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SHARP LOCAL ISOPERIMETRIC INEQUALITIES
INVOLVING THE SCALAR CURVATURE

OLIVIER DRUET

(Communicated by Jozef Dodziuk)

Abstract. We provide sharp local isoperimetric inequalities on Riemannian
manifolds involving the scalar curvature, and thus answer a question asked by
Johnson and Morgan.

1. Introduction and statement of the results

Let (M, g) be a complete Riemannian manifold of dimension n ≥ 2 with sectional
curvature Kg ≤ K0. A long-standing conjecture, a formulation of which can be
found in [1], asserts that for any x ∈ M , there exists rx > 0 such that for any Ω
contained in the geodesic ball of center x and radius rx,

|∂Ω|g ≥ |∂B|g0

where | . |g (resp. | . |g0) denotes the volume with respect to g (resp. g0) and B is a
ball of volume |Ω|g in the model space (M0, g0) of constant sectional curvature K0.
A compact version of this conjecture was proved, with an additional assumption on
the Gauss-Bonnet-Chern integrand in even dimensions, in the very nice Johnson
and Morgan [10]. A natural question that Johnson and Morgan [10] asked is the
following: is the result still true if we assume that the scalar curvature of (M, g)
is such that Sg < n(n− 1)K0 instead of assuming that Kg ≤ K0? We answer this
question in the affirmative and prove the following:

Theorem 1. Let (M, g) be a complete Riemannian manifold of dimension n ≥ 2
and let x ∈ M . Assume that Sg(x) < n(n − 1)K0 for some K0 ∈ R. Then there
exists rx > 0 such that for any Ω contained in the geodesic ball of center x and
radius rx,

|∂Ω|g > |∂B|g0

where B is a ball of volume |Ω|g in the model space (M0, g0) of constant sectional
curvature K0.

In the compact setting, the situation that was actually considered by Johnson
and Morgan [10], we have the following:
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Theorem 2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2
with scalar curvature Sg < n(n−1)K0. There exists V > 0 such that for any subset
Ω of M of volume less than or equal to V ,

|∂Ω|g > |∂B|g0

where B is a ball of volume |Ω|g in the model space (M0, g0) of constant sectional
curvature K0.

These results are optimal in the following sense: if we only assume that the Ricci
curvature of M verifies Ricg ≤ (n−1)K0, the above isoperimetric comparison fails.
Indeed, for any n-manifold M which is Ricci-flat but not flat (see [3] for examples
of such manifolds), one may find a ball Br in M of radius r as small as we want
which verifies

|∂Br|g < |∂B|ξ
where B is a ball of volume |Br|g in the Euclidean space (Rn, ξ). The above
comparison result is also false on S2×S2, as noticed in [10]. The proof of Theorem
1 is based on the study of local optimal Sobolev inequalities. The proof relies
on PDE techniques and a fine asymptotic analysis of solutions of quasi-elliptic
equations involving the p-Laplacian. Theorem 2 is a consequence of Theorem 1
thanks to geometric measure theory. The relevance of the scalar curvature when
studying the validity of sharp Sobolev inequalities was noticed first by the author
in [4] and underlined by Hebey in [9].

2. Sobolev inequalities and proof of Theorem 1

Let B be a ball in the model space (M0, g0) of constant sectional curvature K0.
It is not difficult to check that, for balls of small volume,

|∂B|2g0
= K(n, 1)−2|B|2

n−1
n

g0 − n

n+ 2
(n(n− 1)K0) |B|2g0

+ o
(
|B|2g0

)
.

Here, n = dim M0 and

K(n, 1)−1 = n
(ωn−1

n

) 1
n

.

