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To process large-scale single-cell RNA-sequencing (scRNA-seq) data effectively without excessive distortion during dimen-

sion reduction, we present SHARP, an ensemble random projection-based algorithm that is scalable to clustering 10 million

cells. Comprehensive benchmarking tests on 17 public scRNA-seq data sets show that SHARP outperforms existing methods

in terms of speed and accuracy. Particularly, for large-size data sets (more than 40,000 cells), SHARP runs faster than other

competitors while maintaining high clustering accuracy and robustness. To the best of our knowledge, SHARP is the only

R-based tool that is scalable to clustering scRNA-seq data with 10 million cells.

[Supplemental material is available for this article.]

By enabling transcriptomic profiling at the individual-cell level,

scRNA-seq has been widely applied in various domains of bio-

logy and medicine to characterize novel cell types and detect

intra-population heterogeneity (Potter 2018). The amount of

scRNA-seq data in the public domain has increased owing to tech-

nological development and the efforts to obtain large-scale tran-

scriptomic profiling of cells (Han et al. 2018). Computational

algorithms to process and analyze large-scale high-dimensional

single-cell data are essential. To cluster high-dimensional scRNA-

seq data, dimension-reduction algorithms such as principal com-

ponent analysis (PCA) (Joliffe and Morgan 1992) or independent

component analysis (ICA) (Hyvärinen and Oja 2000) have been

successfully applied to process and to visualize high-dimensional

scRNA-seq data. However, it requires considerable time to obtain

principal or independent components as the number of cells

increases. Dimension reduction decreases processing time at the

cost of losing original cell-to-cell distances. For instance, t-dis-

tributed stochastic neighbor embedding (t-SNE) (van der Maaten

2014) effectively visualizes multidimensional data into a reduced-

dimensional space. However, t-SNE distorts the distance between

cells for its visualization. Besides, t-SNE requires considerable

time for large-scale scRNA-seq data visualization and clustering.

Random projection (RP) (Bingham and Mannila 2001) has

been suggested as a powerful dimension-reduction method. Based

on the Johnson–Lindenstrauss lemma (Johnson and Lindenstrauss

1984), RP reduces the dimension while the distances between the

points are approximately preserved (Frankl and Maehara 1988).

Theoretically, RP is very fast because it does not require calculation

of pairwise cell-to-cell distances or principle components.

To effectively handle very large-scale scRNA-seq data with-

out excessive distortion of cell-to-cell distances, we developed

SHARP (Supplemental Code), a hyperfast clustering algorithm

based on ensemble RP (Methods) (Fig. 1A). RP (Bingham and

Mannila 2001) projects the original D-dimensional data into a

d-dimensional subspace, using a d×D-dimensional random ma-

trix, R, whose elements conform to a distribution with zero mean

andunit variance. RPpreserves cell-to-cell distances even inamuch

lower dimensional space and is robust to missing values, which

provides a well-suited condition for clustering high-dimensional

scRNA-seq data. SHARP reduced the running cost for clustering,

whereas clustering performance is robust especially for large-size

scRNA-seq data sets. SHARP requires the time complexity of only

O N log(N)
���

D
√( )

for scRNA-seq data with N cells and D genes.

Compared with it, a simple hierarchical clustering algorithm

requires O(N2D) (Murtagh and Legendre 2014) to calculate the

distance between cells. t-SNE combined with the k-means algo-

rithm requires O(DN log(N)) (van der Maaten 2014), and a simple

PCA requires O(ND ·min(N, D)) for data reduction (Bingham and

Mannila 2001).

There have been previous ensemble-based approaches

for RP (Fern and Brodley 2003; Bertoni and Valentini 2006).

Compared with them, we developed a strategy specifically for

handling scRNA-seq data by using (1) a divide-and-conquer ap-

proach for very large-scale scRNA-seq data clustering, (2) a two-

layer metaclustering approach for robust clustering, and (3) a

very sparse RP embedded into ensemble clustering for hyperfast

clustering.

In this study, we aim to present SHARP, an R-based (R Core

Team 2016) ensemble RP-based algorithm that can be scalable to

10 million cells while maintaining clustering performance. We

perform comprehensive benchmarking to assess the performance

Corresponding author: kyoung.won@bric.ku.dk
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.254557.119.

© 2020 Wan et al. This article is distributed exclusively by Cold Spring Harbor
Laboratory Press for the first six months after the full-issue publication date (see
http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is avail-
able under a Creative Commons License (Attribution-NonCommercial 4.0
International), as described at http://creativecommons.org/licenses/by-nc/
4.0/.

Method

30:205–213 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/20; www.genome.org Genome Research 205
www.genome.org

 Cold Spring Harbor Laboratory Press on August 8, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.254557.119/-/DC1
mailto:kyoung.won@bric.ku.dk
http://www.genome.org/cgi/doi/10.1101/gr.254557.119
http://www.genome.org/cgi/doi/10.1101/gr.254557.119
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


of SHARP and further investigate the characteristics that contrib-

ute to its performance.

