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Abstract

We provide sharp bounds for the exponential moments and p-moments, 1 6 p 6 2, of the terminate
distribution of a martingale whose square function is uniformly bounded by one. We introduce a
Bellman function for the corresponding extremal problem and reduce it to the already known Bellman
function on BMO([0, 1]). In the case of tail estimates, a similar reduction does not work exactly, so
we come up with a fine supersolution that leads to sharp tail estimates.

1 Introduction

1.1 Chang–Wilson–Wolff inequality
Let (X,Σ, P ) be an atomless complete probability space equipped with a discrete time filtration F =
{Fn}n>0. Let F0 = {∅, X} and let F generate Σ. Assume for simplicity that each σ-algebra Fn is finite,
i. e., consists of a finite number of sets. Consider a real-valued martingale ϕ = {ϕn}n adapted to F and
define its square function Sϕ by the formula

Sϕ =
( ∞∑
n=0

(ϕn+1 − ϕn)2
) 1

2

. (1.1)

In what follows we will always talk about real martingales adapted to filtrations as above unless otherwise
specified. We call a martingale ϕ simple if ϕn+1 = ϕn for n sufficiently large. In this paper, we make an
attempt to describe the distribution of ϕ∞ (which is the limit value of the martingale, ϕ∞ = limn→∞ ϕn)
under the assumption that Sϕ is uniformly bounded. From general theory (see (1.5) below), ϕ is a BMO-
martingale provided Sϕ ∈ L∞. Thus, by the John–Nirenberg inequality, ϕ∞ is a subexponential random
variable. Namely, there exist positive constants c1 and c2 such that

P (ϕ∞ − ϕ0 > t) 6 c2e
− c1t

‖Sϕ‖L∞ , t > 0, (1.2)

for any martingale ϕ. We focus on sharp estimates of this kind. In particular, we aim to compute the
best possible values of c1 and c2 (see Corollary 1.14 below). According to the knowledge of the authors,
such sharp estimates are not known.

In the case where F is a dyadic filtration (by that we mean that any atom in Fn is split into two atoms
of equal mass in Fn+1), a much better estimate exists. The famous Chang–Wilson–Wolff inequality (see
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Theorem 3.1 in [2] for the original formulation and [19] for further development) says that the distribution
of ϕ is subgaussian:

P (ϕ∞ − ϕ0 > t) 6 e
− t2

2‖Sϕ‖2
L∞ , t > 0. (1.3)

In a recent paper [8], Ivanisvili and Treil generalized this result to the case where the filtration F has
bounded distortion α, which means that each atom in Fn has at least α mass of its parental atom. In
this case,

P (ϕ∞ − ϕ0 > t) 6 e
− αt2

‖Sϕ‖2
L∞ , t > 0. (1.4)

This result hints us that the distribution of ϕ∞ may no longer be subgaussian if we do not make as-
sumptions about regularity of the filtration. As we will see later, this is indeed the case (for example, the
inequality (1.2) is sharp for certain choice of c1 and c2, see Corollary 1.14 below).

Since we focus on sharp estimates, it is natural to consider not only tail estimates, but also inequalities
for the exponential moments and p-moments. In particular, one may wonder what are the largest possible
values of the quantities E eλϕ∞ , or E |ϕ∞|p under the assumption ‖Sϕ‖L∞ 6 1. We will partially answer
this question, see Corollaries 1.11 and 1.12 below. One may go further, pick an arbitrary function f , and
ask about the largest possible value of E f(ϕ∞) under the same assumption. We will study this problem
for the cases when f ′′′ either does not change sign or changes sign from + to − once.

Some of the results of the present paper were announced in the short report [21]. We also provided
some proofs there. The present paper contains the remaining proofs. In a sense, [21] contains the
reasoning that do not depend on the geometry of specific Bellman functions. They are much shorter than
the treatment of Bellman functions we present here.

For the reader who is not interested in the Bellman function technique, Corollaries 1.11, 1.12, and 1.14
may be considered as the main results of the paper. Lemma 1.8 and Theorems 1.10 and 1.13 are more
important from the Bellman function point of view.

1.2 Estimates for BMO functions
The space BMO is pivotal for our considerations. There are several equivalent norms in this space. Since
we are dealing with sharp estimates, the choice of a specific norm is crucial. The space BMOm called the
space of martingales of bounded mean oscillation is defined as follows (see, e. g., Chapter II in [9])

‖ϕ‖2BMOm = sup
{∥∥E ((ϕ∞ − ϕτ )2 | Fτ

)∥∥
L∞

∣∣∣ τ is a stopping time
}
.

A simple orthogonality argument

E
(
(ϕ∞ − ϕτ )2 | Fτ

)
= E

((∑
n>τ

(ϕn+1 − ϕn)
)2 ∣∣∣ Fτ) =

E
(∑
n>τ

(ϕn+1 − ϕn)2
∣∣∣ Fτ) 6 E

(
(Sϕ)2 | Fτ

)
, (1.5)

leads to the inequality ‖ϕ‖BMOm 6 ‖Sϕ‖L∞ .
The space BMOm has its real analysis counterpart (see, e. g., Chapter IV in [20] for more information).

The BMO space on the unit interval is defined with the help of the seminorm

‖ψ‖2BMO([0,1]) = sup
{ 1

|J |

∫
J

(
ψ(x)− 1

|J |

∫
J

ψ
)2
dx
∣∣∣ J is a subinterval of [0, 1]

}
. (1.6)

We note that this definition is not the most common in real analysis. A version based on the L1 norm
instead of L2 is more widespread (the two BMO seminorms are equivalent). The L2 based version is
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closely related to the martingale BMOm space. We denote the non-increasing rearrangement (the inverse
function to the distribution function of ξ) of a random variable ξ by ξ∗:

ξ∗(t) = inf{α | P (ξ > α) 6 t}, t ∈ [0, 1).

Theorem 1.1. The inequality ‖ϕ∗∞‖BMO([0,1]) 6 ‖Sϕ‖L∞ holds for any martingale ϕ and is sharp.

Here and in what follows the notation ϕ∗∞ means the monotonic rearrangement of ϕ∞. This theorem
was proved in [21]. Though Theorem 1.1 says there is a certain relationship between martingales ϕ whose
square function is bounded and functions ψ on the unit interval that belong to the BMO space, we warn
the reader against identification of these classes of objects, which have different nature and origin.