Now, let (M, g) be a complete Riemannian manifold of dimension n ≥ 2 and let
x0 ∈ M . In order to prove Theorem 1, it is clearly sufficient to prove that for any
ε > 0, there exists rε > 0 such that for any Ω ⊂ Bg (x0, rε),

|∂Ω|2g ≥ K(n, 1)−2|Ω|2
n−1
n

g −
(

n

n+ 2
Sg(x0) + ε

)
|Ω|2g.(2.1)

It is now well known that (2.1) is a consequence of the following Sobolev inequality:
for any u ∈ C∞c (Bg (x0, rε)),

‖u‖2 n
n−1
≤ K(n, 1)2

(
‖∇u‖21

)
+
(

n

n+ 2
Sg(x0) + ε

)
‖u‖21

where ‖ . ‖p denotes the Lp-norm with respect to the Riemannian volume element
dvg. Indeed, Ω ⊂ Bg (x0, rε) being given, one may find a sequence (ui) of smooth
functions with compact support in Bg (x0, rε) such that for any q ≥ 1,

lim
i→+∞

∫
Bg(x0,rε)

|ui|q dvg = |Ω|g
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and

lim
i→+∞

∫
Bg(x0,rε)

|∇ui|g dvg = |∂Ω|g.

Before starting the proof of the above Sobolev inequality, we must set up some
notations. For any 1 ≤ p < n, we let

K(n, p)−p = inf
u∈C∞c (Rn),u6≡0

∫
Rn |∇u|pξ dvξ(∫

Rn |u|p? dvξ
) p
p?

where p? = np
n−p is the critical exponent for the Sobolev embeddings and ξ is the

Euclidean metric. The value of K(n, p) is explicitly known (see [1] or [15]) but the
only point of interest to us is that

lim
p→1

K(n, p) = K(n, 1) =
1
n

(
n

ωn−1

) 1
n

.

We also let, for 1 ≤ p < n, Hp
1 (Rn) be the standard Sobolev space of order p, that

is the completion of C∞c (Rn) for the norm

‖u‖Hp1 =
(∫

Rn

|∇u|pξ dvξ
) 1
p

.

At last, we let BV (Rn) be the space of functions with bounded variations in Rn,
defined as the completion of C∞c (Rn) with respect to the norm

‖u‖BV = sup
{
−
∫

Rn

u div (X) dvξ, ‖X‖L∞(Rn) ≤ 1, div (X) ∈ Ln (Rn)
}

where div (X) = ∂iXi. Basic facts about BV (Rn) can be found in [7] or [16].
As already mentioned, Theorem 1 reduces to the following proposition:

Proposition. Let (M, g) be a complete Riemannian manifold of dimension n ≥ 2
and let x0 ∈ M . For any ε > 0, there exists rε > 0 such that for any u in
C∞c (Bg (x0, rε)),

‖u‖2 n
n−1
≤ K(n, 1)2

(
‖∇u‖21 + αε‖u‖21

)
where αε = n

n+2Sg(x0) + ε.

We prove the Proposition in what follows.

Proof of the Proposition. Clearly, we may assume, without loss of generality, that
M = Rn and that x0 = 0. We let, for any r > 0, any p > 1 and any ε > 0,

λp,r = inf
u∈C∞c (Bg(0,r)), u6≡0

(∫
Bg(0,r) |∇u|

p
g dvg

) 2
p

+ αε

(∫
Bg(0,r) |u|

p dvg

) 2
p

(∫
Bg(0,r) |u|p

? dvg

) 2
p?

.

We proceed by contradiction. We assume that there exists ε0 > 0 such that for any
r > 0,

λ1,r < K(n, 1)−2.
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Then, since lim supp→1 λp,r ≤ λ1,r, one easily gets that for any r > 0, there exists
pr > 1 such that

λpr ,r < K(n, 1)−2

(
n− pr
pr(n− 1)

)2

, λpr ,r < K(n, pr)−2.(2.2)

We may assume that r → 0 and we may choose pr decreasing when r is decreasing.
Then we get a sequence p > 1 going to 1 and a sequence rp > 0 going to 0 as p goes
to 1 which verify (2.2). It is by now classical that the second inequality in (2.2)
ensures the existence of a minimizer up which satisfies the following:

Cp∆pup + α‖up‖2−pp up−1
p = λpu

p?−1
p in Bg (0, rp) ,(2.3)

up ∈ C1,η (Bg (0, rp)) for some η > 0,

up > 0 in Bg (0, rp) , up = 0 on ∂Bg (0, rp) ,∫
Bg(0,rp)

up
?

p dvg = 1,(2.4)

λp < K(n, p)−2, λp < K(n, 1)−2

(
n− p
p(n− 1)

)2

,(2.5)

Cp =

(∫
Bg(0,rp)

|∇up|pg dvg

) 2−p
p

.(2.6)

In the above equations, ∆p is the p-laplacian with respect to g, that is ∆pu =
−divg

(
|∇u|p−2

g ∇u
)
, and we have set

α =
n

n+ 2
Sg(0) + ε0.