Results

SHARP uses RP for ultrafast scRNA-seq clustering

SHARP uses a divide-and-conquer strategy followed by RP to ac-

commodate effective processing of large-scale scRNA-seq data

(Fig. 1A andMethods). SHARP processes scRNA-seq data in four in-

terconnected steps: (1) data partition, (2) RP based clustering,

(3) weighted ensemble clustering, and (4) similarity-based meta-

clustering (sMetaC). During data partition, the scRNA-seq data

are divided into small blocks (random size). It is noted that current-

ly R lacks 64-bit integers support, and a scRNA-seq data matrix

with more than 1 million cells (so that the number of elements

is usually significantly larger than 231−1) cannot be directly load-

ed into R. The divide-and-conquer strategy enables SHARP to up-

load and process more than 1 million cells. The divided data

blocks are further processed by RP followed by a hierarchical clus-

tering algorithm. Because the performance of an individual RP-

based clustering is volatile, the ensemble of several runs of RPs is

used. A weighted-ensemble clustering (i.e., wMetaC) algorithm

merges individual RP-based clustering results. Finally, a similari-

ty-based ensemble clustering (i.e., sMetaC) approach is to integrate

clustering results of each block (Fig. 1A and Methods).

SHARP is faster than other predictors and is scalable to 1.3 million

cells and even up to 10 million cells

We performed comprehensive benchmarking of SHARP against

existing scRNA-seq clustering algorithms, including SC3 (Kiselev

et al. 2017), SIMLR (Wang et al. 2017), hierarchical clustering

and t-SNE combined with k-means, UMAP (Becht et al. 2019)

B

A

C

Figure 1. The framework of SHARP. (A) SHARP has four steps for clustering: divide-and-conquer, random projection (RP), weighted-based metacluster-
ing, and similarity-based metaclustering. (B,C) Running time (B) and clustering performance (C) based on ARI (Hubert and Arabie 1985) of SHARP in 20
single-cell RNA-seq data sets with numbers of single cells ranging from 124 to 10million (where data sets with 2million, 5 million, and 10million cells were
generated by randomly oversampling the data set with 1.3 million single cells). For the data sets with more than 1 million cells, only SHARP can run, and
only the running time was provided owing to lack of the ground-truth clustering labels. All of the results for SHARP were based on 100 runs of SHARP on
each data set. All the tests except for the larger-than-1-million-cell data sets were performed using a single core on an Intel Xeon CPU E5-2699 v4 @ 2.20-
GHz system with 500-GB memory. To run data sets with more than 1 million cells, we used 16 cores on the same system. CIDR and PhenoGraph were
unable to produce clustering results for those data sets with number of cells larger than 40,000 (i.e., Park, Macosko, and Montoro_large).
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with k-means, Seurat (Butler et al. 2018), CIDR (Lin et al. 2017),

and PhenoGraph (Levine et al. 2015) (Fig. 1B,C; Supplemental

Methods) using 17 publicly available scRNA-seq data sets whose

cell numbers range from 124 to 1.3 million cells (Supplemental

Table S1; Darmanis et al. 2015; Klein et al. 2015; Kolodziejczyk

et al. 2015; Macosko et al. 2015; Baron et al. 2016; Goolam et al.

2016; Wang et al. 2016; 10x Genomics 2017; Enge et al. 2017;

Montoro et al. 2018; Park et al. 2018).

The benchmarking tests showed cost reduction by SHARP

(Fig. 1B). Reflecting the theoretical running costs, the two classical

algorithms (t-SNE+ k-means, hierarchical clustering) manifested

exponential increase in their processing time as the number of

cells increased (Fig. 1B). SC3 (Kiselev et al. 2017) and SIMLR

(Wang et al. 2017) showed better performance than the classical

clustering approaches, but they still required a considerable

amount of time for clustering. The computing cost of SHARP

was substantially lower than other clustering algorithms. The re-

quired computing cost of SHARP rose roughly linearly even with

the very large size of the data sets. For data sets with more than

40,000 single cells, SHARP ran at least 20 times faster than SC3

(Kiselev et al. 2017) and SIMLR (Wang et al. 2017). Although

CIDR and PhenoGraph were reported to perform very fast and

robustly (Levine et al. 2015; Lin et al. 2017), they were unable to

produce clustering results for those data sets with more than

40,000 single cells, such as the Park (Park et al. 2018), Macosko

(Macosko et al. 2015), and Montoro_large (Montoro et al. 2018)

data sets (Fig. 1B).

SHARP clustered the scRNA-seq with 1.3 million cells in

42 min when using a multicore system (Fig. 1B). Because of the

data loading problem (and potential exhaustive memory use), we

could not show the running time of other approaches for 1.3 mil-

lion cells. When using a multicore system (16 cores) on the

Montoro_large data set (Montoro et al. 2018) with 66,265 cells,

SHARP ran more than 40 times faster than SC3 and SIMLR

(Supplemental Fig. S1; Supplemental Methods). The running

time of SHARP for 1.3 million cells was two times (42 min vs. 96

min) faster than that of Seurat for 66,255 cells. We expect superior

performance of SHARP against its competitors when data loading

is feasible.

To evaluate the performance of SHARP and show its scalabil-

ity, we performed random oversampling of the mouse brain data

set consisting of 1.3 million cells (10x Genomics 2017) so that

we were able to construct even larger scRNA-seq data sets. For

this simulation, we tested up to 10 million cells. The running

time of SHARP was simply linearly increased with the increasing

of cell numbers from 1 million to 10 million. In our system and

using 16 cores, SHARP needed ∼8 h (i.e., 482.8 min) to cluster

10 million cells into 1175 clusters (Fig. 1B).