Remark 1.2. The estimate ‖ϕ∗∞‖BMO([0,1]) 6 ‖ϕ‖BMOm is not true in general for discrete time filtrations.
To see that, consider the case where F is dyadic. The inequality

‖ϕ∗∞‖BMO([0,1]) 6
3

2
√

2
‖ϕ‖BMOm , F is dyadic,

is sharp (and true), see Corollary 1 in [22]. What is more, for any C > 0 there exist a discrete filtration F
and a martingale ϕ adapted to it such that the inequality

‖ϕ∗∞‖BMO([0,1]) 6 C‖ϕ‖BMOm

fails.

Theorem 1.1 leads to many nice inequalities. In particular, it says that

sup
{
E f(ϕ∞)

∣∣∣ ϕ0 = x, ‖Sϕ‖L∞ 6 1
}
6 sup

{ 1∫
0

f(ψ)
∣∣∣ 1∫

0

ψ = x, ‖ψ‖BMO([0,1]) 6 1
}

(1.7)

for any non-negative function f : R→ R. It is reasonable to fix the expectation of our martingale since ϕ0

does not affect the square function, but has strong influence on the quantity E f(ϕ∞). There are two
surprising facts about formula (1.7). The first one is that the inequality turns into equality quite often
(in particular, for the important cases f(t) = eλt and f(t) = |t|p, 1 6 p 6 2). The second fact is that the
supremum on the right hand side may be computed exactly for arbitrary f , which satisfies some mild
regularity assumptions. We briefly describe these results.

We fix the second moment as well and write the definition of the Bellman function bε : ωε → R,

bε(x, y) = sup

{ 1∫
0

f(ψ)

∣∣∣∣ ∫ 1

0

ψ = x,

∫ 1

0

ψ2 = y, ‖ψ‖BMO([0,1]) 6 ε

}
,

ωε = {(x, y) ∈ R2 | x2 6 y 6 x2 + ε2}.

(1.8)

This Bellman function satisfies the boundary condition bε(x, x2) = f(x). It appears that one may compute
the function bε for arbitrary f . The answer (algorithm) is quite complicated. We refer the reader to the
paper [7] for treatment of the general case. The paper [6] considers less general case (the authors make
additional assumptions on the structure of f), however, provides a much shorter presentation. The short
report [5] outlines the results. In fact, the particular cases that are important for applications were
computed in earlier papers [17], [18], [24], and [26].

The main reason why bε is a tractable object is that it can be described geometrically, namely, in
terms of locally concave functions. By a locally concave function on a domain we mean a function whose
restriction to any segment lying in the domain entirely, is concave.
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Theorem 1.3 (Main theorem and Corollary 5.4 in [23]). Let f be bounded from below. The function bε
can be described as the pointwise minimal function among all locally concave functions G : ωε → R that
satisfy the boundary condition G(x, x2) = f(x).

The fact behind Theorem 1.3 is that the minimal locally concave function has a good probabilistic
representation, see Theorem 2.21 in [23]. We cite a definition introduced in [23] (in fact, [23] deals with
a more general situation; in the case of BMO and the parabolic strip ωε the continuous time version of
the definition below had appeared in the literature before [23], see, e. g., [9] and [16]; as the present paper
shows, the discrete time definition is more convenient in some contexts).

Definition 1.4. An R2-valued martingale M = {Mn}n adapted to {Fn}n is called an ωε-martingale if
it satisfies the conditions listed below.

1. F0 = {∅, X}.

2. There exists a random variable M∞ with values in {(t, t2) | t ∈ R} such that

E |M∞| <∞ and Mn = E(M∞ | Fn).

3. For every n ∈ Z+ and every atom σ in Fn

conv{Mn+1(z)}z∈σ ⊂ ωε.

The third requirement should be understood properly: we define Mn = E(M∞ | Fn) everywhere and
thus, consider the convex hull of a finite number of points. By convA we denote the convex hull of a
set A.

The following lemma plays a crucial role in the proof of Theorem 1.1.

Lemma 1.5 (Theorem 3.4 in [23]). Let M be an ωε martingale. The random variable M1
∞ (the first

coordinate of the R2-valued random variable M∞) satisfies the inequality

‖(M1
∞)∗‖BMO([0,1]) 6 ε. (1.9)

1.3 Our results
The function f : R → R will be subject to some requirements. We will always assume f is measurable
and non-negative. Of course, one may use a slightly weaker assumption that f is uniformly bounded
from below (or replacing f with −f , that f is bounded from above). Sometimes we will need a regularity
assumption.

Definition 1.6. We say that f satisfies the standard requirements if it is a non-negative twice
continuously differentiable function, its third distributional derivative is a signed measure, which changes
sign only finite number of times, and∫

R

e−
|t|
ε |df ′′(t)| <∞ for some ε > 1. (1.10)

These requirements for f are slightly stronger than in [7] (the authors of that paper did not require
the positivity of f). Note that the choices f(t) = |t|p, p ∈ [1, 2), and f(t) = χ

[0,∞)
(t) do not satisfy the

standard requirements (the first one is quite close, while the second function is very far from being C2-
smooth).
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We introduce the main character:

B(x, y, z) = sup
{
EHf (ϕ∞, (Sϕ)2 + z2)

∣∣∣ Eϕ∞ = x, Eϕ2
∞ = y

}
, z > 0, (1.11)

where

Hf (s, t) =

{
−∞, t /∈ [0, 1];

f(s), t ∈ [0, 1],

and the supremum is taken over all simple martingales ϕ adapted to a discrete time filtration. We consider
only simple martingales here to avoid technicalities. Note that it suffices to work with simple martingales
to obtain sharp constants in the inequalities (1.15), (1.16), and (1.22) below.

This Bellman function will help us to find sharp constants in several inequalities. The reader familiar
with the Burkholder method (see the original papers [1] and [10] or the books [12], [25]) may say that
the y-coordinate is redundant. However, we prefer to keep it, because it “tracks” the Hilbert space
identities that link the square function to the martingale itself.

Remark 1.7. For any x, y fixed, the function z 7→ B(x, y, z) is non-increasing. This follows from
formula (1.11), more specifically, from an equivalent formula

B(x, y, z) = sup
{
E f(ϕ∞)

∣∣∣ Eϕ∞ = x, Eϕ2
∞ = y, Sϕ 6

√
1− z2 a. s.