Now the aim is to study this sequence (up) as p → 1. We let xp be a point in
Bg (0, rp) where up achieves its maximum and we also let

up(xp) = µ
1−np
p .

We have

1 =
∫
Bg(0,rp)

up
?

p dvg ≤ V olg (Bg (0, rp))µ−np

and since rp goes to 0, µp goes to 0 as p goes to 1. In the same way, thanks to
Hölder’s inequalities, we get

lim
p→1

∫
Bg(0,rp)

upp dvg = 0.(2.7)

Step 1. We first claim that

lim
p→1

λp = K(n, 1)−2(2.8)

and that

lim
p→1

∫
Bg(0,rp)

|∇up|pg dvg = K(n, 1)−1.(2.9)
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Indeed (see for instance [8] for an exposition in book form) for any ε > 0 there
exists Bε > 0 such that for any p > 1,

(∫
Bg(0,rp)

up
?

p dvg

)2n−1
n

≤ (K(n, 1) + ε)2

(∫
Bg(0,rp)

|∇
(
u
p(n−1)
n−p

p

)
|g dvg

)2

+Bε

(∫
Bg(0,rp)

u
p(n−1)
n−p

p dvg

)2

which gives with (2.3), (2.4) and Hölder’s inequalities

1 ≤ (K(n, 1) + ε)2

(
p(n− 1)
n− p

)2 (
λp − α‖up‖2p

)
+Bε‖up‖2p.

This leads with (2.7) to

1 ≤
(
1 + εK(n, 1)−1

)2
lim inf
p→1

(
λpK(n, 1)2

)
.

Since it is valid for any ε > 0, we obtain lim infp→1 λp ≥ K(n, 1)−2. By (2.5), we
get that (2.8) is proved. Then (2.9) is an obvious consequence of (2.3), (2.4), (2.7)
and (2.8).
Step 2. We let Ωp = µ−1

p exp−1
xp (Bg (0, rp)) ⊂ Rn and we set

gp(x) = exp?xp g (µpx) for x ∈ Ωp

and

vp(x) = µ
n
p−1
p up

(
expxp (µpx)

)
for x ∈ Ωp, vp(x) = 0 for x ∈ Rn\Ωp.

Clearly we have

Cp∆p,gpvp + αµ2
p‖vp‖2−pp vp−1

p = λpv
p?−1
p in Ωp(2.10)

with vp = 0 on ∂Ωp and ∫
Ωp

vp
?

p dvgp = 1.(2.11)

We also let

ṽp(x) = vp(x)
p(n−1)
n−p .(2.12)

By the Cartan expansion of a metric in the exponential chart, there exists C > 1
such that

dvgp ≥
(

1− 1
C
µ2
p

)
dvξ,

|∇ṽp|gpdvgp ≤
(
1 + Cµ2

p

)
|∇ṽp|ξdvξ

where ξ is the Euclidean metric. This easily leads with (2.9), (2.11) and Hölder’s
inequalities to

lim
p→1

∫
Rn |∇ṽp|pξ dvξ(∫
Rn v

p?
p dvξ

)n−1
n

= K(n, 1)−1.(2.13)
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Remember here that rp → 0 as p → 1. Since (ṽp) is bounded in H1
1 (Rn), there

exists v0 ∈ BV (Rn) such that

lim
p→1

ṽp = v0 weakly in BV (Rn) .