The clustering performance of SHARP is not highly affected

by the number of cells

In parallel, we compared the clustering performance using the pre-

defined cell types for each data set (Supplemental Table S1). To

evaluate clustering performance, we used the adjusted Rand index

(ARI) (Hubert and Arabie 1985). ARI (Supplemental Methods) is a

similaritymetric tomeasure howaccurately a prediction of cluster-

ing is made in the unsupervised learning scenarios, which is simi-

lar to the accuracy measurement in supervised classification

problems. Generally, the larger ARI, the better the predicted clus-

tering is, with +1 indicating that the predicted clustering is perfect-

ly consistent with the reference, whereas 0 (or negative value)

indicates that the predicted clustering is as good as (or worse

than) a random guess.

For almost all data sets we tested, SHARP showed better per-

formance (Fig. 1C). The performance of other algorithms became

generally worse for large data sets (more than 40,000 single cells).

In contrast, SHARP showed an ARI larger than 0.7 regardless of the

size of the data sets, showing its robustness. The ARI of Seurat was

poor, in general, even for the small-sized data sets. Seurat showed

relatively faster speed (despite worse clustering performance) even

with its implementation of t-SNE compared with other existing

methods except SHARP. This is because Seurat only uses genes

with high variation in their expression, which could affect the

clustering performance (Fig. 1C).

For robust assessment of the clustered results, we also used ar-

tificial data sets by mixing cells with known cell types obtained

from the Tabula Muris Consortium (Supplemental Fig. S2; The

TabulaMuris Consortium2018). SHARP again outperformed other

methods in terms of both clustering performance (Supplemental

Fig. S3) and running time (Supplemental Table S2).

SHARP preserves cell-to-cell distance

To explain the robust clustering performance of SHARP, we inves-

tigated the degree of distortion caused by dimension reduction

and compared the correlation of cell-to-cell distances after reduc-

ing dimension using SHARP, PCA, and t-SNE, respectively. For

this, we calculated the pairwise Pearson correlation between each

pair of cells for the original scRNA-seq data and the dimension-re-

duced data. Reflecting the property of RP, SHARP showed almost

perfect similarities in cell-to-cell distance with a correlation coeffi-

cient>0.94 even in adimensional space that is 74 times lower (from

20,862 to 279) than the original one (Fig. 2A; Supplemental Fig. S4;

Supplemental Methods). Cell-to-cell distances were distorted

when dimension reduction was performed to the same number

of dimensions using PCA (Fig. 2A). t-SNE, an algorithm to visualize

high-dimensional data into two- or three-dimensional space,

showed a lower correlation as expected (Fig. 2A).

SHARP is robust to dropouts

scRNA-seq suffers a high frequency of dropouts wheremany of the

true expressions are not captured. To evaluate the robustness of

SHARP against dropouts, we tested SHARP while increasing drop-

out rates in the Montoro_small (Montoro et al. 2018) data set

(Fig. 2B). We also applied additional random dropouts. For in-

stance, originally the Montoro_small data set has the dropout

rate of 79.6% for the top 8000 genes in terms of nonzero gene ex-

pression. Based on the original high dropout rate, additional arti-

ficial dropouts were imposed, which provide more difficult

conditions for clustering. Our test results showed that additional

20% of dropout was enough to evaluate the robustness of the clus-

tering algorithms.

We found that both SHARP and SC3were robust to the added

dropouts (Methods), whereas we observed poorer performance of

othermethods for the added dropouts in general (Fig. 2B). The per-

formance of SIMLR, even though it was better than SC3 when

there were no added dropouts, became worse when the added

dropout rates were increased > 5%.

Cell-to-cell distance is important for clustering results

To evaluate the contribution of RP for clustering, we performed

clustering after replaying RP with random selection (RS) of genes

SHARP: single-cell RNA-seq clustering
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while other procedures are unchanged. This violates the condition

for RP (a matrix with zero mean and unit variance), and therefore,

rough preservation of cell-to-cell distance is no longer guaranteed.

RS of genes severely undermined the performance (Fig. 2C), sug-

gesting that RP is a major component contributing to the perfor-

mance of SHARP.

Furthermore, to show the effectiveness of wMetaC, we com-

pared wMetaCwith themethod of averaging gene expression after

multiple runs of RP (“RP_avg”) while other configurations were

unchanged. We observed that wMetaC performs better than sim-

ply averaging the expression profiles after RP across all data sets

(Supplemental Fig. S5). The superiority of SHARPwasmore evident

for those large-size scRNA-seq data sets when the number of cells is

larger than 40,000 (e.g., Park, Macosko, and Montoro_large).

SHARP is equipped with visualization

SHARP is equipped with t-SNE (Fig. 2D; Supplemental Fig. S6)

and heatmaps (Supplemental Fig. S7) to visualize its clustering

results (Methods). For instance, the heat map for the Enge data

set (Enge et al. 2017) clearly showed the cell types in pancreas,

including α (GCG), β (INS), acinar (PRSS1), and δ (SST) cells

(Supplemental Fig. S7).

Clustering 1.3-million-cell data using SHARP

Of note, SHARP provides an opportunity to study the million-cell-

level data set. Previous analysis on the scRNA-seq data with

1,306,127 cells from embryonic mouse brains (10x Genomics

2017) was performed using k-means and graph clustering (equiva-

lent to kernel k-means) algorithms (10x Genomics 2017).

