation in (ε, 1).

It then follows from Lemma 2.1 that when κ2 > K(n), we must have
P (1) ≥ Q(n, k2; 1) > 0; i.e., there does not exist any solution to the travelling wave
problem.

To establish the existence of a solution, we need to find an upper bound of A.
Although there is the estimate A < κ2(u+P )/D available for use, we are not satisfied
with such an estimate since when D is very small, it is not sufficient to show that
vmin = O(D). Hence, we seek another bound.

Lemma 4.2. Suppose D < 1. Then A(u)(1 − u)n/2 ≤ λ[P (u) + u] ∀u ∈ [0, 1).
Proof. When u = 0, the two sides are equal. Computation shows that, in (0, 1],

P [(1 − u)n/2A− λ(P + u)]′

= (1 − u)n/2[κ2(P + u) −DA] − 1
2nPA(1 − u)n/2−1 − λA(1 − u)n

≤ −[D + λ(1 − u)n/2][A(1 − u)n/2 − λ(P + u)] + (P + u)[(κ2 − λ2)(1 − u)n/2 − λD]

= −[D + λ(1 − u)n/2][A(1 − u)n/2 − λ(P + u)] − λD(P + u)[1 − (1 − u)n/2]

≤ −[D + λ(1 − u)n/2][A(1 − u)n/2 − λ(P + u)].

Here we have dropped the term 1
2nP (1 − u)n/2−1 in the first inequality and used

κ2 = λ(λ+D) in the second inequality. The assertion of the lemma thus follows from
Gronwall’s inequality.

Proof of Theorem 3. The nonexistence follows directly from Lemma 4.1. We now
prove the existence. Simple computation shows that v ≤ 4D/

√
1 + 4D is equivalent

to λ ≤ 1/4. We proceed to show that P −u(1−u)/2 ≤ 0 on (0, 1). It is easy to verify,
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SHARP ESTIMATES ON MINIMUM TRAVELLING WAVE SPEED 447

using the result of Lemma 4.2, that

P [2P − u(1 − u)]′ = P (2u− 3) + 2A(1 − u)n

≤ P (2u− 3) + 2λ(P + u)(1 − u)n/2

= [u− 3/2 + λ(1 − u)n/2][2P − u(1 − u)]

+u(1 − u)[2λ(1 − u)n/2−1 + λ(1 − u)n/2 + u− 3/2]

< [u− 3/2 + λ(1 − u)n/2][2P − u(1 − u)],

since λ ≤ 1/4 and n ≥ 2 yield

2λ(1 − u)n/2−1 + λ(1 − u)n/2 + u− 3/2

≤ 2λ + λ(1 − u) + u− 3/2

= 2λ− 1/2 + (λ− 1)(1 − u) ≤ 0.

Because 2P < u(1 + u) for small u, Gronwall’s inequality shows that P < u(1 − u)/2
on (0, 1). Thus P (1) = 0. This proves the existence and completes the proof of the
theorem.

Finally, Theorem 1 is a special case of Theorem 3 with n = 2.
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