}
. (1.12)

As we will prove a little bit later (see Lemma 2.1 below), the natural domain for B is

Ω =
{

(x, y, z) ∈ R3
∣∣∣ x2 6 y 6 1− z2 + x2, z ∈ [0, 1]

}
. (1.13)

We start with the Bellman function counterpart of Theorem 1.1. Recall the function bε defined
in (1.8).

Lemma 1.8. Let f be a non-negative function. The inequality B(x, y, z) 6 b√1−z2(x, y) is true for any
triple (x, y, z) ∈ Ω.

This lemma implies (1.7) (plug z = 0 and optimize with respect to y). It has already appeared in [21].
We present its proof in Section 2 for completeness (in fact, the arguments are quite elementary here).

Corollary 1.9. Let a measurable function h : R→ R+ satisfy∑
k∈Z

e−|k| sup
x∈[k−2,k+2]

h(x) <∞. (1.14)

Then the quantity Eh(ϕ∞) is finite for any martingale ϕ such that Sϕ 6 1 almost surely. The bound is
uniform with respect to ϕ as long as ϕ0 is fixed.

This corollary will be proved in Section 2. It is sharp in certain sense. For example, one may construct
a C3-smooth function h such that h′′′ > 0 and h(x) = ex/x when x is sufficiently large. Theorem 1.10
below then says B(x, y, z) = b√1−z2(x, y) if both these functions are constructed for f := h. However, one
may see that with this function h the Bellman function b1 is infinite since the integral

∫ 1

0
h(ψ) diverges

if one plugs ψ(t) = − log t into (1.8) (the function log t has BMO-norm equal to one).
As we have said, the inequality in Lemma 1.8 often turns into equality.

Theorem 1.10. Assume f satisfies the standard requirements and either f ′′ is monotone or f ′′ increases
up to some point and then decreases. Then, B(x, y, z) = b√1−z2(x, y) for all (x, y, z) ∈ Ω.

5



Figure 1: Domains Dε
j

Theorem 1.10 was also stated in [21], but was not proved. Its proof is presented in Subsection 3.3.
Note that particular choices f(t) = eλt and f(t) = |t|p, 1 6 p 6 2 (this function does not satisfy the
standard requirements, however, we will be able to cope with this difficulty), fit the assumptions of
Theorem 1.10. The corresponding functions bε were computed in [17] and [18] respectively. These results
will lead us to the corollaries below.

Corollary 1.11. The optimal constant cp in the inequality

‖ϕ∞ − ϕ0‖Lp 6 cp‖Sϕ‖L∞ (1.15)

equals 1 when 1 6 p 6 2.

Corollary 1.12. The optimal constant C(ε) in the inequality

E eϕ−ϕ0 6 C(ε), Sϕ 6 ε. (1.16)

equals e−ε

1−ε when ε < 1.

Sometimes the inequality in Lemma 1.8 is strict on a subdomain of Ω. We present the following
example corresponding to the choice f(t) = χ

[0,∞)
(t). Note that this function does not fulfill the standard

requirements (however, this is not the reason for failure of the equality between the Bellman functions;
we consider this example since it leads to sharp constants in the inequality (1.2)). In this case, the
function bε was computed in [24]. The domain ωε is split into four parts (see Figure 1)

Dε
1 = {(x, y) ∈ ωε | y > 2εx, x > ε} ∪ {(x, y) ∈ ωε | y 6 2εx};

Dε
2 = {(x, y) ∈ ωε | |x| 6 ε, y > 2ε|x|};

Dε
3 = {(x, y) ∈ ωε | y 6 −2εx};

Dε
4 = {(x, y) ∈ ωε | x 6 −ε, y > −2εx},

(1.17)

and the function is defined by the formula:

bε(x, y) =



1, (x, y) ∈ Dε
1

1− y−2εx
8ε2 , (x, y) ∈ Dε

2

1− x2

y , (x, y) ∈ Dε
3

e
2

(
1−

√
1− y−x2

ε2

)
e
x
ε+
√

1− y−x2

ε2 , (x, y) ∈ Dε
4.

(1.18)
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In Section 4, the function B will be computed on the upper boundary of Ω, namely, we will identify
the restriction of B to1

ΩR = Ω ∩ {z =
√

1− y + x2}. (1.19)

The set ΩR naturally splits into four parts, each of which is projected onto the corresponding domain
in (1.17).

Theorem 1.13. Let f(t) = χ
[0,∞)

(t), t ∈ R. The equality

B(x, y,
√

1− y + x2) = b√
y−x2(x, y) (1.20)

holds true whenever (x, y) ∈ D
√
y−x2

j and j = 1, 3, 4. If (x, y) ∈ D
√
y−x2

2 , we have

B(x, y,
√

1− y + x2) = 1−
√

1− ρ2 − ρ
2
√

2
e− arcsin ρ−π4 , where ρ = ρ(x, y) =

x√
2(y − x2)

. (1.21)

Corollary 1.14. The best possible constant c1 in (1.2) equals 1. The optimal constant c in the inequality

P (ϕ∞ − ϕ0 > λ) 6 ce
− λ
‖Sϕ‖L∞ , λ > 0, (1.22)

equals e
2 .

Note that the sharp constant c in the weak type form of the John–Nirenberg inequality∣∣∣{t ∈ [0, 1]
∣∣ ψ(t)−

∫ 1

0

ψ > λ
}∣∣∣ 6 ce

− λ
‖ψ‖BMO[0,1] , λ > 0, (1.23)

also equals e
2 , as it was shown in [24]. Even though for this choice of f the inequality in Lemma 1.8 is

strict at some points of Ω, the sharp constants in the tail estimates (1.22) and (1.23) for the considered
problems coincide.

Though the square function is a very common martingale operator, there are less sharp inequalities
known about it than about the martingale transform or the maximal function. Even the expression for
its Lp → Lp norm is known only in the range p ∈ (1, 2] (and in fact, is due to Burkholder in [1], see
Section 8.3 in [12]). The sharp constant in the weak type (1, 1) inequality was found by Cox in [3] (see
also [15] for another approach and [11] and [4] for related results) while other weak type constants are
unknown. Sharp inequalities for various special classes of martingales (conditionally symmetric martin-
gales, continuous path martingales, etc.) may be found in [14] and [27]. We also mention the article [13],
where questions similar to those considered in the present paper are studied in the dyadic setting (namely,
that paper studies the distribution of Sϕ under conditions ϕ ∈ L∞ and ϕ ∈ BMO in the dyadic setting).
The reader may find many interesting sharp inequalities involving the square function in the 8th chapter
of [12].