If we apply the concentration-compactness principle of P.L. Lions ([11], [12], see
also [14] for an exposition in book form) to |vp|p

?

dvξ, four situations may occur:
compactness, concentration, dichotomy or vanishing. Dichotomy is classically for-
bidden by (2.13). Concentration cannot happen since supΩp vp = vp(0) = 1. As
for vanishing, since vp is bounded in L∞, by applying Moser’s iterative scheme to
(2.10), one gets the existence of some C > 0 such that for any p > 1,

1 = sup
Ωp∩Bgp (0,1/2)

vp ≤ C
(∫

Ωp∩Bgp (0,1)

vp
?

p dvξ

) 1
p?

.

Thus vanishing cannot happen. Compactness together with (2.13) just gives

lim
p→1

ṽp = v0 strongly in BV (Rn) .(2.14)

Then v0 is a minimizer for the H1
1 Euclidean Sobolev inequality which verifies∫

Rn v
n
n−1
0 dvξ = 1. Thus there exists y0 ∈ Rn, λ0 > 0 and R0 > 0 such that

v0 = λ01B(y0,R0)(2.15)

where 1B(y0,R0) denotes the characteristic function of the Euclidean ball B (y0, R0).
Moreover, since vp ≤ 1 in Ωp, we obtain with (2.14) that vp → v0 in any Lq (Rn),
q ≥ n

n−1 . One can deduce from this that λ0 = 1. At last, we have:

V olξ (B (y0, R0)) =
ωn−1

n
Rn0 = 1.(2.16)

Up to changing xp into expxp (µpy0) in the definition of vp, Ωp and gp, we may
assume that y0 = 0. We have thus obtained that

lim
p→1

ṽp = 1B(0,R0) strongly in BV (Rn) .

This means in particular that

lim
p→1

ṽp = 1B(0,R0) strongly in L
n
n−1 (Rn)(2.17)

and that for any ϕ ∈ C∞c (Rn),

lim
p→1

∫
Rn

|∇ṽp|ξϕdvξ =
∫
∂B(0,R0)

ϕdσξ.(2.18)

If we set

Vp(x) =

(
1 +

(
|x|
R0

) p
p−1
)1−n

, x ∈ Rn,(2.19)

a simple application of the concentration-compactness principle, using what we just
proved, gives

lim
p→1

∫
Rn

|∇ (ṽp − Vp) |ξ dvξ = 0.(2.20)
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Applying Moser’s iterative scheme to (2.10) with the help of (2.17), we also get
that for any R > R0,

lim
p→1

sup
Ωp\B(0,R)

vp = 0.(2.21)

Step 3. The aim is to transform the L
n
n−1 -estimate (2.17) into a pointwise estimate.

We follow here [6] (see also [5]). We let

wp(z) = |z|
n
p−1vp(z)

and we let zp ∈ Ωp be a point where wp achieves its maximum. Let us assume by
contradiction that

lim
p→1

wp(zp) = +∞.

We set

ν
1−np
p = vp (zp)

so that

lim
p→1

|zp|
νp

= +∞.(2.22)

Independently, since vp ≤ 1 in Ωp,

lim
p→1
|zp| = +∞.(2.23)

Thanks to (2.22) and (2.23), one proves then that (ν
n
p−1
p vp(expzp (νpx))) is bounded

in L∞ (B(0, 1)). This allows us to apply Moser’s iterative scheme to the equation
verified by

(
ν
n
p−1
p vp

(
expzp (νpx)

))
and to get the existence of some C > 0 such

that

lim inf
p→1

∫
Bgp (zp,νp)∩Ωp

vp
?

p dvg > 0.

The contradiction then easily follows from (2.17), (2.22) and (2.23). Thus we have
the existence of some C > 0 such that for any p > 1, any z ∈ Ωp,

|z|
n
p−1vp(z) ≤ C.(2.24)

In the same way, using (2.24), one proves thanks to (2.21) that for any R > R0,

lim
p→1

sup
Ωp\Bgp (0,R)

|z|np−1vp(z) = 0.(2.25)

We refer the reader to [6] for details on such claims.
Step 4. We let Lp be the following operator:

Lpu = Cp∆p,gpu+ αµ2
p‖vp‖2−pp up−1 − λpvp

?−p
p up−1.