However, k-means cannot identify the optimal number of clusters,

and it depends on the initial seeds for clustering. By using SHARP,

we identified a total of 244 clusters from this data set (17 clusters

with more than 1000 cells) (Supplemental Table S3). The top

four clusters among them were found to have clear different ex-

pression patterns (Fig. 2E). Gene Ontology (GO) analysis

(Supplemental Table S3) shows that cluster 2 is associated with

dendrites and cluster 3 is associated with axons.We also identified

a cluster (cluster 8) enriched for the genes associated with “non-

motile cilium assembly”, which is important for brain develop-

ment and function (Guemez-Gamboa et al. 2014), and immune

cells with high IL4 expression (cluster 14).

Discussion

In this study, we showed that SHARP preserves the cell-to-cell dis-

tance during dimension reduction and performs clustering much

E

BA C

D

Figure 2. The properties of SHARP. (A) Cell-to-cell distance preservation in SHARP space comparedwith that in t-SNE and PCA for the Enge data set (Enge
et al. 2017). The lower triangular part shows the scatter plots of the cell-to-cell distances, whereas the upper triangular part shows the Pearson’s correlation
coefficient (PCC) of the corresponding two spaces. (B) SHARP is robust to the additional dropout events on the Montoro_small (Montoro et al. 2018) data
set. (C) Comparing RP (SHARP uses RP) with random gene selection (RS) in 16 single-cell RNA-seq data sets (Darmanis et al. 2015; Klein et al. 2015;
Kolodziejczyk et al. 2015; Macosko et al. 2015; Baron et al. 2016; Goolam et al. 2016; Wang et al. 2016; Enge et al. 2017; Montoro et al. 2018; Park
et al. 2018) with the number of single cells ranging from 124 to 66,265. (D) Visualization capabilities of SHARP in the Darmanis (Darmanis et al. 2015),
Kolod (Kolodziejczyk et al. 2015), Enge (Enge et al. 2017), and Baron_h2 (Baron et al. 2016) data sets. (E) Cluster-specific marker gene expression of
the top four major clusters for 1.3 million single cells (10x Genomics 2017) by SHARP. The total number of clusters predicted by SHARP is 244. The number
in brackets represents the number of single cells in the corresponding cluster.
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faster than other competing methods while the clustering perfor-

mance is robust.We also showed that SHARP is robust to dropouts.

By benchmarking various clustering algorithms, we found that

SHARP is the only R-based (R Core Team 2016) algorithm to per-

form clustering of 1.3 million cells (10x Genomics 2017) and to

handle clustering up to 10 million cells.

The size of scRNA-seq data sets has been increasing exponen-

tially in recent years. Besides the 1.3-million brain-cell data set we

used, we expect larger-sized data sets to be generated. We found

the majority of the computational algorithms cannot efficiently

handle very large size data sets (Fig. 1B). Furthermore, the cluster-

ing performance became worse as the number of cells increased

(Fig. 1C). Thus, there is an urgent need for a computational ap-

proach to handle large data sets efficiently.

To address these problems, we developed SHARP based on RP,

which, to the best of our knowledge, has not been introduced for

scRNA-seq data analysis. RP preserves the distance of the data

points, even in a lower dimension. Reflecting this, the cell-to-cell

distancewaswell preserved after running SHARP (Fig. 2A). The per-

formance comparison showed that SHARP outperforms other

state-of-the-art methods in terms of computation cost and cluster-

ing performance (Fig. 1B,C).

To further show the scalability of SHARP, we have extended

our comparison against some scalable scRNA-seq analysis meth-

ods, including bigSCale (Iacono et al. 2018), geometric sketching

(GeoSketch) (Hie et al. 2019b), and Scanorama (Hie et al. 2019a).

As they were designed for different purposes, we only evaluated

their scalability by running them with scRNA-seq data sets with

different cell sizes and measured the running costs. Results

(Supplemental Fig. S8) suggested that the computing time for

bigSCale and Scanorama increased exponentially, whereas

SHARP and GeoSketch exerted more powerful scalability. For

data sets with cell numbers larger than 200,000, bigSCale and

Scanorama did not work. These results show that SHARP’s scalabil-

ity is comparable with other state-of-the-art algorithms.

SHARP is composed of many indispensable components. To

evaluate the contribution of RP, we replaced RP with RS, so that

the Johnson–Lindenstrauss lemma (Johnson and Lindenstrauss

1984) is no longer valid. We observed that the performance

became much worse by RS, suggesting that the theoretical back-

ground by RP is a major contributor toward the performance of

SHARP. Also, SHARP uses an ensemble clustering method to com-

bine the results of several runs of RP. We found that the ensemble

strategy provides robust performance in clustering (Supplemental

Fig. S9; Supplemental Methods). SHARP was robust to the ensem-

ble size when the size is larger than five (Supplemental Fig. S10,

S11; Supplemental Methods). Moreover, SHARP’s performance

was not highly affected by the size of the block when the size

was larger than 1000 cells (Supplemental Fig. S12; Supplemental

Methods). SHARP is also roughly insensitive to the degree of

dimension reduction (Supplemental Fig. S13; Supplemental

Methods).

It should be noted that the superior performance of SHARP is

not owing to a single run of RP outperforming traditional dimen-

sion-reductionmethods, such as PCA. On the contrary, the perfor-

mance of a single run of RP is volatile (Supplemental Fig. S9).