In Section 2 we study simple properties of the function B and prove Lemma 1.8, Corollary 1.9, and
Theorem 1.1. Section 3 contains the proofs of Theorem 1.10, Corollary 1.11, and Corollary 1.12. Section 4
is devoted to the proofs Theorem 1.13 and Corollary 1.14.

2 Main inequality and proof of the majorization theorem
The lemma we present below is a standard part of the Bellman function method. One may find a similar
statement in [12], see Chapter 8, Theorem 8.1. We provide a proof for two reasons: completeness and
slight difference between the traditional notation and ours.

1The subscript R in the formula below designates the “roof” of the domain Ω.

7



Lemma 2.1. Let f > 0.

(i) The function B is non-negative on the domain Ω defined by (1.13) and equals −∞ outside it.

(ii) The function B satisfies the boundary condition B(x, x2, z) = f(x) when z ∈ [0, 1].

(iii) The function B satisfies the main inequality

B(x, y, z) >
N∑
j=1

αjB(xj , yj , zj),

whenever
N∑
j=1

αj = 1, αj ∈ [0, 1];

N∑
j=1

αjxj = x;

N∑
j=1

αjyj = y;

∀j z2j = z2 + (xj − x)2; (xj , yj , zj) ∈ Ω, (x, y, z) ∈ Ω.

(2.1)

(iv) Let G : Ω → R be a function that satisfies the same boundary condition as B and also the main
inequality, that is

G(x, y, z) >
N∑
j=1

αjG(xj , yj , zj) (2.2)

whenever the points satisfy the splitting rules (2.1). Then, B 6 G pointwise.

Proof of (i). Due to the assumption f > 0 and (1.12), the assertion that B(x, y, z) is non-negative means
that there exists at least one martingale ϕ such that

ϕ0 = x, Eϕ2
∞ = y, and (Sϕ)2 + z2 6 1 almost surely. (2.3)

We first prove that the existence of such a martingale ϕ implies (x, y, z) ∈ Ω. The necessity of x2 6 y
follows from the Cauchy–Schwarz inequality. The necessity of y 6 1− z2 + x2 is a consequence of the L2

orthogonality:
y − x2 = Eϕ2

∞ − (Eϕ∞)2 = E(Sϕ)2 6 1− z2. (2.4)

Second, for any (x, y, z) ∈ Ω, we may construct a single step martingale ϕ by the formula

ϕ0 = x, ϕ1 =

{
x−

√
y − x2, with probability 1

2 ;

x+
√
y − x2, with probability 1

2 ,
ϕn = ϕ1, n > 1.

Then Eϕ2
∞ = ϕ2

1 = y and Sϕ =
√
y − x2 6

√
1− z2 almost surely.

Proof of (ii). If y = x2, then any martingale ϕ that satisfies (2.3) is a constant. Thus, the set of
martingales over which we optimize in (1.11) consists of a single martingale that equals x identically. For
such a martingale, E f(ϕ∞) = f(x). Therefore, B(x, x2, z) = f(x), whenever z ∈ [0, 1].

Proof of (iii). Let η > 0 be a small parameter to be chosen later. Pick some αj , xj , yj , and zj , j ∈
{1, . . . , N}, that satisfy (2.1). By formula (1.11), for every j ∈ {1, . . . , N}, there exists a simple martin-
gale ϕj such that

ϕj0 = xj , E(ϕj∞)2 = yj , (Sϕj)2 + z2j 6 1 almost surely, (2.5)

and
B(xj , yj , zj) 6 EHf

(
ϕj∞, (Sϕ

j)2 + z2j

)
+ η. (2.6)
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We split the probability space X into N parts Xj such that P (Xj) = αj (recall that our probability
space does not have atoms). We treat each (Xj ,Σ|Xj , 1

αj
P |Xj ) as an individual probability space and

model the martingale ϕj on it (this equips these “small” probability spaces with some filtrations). We
construct the simple martingale ϕ as a concatenation of these martingales:

ϕ0 = x, ∀n ∈ N ϕn =

N∑
j=1

ϕjn−1χXj .

The constructed process ϕ is a martingale because ϕ0 = Eϕ1 due to (2.1) and (2.5). Then, Eϕ2
∞ = y

and
(Sϕ)2 + z2 = (Sϕj)2 + z2j (2.7)

on Xj for any j by (2.1). Therefore,

B(x, y, z) > EHf

(
ϕ∞, (Sϕ)2 + z2

)
=

N∑
j=1

αj EHf

(
ϕj∞, (Sϕ

j)2 + z2j
)
>

N∑
j=1

αjB(xj , yj , zj)− η

by (2.6). We complete the proof by making η arbitrarily small.
Proof of (iv). If we define

Sϕn =
( ∑
m<n

(ϕm+1 − ϕm)2
) 1

2

, (2.8)

then by the main inequality (2.2) the process{
G
(
ϕn,E(ϕ2

∞ | Fn), (Sϕn)2 + z2
)}

n

,

is a submartingale, which stabilizes for n sufficiently large, whenever ϕ is a simple martingale adapted
to F . Then,

G(x, y, z) = EG(ϕ0,Eϕ2
∞, z

2) > lim
n→∞

EG
(
ϕn,E(ϕ2

∞ | Fn), (Sϕn)2 + z2
)

=

EG(ϕ∞, ϕ
2
∞, (Sϕ)2 + z2) = E f(ϕ∞), (2.9)

whenever ϕ is a simple martingale such that x = ϕ0, y = Eϕ2
∞, and (Sϕ)2 6 1− z2. Taking supremum

over all such simple martingales, we obtain G(x, y, z) > B(x, y, z).

Remark 2.2. Note that (iv) says that if there exists some function G satisfying the requirements of this
part, then E f(ϕ∞) 6 G(ϕ0,Eϕ2

∞, 0) for any simple ϕ with Sϕ 6 1.

The boundary y− x2 = 1− z2 is somehow special for our considerations. If the inequality (2.4) turns
into equality, then Sϕ =

√
1− z2 almost surely. Thus,

B(x, x2 + s2,
√

1− s2) = sup
{
E f(ϕ)

∣∣∣ϕ0 = x, Sϕ = s almost surely
}
. (2.10)

The extremal problem on the right hand side is interesting in itself.
We present a simple geometric observation that Lemma 1.8 is based upon. Recall the definition (1.8)

of the domains ωε.