We fix 0 < ν < n− 1 and we set

Gp(x) = θp|x|−
n−p−ν
p−1
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where θp is some positive constant to be fixed later. Easy computations lead to

|x|n−ν LpGp(x)
Gp(x)p−1

≥ Cpν

(
n− p− ν
p− 1

)p−1

− Cµ2
p|x|2

+αµ2
p‖vp‖2−pp |x|p − λp|x|pvp

?−p
p

in Ωp\ {0}. Here C denotes some constant independent of p. Thanks to (2.7), (2.8),
(2.9), (2.25) and the fact that rp → 0 as p→ 1, one gets that for any R > R0,

LpGp(x) ≥ 0 in Ωp\Bgp (0, R)

for p small enough. On the other hand,

Lpvp = 0 in Ωp.

At last, it is not difficult to check with (2.21) that

vp ≤ θpGp on ∂Bgp (0, R)

if we take θp = R
n−p−ν
p−1 . Now we may apply the maximum principle as stated for

instance in [2] (lemma 3.4) to get, for p small enough,

vp(y) ≤
(
R

|y|

)n−p−ν
p−1

in Ωp\Bgp (0, R) .

Since this inequality obviously holds on Bgp (0, R), we have finally obtained the
following: for any ν > 0 and any R > R0, there exists C(R, ν) > 0 such that for
any p > 1 and any y ∈ Ωp,(

|y|
R

)n−p−ν
p−1

vp(y) ≤ C (R, ν) .(2.26)

Step 5. We conclude the proof of the Proposition. We apply the H1
1 Euclidean

Sobolev inequality to ṽp:(∫
Ωp

ṽ
n
n−1
p dvξ

)n−1
n

≤ K(n, 1)
∫

Ωp

|∇ṽp|ξ dvξ.(2.27)

By the Cartan expansion of gp around 0, we have

dvξ =

(
1 +

µ2
p

6
Ricg(yp)ijxixj + o

(
µ2
p|x|2

))
dvgp(2.28)

where Ricg denotes the Ricci curvature of g in the expyp-map. Thus, by (2.11),∫
Ωp

ṽ
n
n−1
p dvξ = 1 +

µ2
p

6
Ricg(yp)ij

∫
Ωp

xixjvp
?

p dvgp + o

(
µ2
p

∫
Ωp

|x|2vp?p dvgp

)
.

Using (2.17) and (2.26), one gets∫
Ωp

ṽ
n
n−1
p dvξ = 1 +

Sg(0)
6n(n+ 2)

ωn−1R
n+2
0 µ2

p + o
(
µ2
p

)
.(2.29)

By the Cartan expansion of gp around 0, since rp → 0 as p→ 1, we also have

|∇ṽp|pξ = |∇ṽp|pgp

[
1−

µ2
p

6
|∇ṽp|−2

gp Rmg (yp) (∇ṽp, x, x,∇ṽp) + o
(
µ2
p|x|2

)]
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where Rmg denotes the Riemann curvature of g in the expyp-map. Then, using
(2.28), we get∫

Ωp

|∇ṽp|ξ dvξ =
∫

Ωp

|∇ṽp|gp dvgp +
µ2
p

6
Ricg (yp)ij

∫
Ωp

xixj |∇ṽp|ξ dvξ

−
µ2
p

6

∫
Ωp

|∇ṽp|−1
gp Rmg (yp) (∇ṽp, x, x,∇ṽp) dvgp (2.30)

+o

(
µ2
p

∫
Ωp

|x|2|∇ṽp|gp dvgp

)
.

Let us now look at the different terms of (2.30). First, by equation (2.10) and
relation (2.5), we have∫

Ωp

|∇ṽp|gp dvgp =
p(n− 1)
n− p

∫
Ωp

v
n(p−1)
n−p

p |∇vp|gp dvgp

≤ p(n− 1)
n− p

(∫
Ωp

|∇vp|pgp dvgp

) 1
p

≤ K(n, 1)−1
(
1− αµ2

pλ
−1
p ‖vp‖2p

) 1
2 .