Instead, the superior performance of SHARP is because of the fol-

lowing reasons: (1) Multiple runs of RP generated diversity, and

then they were combined with the weighted-ensemble clustering

approach for robust clustering, and (2) RP’s dimension reduction

with the property of preserving cell-to-cell distance in the lower-

dimensional space. Besides, our metaclustering strategies were

able to effectively handle tiny clusters generated during the data

partition stage (Supplemental Fig. S14; Supplemental Methods).

Wenoticed that some studies reportedbetter clustering results

for the same data sets (e.g., Darmanis and Baron data sets) when

comparing some of the same clustering algorithms (Huh et al.

2019; Yang et al. 2019). This is because in these studies several pre-

processing stepshavebeenmanually calibratedbyusing additional

methods to polish different parameters for each of the state-of-the-

art methods. For example, SAFE-clustering (Yang et al. 2019) used

a stratified random sampling strategy to determine the best param-

eter, like the resolution for Seurat for the Darmanis data set.

Similarly, SAME-clustering (Huh et al. 2019) reduced the dimen-

sion for Seurat according to thenumberofprincipal coordinatesde-

termined by CIDR (Lin et al. 2017). Further, both studies added an

intermediate step for t-SNE+ k-means to detect the cluster number

and the cluster centroids to mitigate fluctuations of t-SNE plus

k-means. For a fair comparison, we used the same criteria (i.e., let

themethods themselves automatically determine their hyperpara-

meters) for all of the methods, including SHARP, to test all of the

data sets without parameter tuning.

To assess the robustness of SHARP, we performed various

tests: (1) We ran SHARP 100 times and reported the mean± stan-

dard deviation of ARI and computational time for almost all

scRNA-seq data sets used here; (2) we tested SHARP on a variety

of scRNA-seq data sets with different numbers of cells ranging

from several hundred to 10million; and (3) we used SHARP to pro-

cess scRNA-seq with various additional dropout rates. In these se-

ries of tests, SHARP showed robustness across different cases.

Randomness has been widely used in multiple different do-

mains, like scalable dimensionality reduction and matrix decom-

position approximation (Halko et al. 2011). The randomized

method like the Gaussian random matrix, which also belongs to

one kind of RPs, was used for low-rank matrix decomposition ap-

proximation (Halko et al. 2011), whereasweused RP for dimension

reduction and clustering in large-scale scRNA-seq data. Further,

the random matrix that we used for SHARP was highly sparse,

whereas the one used by Halko et al. (2011) was not.

Clustering involves extensive use of computational resources

in calculating distances and/or dimension reduction. We showed

that SHARP is scalable to processing even 10 million cells.

Currently, SHARP is not designed to detect rare cell populations,

which could be a future application of RP. Besides clustering, the

property of RP to preserve cell-to-cell distance in the reduced di-

mension will be useful for other applications for scRNA-seq data.

Methods

The framework of SHARP

SHARP accepts gene expression data arranged in a matrix,
M [ R

D×N , where each of the D rows corresponds to a gene (or
transcript), and each of the N columns corresponds to a single

cell. The type of input data can be either fragments/reads per
kilo base per millionmapped reads (FPKM/RPKM), counts per mil-

lionmapped reads (CPM), transcripts permillion (TPM), or unique
molecule identifiers (UMI). For consistency, FPKM/RPKM values
are converted into TPM values, and UMI values are converted

into CPM values.

Data partition

For a large-scale data set, SHARP performs data partition using a di-

vide-and-conquer strategy. SHARP divides scRNA-seq data
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M [ R
D×N into B blocks, where each block may contain different

numbers of cells (i.e., N1,…, NB, where
∑B

i=1 Ni = N). To avoid bias
during data partition, we randomly permuted the original single-
cell data before partitioning. In practice, SHARP roughly equally

dividesM and allows users to assign the base number of single cells
in each block (e.g., n). In this case, B = ⌈N/n⌉, where ⌈x⌉ is themin-

imum integer no less than x. The numbers of single cells {Nb}
B
b=1 in

each block are as follows:

1. If B=1, Nb=N, where b=B=1;

2. If B=2, Nb =

⌊

N

2

⌋

, where b = {B− 1}

⌈

N

2

⌉

, where b = {B}

⎧

⎪

⎪

⎨

⎪

⎪

⎩

;

3. If B≥3, Nb =

n, where b = 1, . . . ,B− 2{ }
⌊

N − n B− 2( )
2

⌋

, where b = B− 1{ }
⌈

N − n B− 2( )
2

⌉

, where b = B{ }

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

.

This enables SHARP to maximize the usage of local computa-
tional resources and avoidmemory overflowwhileminimizing the

negative impact from imbalanced numbers of data for each block.

Random projection

RP is a group of simple yet powerful dimension-reduction tech-
niques. It is based on the Johnson–Lindenstrauss lemma (Supple-

mental Methods; Johnson and Lindenstrauss 1984). Specifically,
the originalD-dimensional data are projected onto a d-dimension-

al subspace, using a randommatrix whose column are unit length;
namely,

P =
1
��

d
√ RM [ R

d×N , M [ R
D×N , R [ Rd×D.

As long as the elements of R conform to any distributions
with zero mean and unit variance,R gives a mapping that satisfies

the Johnson–Lindenstrauss lemma.