Lemma 2.3. Let the point (x, y, z) ∈ Ω be split into the points (xj , yj , zj) lying inside Ω according to the
rules (2.1). Then, the convex hull of the points (xj , yj) lies in the parabolic strip ω√1−z2 .
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Proof. We will prove that the points (xj , yj) lie below the tangent at (x, x2+1−z2) to the upper boundary
of ω√1−z2 . Note that the statement and the rules (2.1) are invariant with respect to the parabolic shift

(xj , yj , zj) 7→ (xj − τ, yj + τ2 − 2τxj , zj), (2.11)

for any τ ∈ R. So, in what follows we may assume x = 0 (otherwise x can be shifted to 0 using the shift
with τ = x). For any j,

yj 6 1− z2j + x2j ,

simply because (xj , yj , zj) ∈ Ω. Therefore, by the last rule in (2.1) and the assumption x = 0,

yj 6 1− z2j + x2j = 1− z2,

which means exactly that (xj , yj) lies below the tangent to the parabola y = x2 + 1 − z2 at the point
(0, 1− z2).

Proof of Lemma 1.8. We have the following chain of inequalities:

b√1−z2(x, y) >
n∑
j=1

αjb√1−z2(xj , yj) >
n∑
j=1

αjb√1−z2
j
(xj , yj). (2.12)

The first inequality follows from the local concavity of b√1−z2 and the fact that the convex hull of (xj , yj)
lies in ω√1−z2 by Lemma 2.3. The second inequality is a consequence of the fact that bε is an increasing
function of ε (we maximize over a larger set in (1.8) when we increase ε).

So, the function (x, y, z) 7→ b√1−z2(x, y) satisfies the first three requirements of Lemma 2.1. Thus, by
the fourth statement in Lemma 2.1 we have B(x, y, z) 6 b√1−z2(x, y).

Proof of Corollary 1.9. By Theorem 6.1.2 in [7], the function b1 (with h in the role of f) is finite. Com-
bining this information with Lemma 1.8, we obtain the finiteness of B, which, in the light of Remark 2.2,
means exactly the assertion of the Corollary.

Proof of Theorem 1.1. Assume that ‖Sϕ‖L∞ = 1. Let us show that in this case the R2-valued martingale
Mn = (ϕn,E(ϕ2 | Fn)) is an ω1-martingale. We verify three conditions in Definition 1.4. The second
condition is justified by the martingale convergence theorem since ϕ ∈ L2. To verify the third property,
we consider an R3-valued process

µn = (ϕn,E(ϕ2 | Fn), Sϕn), (2.13)

where Sϕn is defined in (2.8). Let a ∈ Fn be an atom. Then, the points (x, y, z) = µn(a) and (xj , yj , zj) =
µn+1(aj), where the aj are all the children of a, satisfy (2.1). Thus, by Lemma 2.3, the convex hull of
the points Mn+1(aj) lies inside ω1. Therefore, M is an ω1-martingale.

Recall M1
∞ is the first coordinate of M∞. By Lemma 1.5, ‖(M1

∞)∗‖BMO([0,1]) 6 1 since M is an
ω1-martingale. We notice that M1

∞ coincides with ϕ∞ and finally obtain the inequality

‖ϕ∗∞‖BMO([0,1]) 6 ‖Sϕ‖L∞ .

The sharpness of this inequality is obtained by considering the martingale ϕ such that ϕ0 = 0 and ϕ1

is ±1 with equal probability.

The lemma below suggests a simpler way to verify property (iii) of Lemma 2.1.
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Lemma 2.4. Let G : Ω → R be a function. Assume that for every point (x, y, z) ∈ Ω \ {y = x2} there
exist numbers `1(x, y, z) and `2(x, y, z) such that the estimate

G(x̄, ȳ, z̄) 6 G(x, y, z) + `1(x, y, z)(x̄− x) + `2(x, y, z)(ȳ − y) (2.14)

holds true for every point (x̄, ȳ, z̄) ∈ Ω such that z̄2 = z2 + (x̄− x)2. Then, G fulfills the main inequality

G(x, y, z) >
N∑
j=1

αjG(xj , yj , zj), (2.15)

where the parameters involved satisfy the splitting rules (2.1).

Remark 2.5. If G is differentiable at (x, y, z), then the natural choice for `1(x, y, z) and `2(x, y, z) would
be the pair of partial derivatives ∂

∂xG(x, y, z) and ∂
∂yG(x, y, z). In fact, one may show a reverse statement.

If G satisfies the main inequality as above and is C1-smooth on Ω, then (2.14) is true with `1 and `2
being the corresponding partial derivatives of G at (x, y, z).

Proof of Lemma 2.4. Pick some collection of parameters that satisfy the splitting rules (2.1). Without
loss of generality, we may assume y > x2 (in this case the main inequality is trivial since in this case
yj = y, xj = x). Setting (x̄, ȳ) = (xj , yj), we obtain

G(xj , yj , zj) 6 G(x, y, z) + `1(x, y, z)(xj − x) + `2(x, y, z)(yj − y), (2.16)

for every j ∈ {1, . . . , N}. Multiplying (2.16) by αj and summing these products, we obtain the desired
inequality

N∑
j=1

αjG(xj , yj , zj) 6

G(x, y, z) +

 N∑
j=1

αjxj − x

 `1(x, y, z) +

 N∑
j=1

αjyj − y

 `2(x, y, z) = G(x, y, z). (2.17)

3 Simple cases

3.1 Foliations for Bellman functions
We describe the function bε defined in (1.8) in the cases needed for the proof of Theorem 1.10. We refer
the reader to [7] for details; as it has been said, some of these results were obtained in earlier papers.