Since, by (2.17) and (2.26), ‖vp‖p = 1 + o (1), we get∫
Ωp

|∇ṽp|gp dvgp ≤ K(n, 1)−1 − α

2
K(n, 1)µ2

p + o
(
µ2
p

)
.(2.31)

Independently, by Hölder’s inequalities, we have∫
Ωp

|x|2|∇ṽp|gp dvgp ≤
p(n− 1)
n− p

(∫
Ωp

|x|2p|∇vp|pgp dvgp

) 1
p

.

By equation (2.10), one gets∫
Ωp

|x|2p|∇vp|pgp dvgp ≤
∫

Ωp

|∇vp|p−2
gp

(
∇
(
|x|2pvp

)
, ∇vp

)
gp
dvgp

+C
∫

Ωp

|x|2p−1|∇vp|p−1
gp vp dvgp

≤ C + C

(∫
Ωp

|x|2p|∇vp|pgp dvgp

) p−1
p
(∫

Ωp

|x|pvpp dvgp

) 1
p

where C denotes some constant independent of p. Using (2.26) and Young’s in-
equalities, one deduces that∫

Ωp

|x|2p|∇vp|pgp dvgp = O (1) .(2.32)

Now, for some R > R0, we get by (2.18) that∫
Ωp

|∇ṽp|ξxixj dvξ = O

(∫
Ωp\B(0,R)

|x|2|∇ṽp|ξ dvξ

)
+
∫
∂B(0,R0)

xixjdσξ + o (1) .
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Using equation (2.10) and relation (2.26), it is easy to check that

lim
p→1

∫
Ωp\B(0,R)

|x|2|∇ṽp|ξ dvξ = 0

so that

lim
p→1

Ricg (yp)ij

∫
Ωp

|∇ṽp|ξxixj dvξ =
ωn−1

n
Rn+1

0 Sg(0).(2.33)

At last, since ∇Vp, Vp as in (2.19), and x are pointwise colinear vector fields, we
have

Rmg (yp) (∇ṽp, x, x,∇ṽp) ≤ C|x|2|∇ṽp|ξ|∇ (ṽp − Vp) |ξ
so that, by (2.10), (2.20) and (2.26),

lim
p→1

∫
Ωp

|∇ṽp|−1
gp Rmg (yp) (∇ṽp, x, x,∇ṽp) dvgp = 0.(2.34)

Coming back to (2.27) with (2.29)-(2.34), we obtain, after easy computations using
in particular (2.16), (

α− n

n+ 2
Sg(0)

)
µ2
p + o

(
µ2
p

)
≤ 0.

This gives the desired contradiction by letting p go to 0. Remember here that
α− n

n+2Sg(0) = ε0 > 0. This ends the proof of the Proposition, hence the proof of
Theorem 1.

3. The compact case - Proof of Theorem 2

In order to prove Theorem 2, we let (M, g) be a compact Riemannian manifold
of dimension n ≥ 2. We assume that Sg < n(n−1)K0. If we apply Theorem 1 with
some x in M and K0, we get some rx > 0 such that the isoperimetric comparison
(with the model space form of curvature K0) holds for sets contained in the geodesic
ball of center x and radius rx. It is clear that rx is continuous with respect to x.
Thus, there exists d > 0 such that for any subset Ω of M of diameter less than or
equal to d,

|∂Ω|g > |∂B|g0(3.1)

where B is a ball of volume |Ω|g in the model space of constant curvature K0.
For 0 < V < |M |g, we let

h(V ) = inf {|∂Ω|g, Ω ⊂M, |Ω|g = V } .
There exists some ΩV ⊂M such that

|∂ΩV |g = h(V ).

The boundary ∂ΩV of ΩV is a smooth hypersurface of constant mean curvature up
to a compact set of Hausdorff dimension at most n−8 (see for instance [13]). Now,
as a consequence of the work of Johnson and Morgan [10], we know that

diam (ΩV )→ 0

as V → 0. In fact, Johnson and Morgan proved that ΩV is asymptotically, as
V → 0, a ball. In particular, for some V0 small enough, any ΩV for V ≤ V0 has
a diameter less than or equal to d. We may then apply (3.1) to end the proof of
Theorem 2.
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