Choice of random matrix R

To reduce the computational complexity, we adopted a very sparse

RP proposed by Li et al. (2006), where the elements of R (i.e., ri,j)
are defined as

ri,j =
��

s
√

1 with probability
1

2s
,

0 with probability 1−
1

s
,

−1 with probability
1

2s
,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

where i = {1, . . . , d}, j = {1, . . . , D}.

As suggested by Li et al. (2006), we selected s =
���

D
√

.

Choice of the subspace dimension d

To balance betweenmaintaining robust performance and yielding
a solution as parsimonious as possible, we selected d= log2(N)/ε2,

where ε∈ (0, 1] as suggested by the Johnson–Lindenstrauss lemma.

Ensemble RP

After RP, pairwise Pearson correlation coefficients between each
pair of single cells were calculated using the dimension-reduced

feature matrix. An agglomerative hierarchical clustering (hclust)
with the “ward.D” (Ward 1963) method was used to cluster the

correlation-based distance matrix. We first applied RP K times to

obtain K RP-based dimension-reduced feature matrices and then

further K distance matrices. Each of the K matrices was clustered
by a “ward.D”-based hclust. As a result, K different clustering
results were obtained, each from a RP-based distance matrix,

that would be combined by a weighted-based metaclustering
(wMetaC) algorithm (Ren et al. 2017) detailed in the next step.

wMetaC

Compared with the traditional cluster-based similarity partition-
ing algorithm (CSPA) (Strehl and Ghosh 2002) that treats each in-

stance and each cluster equally important, wMetaC assigns
different weights to different instances (or instance pairs) and dif-

ferent clusters to improve the clustering performance. wMetaC in-
cludes four steps: (1) calculating cell weights, (2) calculating
weighted cluster-to-cluster pairwise similarity, (3) clustering on a

weighted cluster-based similaritymatrix, and (4) determining final
results by a voting scheme. Note that wMetaC was applied to each

block of single cells. The flowchart of the wMetaC ensemble clus-
tering method is shown in Supplemental Figure S15.

Specifically, for calculating cell weights, similar to the first

several steps in CSPA, we first converted the individual RP-based
clustering results into a colocation similarity matrix, S, whose ele-
ment si,j represents the similarity between the ith and jth single

cells. Then, based on the idea that theweight for each pair of single
cells is determined by the degree of consistency of the colocation

clustering results of these two single cells, we converted the simi-
larity matrix S to the weight matrix W according to the following
equation:

wi,j = si,j(1− si,j),

wherewi,j is the element in the ith row and the jth column ofW. It

is easy to see that when si,j=1 (i.e., the ith cell and the jth cell are
with 100%probability in the same cluster) or si,j=0 (i.e., the ith cell
and the jth cell are with 0% probability in the same cluster), wi,j

reaches the minimum at zero; when si,j= 0.5 (i.e., the colocation
probability of the ith cell and the jth cell in the same cluster is

0.5, whereas the probability of them in different clusters is also
0.5, which means this is the most difficult-to-cluster case), wi,j

reaches the maximum at 0.25. In other words, zero weight is as-

signed to those most “easy-to-cluster” pairs of single cells, and
the highest cell-to-cell weight is assigned for the most “difficult-

to-cluster” pairs. Then, a weight associated with each cell was cal-
culated as the accumulation of all the cell-to-cell weights related
with the corresponding cell. To calculate the weighted cluster-to-

cluster similarity, we first noted that the size of the similarity ma-
trix is |C| × |C|, where C is the union set of all the clusters obtained

in each individual RP-based clustering results in the previous step,
and | · | is the cardinality of a set. Then, for any two clusters, their
similarity is determined by the sum of weights of their overlapped

elements (i.e., cells) divided by that of their combined ones.
Specifically, given two clusters Cu and Cv, the cluster-to-cluster
similarity in wMetaC is defined as

SwMetaC =
∑

t[Cu>Cv

∑N
j=1 wt,j + d

∑

t[Cu<Cv

∑N
j=1 wt,j + d

,

where wt,j is the colocation weight for the tth cell and jth cell de-
rived above, N is the number of cells, and δ is a very small positive

number (by default, we used δ=0.01) to avoid the denominator be-
ing zero. We can treat

∑N
j=1 wt,j as the overall colocation weights

for the tth cell because it sums up all the possible colocation

weights between the tth cell and all cells. Thus, in the equation,
the numerator represents the sum of the colocation weights of

the cells that are found in both Cluster Cu and Cluster Cv, whereas
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the denominator represents the sum of the colocation weights of

the cells that are found in either Cluster Cu or Cluster Cv.
Then, in the third step (i.e., metaclustering), we used a hierar-

chical clustering with “ward.D” to cluster the obtained similarity

matrix. After clustering, we understood which cluster in the first
RP-based clustering corresponds to which cluster(s) in the second,

third,…, Kth RP-based clustering. Then, in the final step, we reor-
ganized the K RP-based clustering results according to the result in
the third step, and then we used a voting scheme (see below) to

determine the final clustering results. These procedures were re-
peated for each of the B blocks.