Consider the case f ′′ is non-increasing on the entire line (recall f is twice differentiable). For any
u ∈ R, we draw the segment [

(u, u2),
(
(u− ε), (u− ε)2 + ε2

)]
(3.1)

that touches the upper boundary of ωε. Note that when u runs through R these segments foliate the
entire domain ωε. We call such segments right tangents (since they lie on the right of the tangency point).
For any (x, y) ∈ ωε there is a unique right tangent that passes through it. We denote the corresponding
point u by u

R
(x, y). In other words,

(x, y) ∈
[
(u

R
, u2

R
),
(
(u

R
− ε), (u

R
− ε)2 + ε2

)]
. (3.2)
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Theorem 3.1. Let f satisfy the standard requirements (Definition 1.6) and let f ′′ be non-increasing.
The function bε is linear along right tangents in the sense that there exists a function mR : R → R such
that

bε(x, y) = f(u
R

) +m
R

(u
R

)(x− u
R

), u
R

= u
R

(x, y), (x, y) ∈ ωε. (3.3)

The value of m
R
may be computed by the formula

m
R

(u) = ε−1f(u)− ε−2
0∫

−∞

et/εf(u+ t) dt. (3.4)

The case when f ′′ is non-decreasing is completely similar. In this case, we consider left tangents[
(u, u2),

(
(u+ ε), (u+ ε)2 + ε2

)]
(3.5)

and the corresponding function u
L

: ωε → R such that

(x, y) ∈
[
(u

L
, u2

L
),
(
(u

L
+ ε), (u

L
+ ε)2 + ε2

)]
. (3.6)

Theorem 3.2. Let f satisfy the standard requirements (Definition 1.6) and let f ′′ be non-decreasing.
The function bε is linear along left tangents in the sense that there exists a function mL : R → R such
that

bε(x, y) = f(u
L
) +m

L
(u

L
)(x− u

L
), u

L
= u

L
(x, y), (x, y) ∈ ωε. (3.7)

The value of mL may be computed by the formula

m
L
(u) = −ε−1f(u) + ε−2

∞∫
0

e−t/εf(u+ t) dt. (3.8)

Now consider the case where there exists a point c ∈ R such that f ′′ is non-decreasing on the left of c
and is non-increasing on the right. In this case, there exist unique continuous functions a, b : [0, 2ε]→ R
such that a is decreasing, b is increasing, and

a(0) = b(0) = c; (3.9)

b(l)− a(l) = l, l ∈ [0, 2ε]; (3.10)
f ′(b) + f ′(a)

2
=
f(b)− f(a)

b− a
, a = a(l), b = b(l), l ∈ (0, 2ε]. (3.11)

We split ωε into three domains

ϑ1(ε) =
{

(x, y) ∈ ωε
∣∣∣uL

(x, y) 6 a(2ε)
}

; (3.12)

ϑ2(ε) =
{

(x, y) ∈ ωε
∣∣∣uL

(x, y) > a(2ε), u
R

(x, y) 6 b(2ε)
}

; (3.13)

ϑ3(ε) =
{

(x, y) ∈ ωε
∣∣∣uR

(x, y) > b(2ε)
}
, (3.14)

the first and third of them called tangent domains, the second called a cup. The identity (3.11) is called
the cup equation.
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Theorem 3.3. Let f satisfy the standard requirements (Definition 1.6). Assume f ′′ be non-decreasing
on the left of c and non-increasing on the right. The function bε is linear along the chords[(

a(l), a2(l)
)
,
(
b(l), b2(l)

)]
, l ∈ (0, 2ε], (3.15)

in the sense that

bε(x, y) = αf(a(l)) + βf(b(l)), whenever

x = αa(l) + βb(l), y = αa2(l) + βb2(l), α+ β = 1, α, β > 0.
(3.16)

This defines the function bε in the cup (3.13) foliated by the chords. On the tangent domains (3.12)
and (3.14), the function bε is defined by formulas (3.7) and (3.3) respectively. The corresponding func-
tions m

L
and m

R
are given by the formulas

m
L
(u) =

f(b(2ε))+f(a(2ε))

2ε
exp

(u−a(2ε)

ε

)
− f(u)

ε
+

1

ε2

a(2ε)−u∫
0

e−t/εf(t+ u) dt, u ∈ (−∞, a(2ε)); (3.17)

mR(u) =
f(b(2ε))+f(a(2ε))

2ε
exp

(b(2ε)−u
ε

)
+
f(u)

ε
− 1

ε2

0∫
b(2ε)−u

et/εf(t+ u) dt, u ∈ (b(2ε),+∞). (3.18)

3.2 Useful lemmas
Lemma 3.4. Let (x0, y0, z0) ∈ Ω, y − x2 = y0 − x20 > 0, and x > x0. Let G : Ω → R be a function that
satisfies the first three properties in Lemma 2.1 with a function f continuous on [x0 − ε, x − ε], where
ε =

√
y0 − x20. Then, we have

G(x0, y0, z0) > ε−1
x∫

x0

e−
τ−x0
ε f(τ − ε) dτ + e−

x−x0
ε lim inf

δ→0+
G
(
x, y − δ,

√
z20 + δ

)
. (3.19)

Proof. Let N be a large number, let t = x−x0

N . We construct the points (xn, yn, zn), n ∈ {1, . . . , N},
consecutively, starting from (x0, y0, z0):

xn+1 = xn + t; (3.20)

yn+1 = x2n+1 + yn − x2n − t2; (3.21)

z2n+1 = z2n + t2. (3.22)

We note that
yn+1 − x2n+1 = yn − x2n − t2 6 1− z2n − t2 = 1− z2n+1

and

yn − x2n > yN − x2N = y0 − x20 −Nt2 = y0 − x20 −
(x− x0)2

N
> 0

for N large enough. Thus, all the points (xn, yn, zn) belong to Ω. It is also convenient to introduce a
sequence of parameters εn, where ε2n = yn − x2n. Then,

ε2n = ε2 − nt2. (3.23)
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The point (xn, yn, zn) splits into (xn+1, yn+1, zn+1) and (xn− εn, (xn− εn)2,
√
z2n + ε2n) according to the

rules (2.1), which allows to write

G(xn, yn, zn) >
εn

t+ εn
G(xn+1, yn+1, zn+1) +

t

t+ εn
f(xn − εn). (3.24)

If we combine these inequalities, we arrive at

G(x0, y0, z0) >
(N−1∏
n=0

εn
εn + t

)
G
(
x, y −Nt2,

√
z20 +Nt2

)
+

N−1∑
n=0

t

t+ εn

( n−1∏
j=0

εj
εj + t

)
f(x0 + tn− εn).

(3.25)

It remains to prove that the sum on the right hand side converges as N → ∞ to the right hand side
of (3.19). This is, in fact, a fairly lengthy calculus exercise. We comment on its proof without going
deeply into details. The main “engine” of this effect is that we have εj = ε+O(t), zj = z0+O(t) uniformly
in j ∈ {0, . . . , N} when N is large. This allows to write

n−1∏
j=0

εj
εj + t

= e−
nt
ε +O(t) (3.26)

uniformly in n ∈ {1, . . . , N}. Recalling Nt = x− x0, we get

lim inf
N→∞

(N−1∏
n=0

εn
εn + t

)
G
(
x, y −Nt2,

√
z20 +Nt2

)
> e−

x−x0
ε lim inf

δ→0+
G
(
x, y − δ,

√
z20 + δ

)
. (3.27)

The second term in (3.25) equals

N−1∑
n=0

t

t+ εn

( n−1∏
j=0

εj
εj + t

)
f(x0 + tn− εn) =

t

ε

N−1∑
n=0

e−
nt
ε f(x0 + tn− εn) +O(t)

= ε−1
x∫

x0

e−
τ−x0
ε f(τ − ε) dτ + o(1).

(3.28)

Remark 3.5. In the case x0 > x, the estimate (3.19) should be replaced with

G(x0, y0, z0) > ε−1
x0∫
x

e
τ−x0
ε f(τ + ε) dτ + e

x−x0
ε lim inf

δ→0+
G
(
x, y − δ,

√
z20 + δ

)
. (3.29)

Remark 3.6. Inequalities (3.25) and (3.27) lead to the following assertion. Let (x0, y0, z0) ∈ Ω, y−x2 =
y0−x20 > 0, and x > x0. Let G : Ω→ R be a function that satisfies the first three properties in Lemma 2.1
with a function f non-negative on [x0 − ε, x− ε], where ε =

√
y0 − x20. Then we have

G(x0, y0, z0) > e−
x−x0
ε lim inf

δ→0+
G
(
x, y − δ,

√
z20 + δ

)
. (3.30)

Here we require no continuity assumption on f .
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Lemma 3.7. Let G : Ω → R be a function that satisfies the first three properties in Lemma 2.1. Fix
some z0 ∈ (0, 1). Let (x, y) ∈ R2 be a point such that

0 6 y − x2 < 1− z20 ; (3.31)

y > 2x2. (3.32)

Let also (x0, y0) = α(x, y), where α ∈ (0, 1). Then,

G(x0, y0, z0) > α lim inf
z→z0+

G(x, y, z) + (1− α)f(0). (3.33)

Proof. Let λ = α−1, A = (x, y, z0), and A0 = (x0, y0, z0). In particular, (x, y) = λ(x0, y0). Let N be
a large number to be specified later. Consider the points An = (xn, yn, zn), n ∈ {0, . . . , N}, defined
consecutively

(xn, yn) = λ
n
N (x0, y0); z2n = z2n−1 + (xn − xn−1)2. (3.34)

In other words, the point An−1 splits into An and (0, 0, tn), where

t2n = z2n−1 + x2n−1, (3.35)

according to the rules (2.1) (provided we assume An ∈ Ω; we will approve this assumption slightly later).
We may provide an explicit formula for zn:

z2n = z20 +

n−1∑
k=0

λ
2k
N (λ

1
N − 1)2x20 = z20 + (λ

1
N − 1)

λ
2n
N − 1

λ
1
N + 1

x20. (3.36)

In particular, zN → z0+ when N → ∞. Therefore, AN → A. Since we have assumed strict inequality
in (3.31), we have AN ∈ Ω provided N is sufficiently large.

Since the constructed points satisfy the splitting rules (2.1) and

(xn, yn) = λ
1
N (xn−1, yn−1), (3.37)

we may write the inequalities

G(An−1) > αNG(An) + (1− αN )f(0), αN = λ−
1
N , (3.38)

provided we verify that the points An and (0, 0, tn) belong to Ω for any n. We multiply (3.38) by αn−1N ,
sum over all n, and obtain

G(A0) > αG(AN ) + (1− α)f(0), (3.39)

which implies (3.33) since zN → z0+ when N →∞.
It remains to verify the inequalities yn − x2n 6 1 − z2n and t2n−1 6 1 for any n ∈ {0, . . . , N}. Note

that the quantity 1− z2n is a non-increasing function of n (by (3.34)), whereas yn − x2n is non-decreasing
(by (3.32) and (3.34)). Thus, the inequality yn − x2n 6 1− z2n for smaller n is a consequence of the same
inequality with n = N ; the latter inequality follows from AN ∈ Ω.

The same principle allows to establish the second inequality since tn defined in (3.35) is an increasing
function of n. Thus, it suffices to verify tN−1 6 1, which is a consequence of zN → z0+ and z20 + x2 < 1.
The latter inequality follows from (3.31) and (3.32).

Remark 3.8. We may replace the point (0, 0) with an arbitrary point (t, t2) with the help of a parabolic
shift (2.11) in the lemma above. Here the resulting statement is, with the same function G. Let (x, y) ∈ R2

be a point such that

0 6 y − x2 < 1− z20 ; (3.40)

y − t2 > 2(x− t)2. (3.41)
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Let also (x0, y0) = α(x, y) + (1− α)(t, t2), where α ∈ (0, 1). Then,

G(x0, y0, z0) > α lim inf
z→z0+

G(x, y, z) + (1− α)f(t). (3.42)

Remark 3.9. The proof may be modified to obtain a priori stronger inequality

G(x0, y0, z0) > α lim sup
z→z0+

G(x, y, z) + (1− α)f(t). (3.43)

3.3 Proof of Theorem 1.10
Theorem 3.10. Let f be continuous at a, b ∈ R. Assume that the function b√

1−z2
0

is linear along the

segment ` =
[
(a, a2), (b, b2)

]
⊂ ω√

1−z2
0

. Then B(x0, y0, z0) = b√
1−z2

0

(x0, y0) whenever (x0, y0) ∈ `.

Proof. Let q be the midpoint of `. Then,

B(q, z0) >
f(a) + f(b)

2
= b√

1−z2
0

(q), (3.44)

since (q, z0) might be split into the points(
a, a2,

√
z20 + (b−a)2

4

)
and

(
b, b2,

√
z20 + (b−a)2

4

)
(3.45)

according to the rules (2.1) (note that the said points lie in Ω). Thus, by Lemma 1.8, we have

B(q, z0) = b√
1−z2

0

(q). (3.46)

Let now (x0, y0) lie on ` on the left of q. Remark 3.8 implies

B(x0, y0, z0) > α lim inf
z→z0+

B(x, y, z) + (1− α)f(a), α =
x0 − a
x− a

, (3.47)

for any point (x, y) ∈ ` lying arbitrarily close to q. Similar to the reasoning for the point (q, z0) above,

B(x, y, z) >
f(x−

√
y − x2) + f(x+

√
y − x2)

2
, (3.48)

which implies (with the same notation α = x0−a
x−a )

B(x0, y0, z0) > lim inf
(x,y)→q

(
α
f(x−

√
y − x2) + f(x+

√
y − x2)

2
+ (1− α)f(a)

)
= b√

1−z2
0

(x0, y0). (3.49)

Theorem 3.11. Suppose that f is continuous and non-negative, bε(x, y) is continuous as a function
of (x, y, ε) on {x2 6 y 6 x2 + ε2, 0 < ε 6 1}. Assume that (3.7) and (3.8) hold true for any ε ∈ (0, 1].
Then, B(x0, y0, z0) = b√

1−z2
0

(x0, y0) for all (x0, y0, z0) ∈ Ω.