Voting scheme

Given K runs of RPs, we obtained K different individual
clustering results by using hierarchical clustering on each of the

K RP-based dimension-reduced feature matrices. Suppose that
the kth (k∈ {1, …, K}) individual clustering results in |Ck| clusters,
that is, {Ck

1, C
k
2, . . . , C

k
|Ck |}. Then, by using the first three steps of

wMetaC, we obtained a weighted-based cluster-wise similarity
matrix, and then we used hierarchical clustering again for this

metaclustering problem. After metaclustering, assume that the
number of clusters is |G|, namely, {G1, …, Gg, …, G|G|}, where
|G| ≤

∑K
k=1 |Ck|. Thus, Gg corresponds to one or more clusters

from the individual clustering set. Finally, a single cell was as-
signed to the metacluster to which it belongs with the highest ra-
tio. Ties were broken randomly. For example, given K=5, suppose

for a single cell, its five RP-based individual clustering results are
(C1

3, C
2
1, C

3
6, C

4
3, C

5
2); that is, it belongs to the third cluster in the

first RP clustering results, the first cluster in the second RP, the
sixth cluster in the third RP, the third cluster in the fourth RP,
and the second cluster in the fifth RP (note that the individual

clusters are not necessarily consistent with each other and that is
why metaclustering method like wMetaC is required). After meta-

clustering, suppose that C1
3, C

3
6, and C5

2 belong to the same meta-
cluster G3, while C2

1 and C4
3 belong to G1 and G2, respectively.

Because this single cell is predicted to belong to Cluster G3 with

the highest ratio (i.e., 3/5), the final predicted cluster of this cell
is Cluster G3.

Similarity-based metaclustering

To integrate the clustering results of the B blocks obtained by
wMetaC, we proposed a similarity-based metaclustering (sMetaC)

approach, which is similar to wMetaC. The major differences be-
tween wMetaC and sMetaC are (1) the cluster-to-cluster pairwise
similarity of the former is calculated based on colocation weights

of single cells in each cluster, whereas that of the latter is calculated
based on the mean of the cell-to-cell correlation coefficients; (2)
the individual clustering results of the former actually correspond

to the same block of single cells but in different lower-dimensional
space, whereas those of the latter correspond to different blocks of

single cells; and (3) the former requires a voting scheme to inte-
grate K individual clustering results, whereas the latter does not,
and it just needs to reorganize the clusters to make clusters consis-

tent across blocks.
The cluster-to-cluster pairwise similarity of wMetaC is calcu-

lated based on colocation weights of single cells in each cluster,
whereas that of the sMetaC is calculated based on the Pearson’s
correlation coefficient of the mean cluster-wise feature vectors af-

ter ensemble RP. Specifically, in sMetaC, given two clusters Gu

andGv thatwere obtained bywMetaC (note that these two clusters

may or may not belong to the same block of single cells), we calcu-

lated the similarity between these two clusters in sMetaC as follows

SsMetaC(G
u,Gv) = cor

1

|Gu|
∑

i[Gu
pu
i ,

1

|Gv |
∑

j[Gv
pv
j

( )

,

where cor( · , · ) is the Pearson’s correlation coefficient of two vec-

tors, pu
i and pv

j are the dimension-reduced feature vectors after en-
semble RP for the ith cell in Cluster Gu and the jth cell in Cluster
Gv, and |Gu| and |Gv| are the numbers of cells in Cluster Gu and

Cluster Gv, respectively.

Determining the optimal number of clusters

SHARP determines the optimal number of clusters by using three

criteria that are based on internal evaluations of the clustering re-
sults (Supplemental Methods).

Time complexity analysis

SHARP includes four steps for clustering: (1) data partition,
(2) RP, (3) wMetaC, and (4) sMetaC. For the scRNA-seq data

matrix M [ R
D×N , SHARP first divides the data into B blocks,

the bth block with Nb single cells. According to the “data parti-

tion” section, Nb≤n, where n is a fixed user-defined parameter
enabling that one application of RP-based clustering runs suffi-
ciently fast. Our analysis (Supplemental Fig. S12) shows that

n = 1500 or 2000 is a good balance between performance and
speed in our case. Then, for each block, one run of RP requires

time complexity of O nd
���

D
√

( )

(Johnson and Lindenstrauss 1984),
where d = ⌈log(N)/e2⌉ ≪ D. Note here, d is calculated based on N

rather than n for dimension-reduction consistency across blocks.

Practically, in the 13 reported scRNA-seq data sets with numbers
of cells smaller than 10,000, the dimension can be reduced by 42
to 238 times (i.e., D/d), depending on the number of single cells

and the number of genes. SHARP requires several (i.e., K) runs of
RPs (with complexity of O Knd

���

D
√( )

). Subsequently, SHARP uses

a hierarchical clustering (hclust) with “ward.D” for each of the K

RPs, thus with an overall time complexity of O K nd
���

D
√

+ n2
( )( )

(note that the time complexity of hclust in R package is O(n2))

(Murtagh and Legendre 2014). Later, wMetaC, essentially a
hclust for the individual predicted clusters (also without loss of

generality, suppose the number of clusters for each RP-based
clustering is equally C1, where C1≪n), was applied to each
block (in total, time complexity of O(K nd

���

D
√

+ n2
( )

+ (KC1)
2)).

Finally, SHARP integrated the results of all blocks by proposing a
method called sMetaC, whose time complexity is similar to

wMetaC except the number of instances is different (similarly,
we can suppose the number of clusters in each block is equally
C2, where C2≪n). In this case, the total time complexity is

O(B[K nd
���

D
√

+ n2
( )

+ (KC1)
2]+ (BC2)

2). Practically, K, B, C1, and
C2 are very small; thus, the time complexity of SHARP can be writ-
ten as O KN d

���

D
√

+ n
( )( )

. Because n is fixed across different data

sets, d = ⌈log(N)/e2⌉ and D is usually larger than 10,000; thus
d

���

D
√

. n, and therefore, the time complexity of SHARP is essen-

tially O N log(N)
���

D
√

( )

.
On the other hand, among the compared state-of-

the-art methods, t-SNE plus k-means is arguably the fastest.

Theoretically, t-SNE requires O(DN log(N)) for dimension reduc-
tion to two- or three-dimensional space (van der Maaten 2014).

For t-SNE plus k-means for clustering, the time complexity is
O(DN log(N) + 2Nki), where k is the number of clusters, and i is
the number of iterations. Thus, the total time complexity for

t-SNE+ k-means is O(DNlog(N)).
All the tests except for the 1.3-million-cell data set were per-

formed using a single core on an Intel Xeon CPU E5-2699 v4 @
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2.20-GHz system with 500-GB memory. To run 1.3 million cells,

we used 16 cores on the same system.

Visualization

For visualization, SHARP uses a weighted combination of the di-
mension-reduced feature matrix and the cell-to-cluster matrix de-

rived from the clustering results. The former matrix is obtained by
three steps: (1) applying K runs of RPs for each block of the large-

scale scRNA-seq data, (2) combining these block-wise matrices
to obtain K RP-based dimension-reduced matrices, and (3) averag-
ing these K matrices into one ensemble matrix. For the latter

matrix, we constructed a N× pC matrix, where N is the number
of single cells, and pC is the predicted number of clusters. If the

ith single cell is predicted to be in the jth cluster, then the element
of the ith row and jth column is one; otherwise, it is zero.
Subsequently, these two matrices were combined with different

weights to formulate the visualization matrix, which is the input
matrix of t-SNE for visualization.

First, both the dimension-reduced feature matrix A [ RN×d

(where N is the number of cells, and d is the number of dimen-
sions after dimension reduction) and the cell-to-cluster matrix

B [ RN×pC (where pC is the predicted number of clusters) are cen-
tered and scaled along each dimension across cells, and we notate

the results as �A and �B. Then, these two matrices are combined as
follows: �V = [w�A, �B], where �V is the input matrix to t-SNE for vi-
sualization, and w>0 is the weight ratio of the dimension-reduc-

tion feature matrix over the cell-to-cluster matrix. If 0 <w<1,
more weight will be given to cell-to-cluster matrix, suggesting
that the clustering results are believed to be better for visualization;

if w>1, more weight will be given to the dimension-reduced fea-
ture matrix, which indicates that the data in dimension-reduced

space can bemore suitable for visualization. Although it is possible
to use some algorithms to optimizew, we adopted an empirical val-
ue (i.e., w=2) by default, which is robust for better visualization

across different scRNA-seq data sets. For flexibility, we also provid-
ed an extra option to allow users to define their own w.

Based on the clustering results, SHARP can further detect cell-
type-associated genes for each cluster. We adopted a method sim-
ilar to SC3 except for three points: (1) Besides P-value and area

under receiver operating curve (AUROC), SHARP uses two more
criteria to select marker genes, namely, cluster-mean fold change

(FC) and expression sparsity (i.e., the percentage of expressions
across all cells); (2) SHARP uses an adaptive threshold instead of
a hard-threshold (i.e., P-value <0.01 and AUROC>0.85); and (3)

SHARP uses a parallelization way to calculate all of the criteria
mentioned above.

Simulated data

In this study, we have generated three simulated scRNA-seq

data from the Tabula Muris Consortium (The Tabula Muris
Consortium 2018). Specifically, we only selected the data from

the microfluidic droplet–based method, and three simulated data
were generated, namely, mdata3, mdata6, and mdata8. mdata3
was generated by mixing scRNA-seq data from three organs, in-

cluding heart and aorta, thymus, and liver; mdata6 was generated
from six organs, including heart and aorta, thymus, liver, bladder,

kidney, and tongue; and mdata8 was generated from eight
organs, including heart and aorta, thymus, liver, bladder, kidney,
tongue, spleen, and trachea. Note that only those filtered data by

the original paper were used. The total numbers of single cells
for mdata3, mdata6, and mdata8 are 3898, 16,717, and 37,538,

respectively.

Adding dropouts

To further show the robustness of SHARP against scRNA-seq drop-
out events, we artificially added dropouts to a benchmarking data

set (e.g., Montoro_small). Specifically, we randomly selected a per-
centage (e.g., 1%, 5%, 10%, 15%, and 20%) of nonzero expressions
from the Montoro_small data set and then set them to be zero.

In other words, the dropout percentage here refers to the added
dropout percentage.

Public data sets used in this study

Single-cell RNA-seq data were obtained from the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
accession numbers provided by their respective original publica-

tions. We downloaded the 1.3-million single-cell data set from
the 10x Genomics website: https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.3.0/1M_neurons. The scRNA-

seq data from the Tabula Muris Consortium was downloaded
from figshare: https://figshare.com/projects/Tabula_Muris_

Transcriptomic_char acterization_of_20_organs_and_tissues_
from_Mus_musculus_at_ single_cell_resolution /27733.

Software availability

The source code for SHARP is available at GitHub (https://github

.com/shibiaowan/SHARP) and as Supplemental Code.
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