Proof. Let us first consider the case where y0 − x20 = 1 − z20 . We apply Lemma 3.4, drop the second
summand (using the positivity of B), and set x =∞:

B(x0, y0, z0) > ε−1
∞∫
x0

e−
τ−x0
ε f(τ − ε) dτ, ε2 = y0 − x20 = 1− z20 . (3.50)
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By our assumptions, the right hand side of (3.50) coincides with bε(x0, y0), therefore

B(x0, y0, z0) > bε(x0, y0), ε2 = y0 − x20 = 1− z20 . (3.51)

By Lemma 1.8, this inequality is, in fact, an equality.
Consider now the case y0−x20 < 1− z20 . We split (x0, y0) into the convex combination of (uL , u

2
L
) and

P =

(
u

L
+
√

1− z20 ,
(
u

L
+
√

1− z20
)2

+ 1− z20
)
, (3.52)

along the left tangent ` to the parabola y = x2 + 1− z20 at P ; here

u
L

= u
L
(x0, y0)= x0 −

√
1− z20 +

√
1− z20 + x20 − y0 (3.53)

is defined in (3.6). Remark 3.8 implies

B(x0, y0, z0) > α lim inf
z→z0+

B(x, y, z) + (1− α)f(u
L
), α =

x0 − uL

x− uL

, (3.54)

for any point (x, y) ∈ ` lying arbitrarily close to P . Since the function B(x, y, ·) is non-increasing (see
Remark 1.7), we have

B(x, y, z) > B(x, y,
√

1− y + x2) = b√
y−x2(x, y), (3.55)

the equality holds by the already considered case. We plug this back into (3.54):

B(x0, y0, z0) > αb√
y−x2(x, y) + (1− α)f(uL). (3.56)

It remains to note that when (x, y)→ P , the right hand side tends to b√
1−z2

0

(x0, y0) since b is continuous
and b√

1−z2
0

is linear along ` by our assumptions.

Theorem 3.12. Suppose that f is continuous and non-negative, bε(x, y) is continuous as a function
of (x, y, ε) on {x2 6 y 6 x2 + ε2, 0 < ε 6 1}. Assume that (3.3) and (3.4) hold true for any ε ∈ (0, 1].
Then, B(x, y, z) = b√1−z2(x, y) for all (x, y, z) ∈ Ω.

Theorem 3.13. Suppose that f is continuous and non-negative, bε(x, y) is continuous as a function
of (x, y, ε) on {x2 6 y 6 x2 + ε2, 0 < ε 6 1}. Assume that for any ε ∈ (0, 1] the function bε has the
following structure: there exist some functions a and b that satisfy the properties listed in Theorem 3.3,
and on the domain (3.13) formula (3.16) holds true; formulas (3.7) and (3.3) (with the coefficients given
in (3.18) and (3.17)) define bε on the domains ϑ1(ε) and ϑ3(ε) given in (3.12) and (3.14) respectively.
Then,

B(x0, y0, z0) = b√
1−z2

0

(x0, y0), (x0, y0, z0) ∈ Ω. (3.57)

Proof. Fix z0, ε =
√

1− z20 , and consider the function bε on ωε. By Lemma 1.8 we only need to prove

B(x0, y0, z0) > bε(x0, y0). (3.58)

If (x0, y0) ∈ ϑ2(ε) (see (3.13)), then (3.58) follows from Theorem 3.10. In particular, for

Q =
(a(2ε) + b(2ε)

2
,
a2(2ε) + b2(2ε)

2

)
(3.59)

we have
B(Q, z0) >

f(a(2ε)) + f(b(2ε))

2
= b√

1−z2
0

(Q). (3.60)
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Now we deal with other points that satisfy y − x2 = ε2. Let (x0, y0) with y0 − x20 = ε2 lie on the left
of Q (the other case is completely similar). We apply Lemma 3.4 with (x, y) = Q:

B(x0, y0, z0) > ε−1
x∫

x0

e−
τ−x0
ε f(τ − ε) dτ + e−

x−x0
ε lim inf

δ→0+
B
(
x, y − δ,

√
z20 + δ

) (3.48)

>

ε−1
x∫

x0

e−
τ−x0
ε f(τ − ε) dτ + e−

x−x0
ε lim inf

δ→0+

f(x−
√
ε2 − δ) + f(x+

√
ε2 − δ)

2
=

ε−1
x∫

x0

e−
τ−x0
ε f(τ − ε) dτ + e−

x−x0
ε

f(x− ε) + f(x+ ε)

2
. (3.61)

A direct computation shows that the right hand side coincides with b√
1−z2

0

(x0, y0) described by Theo-

rem 3.3. Thus, we have proved (3.58) for the points satisfying y0 − x20 = ε2.
If (x0, y0) lies inside ϑ1(ε) or ϑ3(ε) (see (3.12) and (3.14)), then (3.58) is proved by the same method

as we used to prove Theorem 3.11.

Proof of Theorem 1.10. If f ′′ is non-decreasing, the theorem follows from Theorems 3.2 and 3.11. If f ′′ is
non-increasing, it follows from Theorems 3.1 and 3.12. In the last case, when f ′′ changes its monotonicity,
we rely upon Theorems 3.3 and 3.13.

Proof of Corollary 1.11. By the very definition,

cp = sup
06y61−z2

B
1
p (0, y, z), (3.62)

where the function B is constructed from the boundary condition f(t) = |t|p. Despite the fact that f
does not fulfill the standard requirements, the corresponding Bellman functions bε are described by the
same formulas as in Theorem 3.3 (see [18]). Therefore, by Theorem 3.13 and Remark 1.7, the supremum
in (3.62) coincides with

sup
06y61

B
1
p (0, y, 0) = sup

06y61
b

1
p

1 (0, y). (3.63)

The latter supremum equals 1 since b1(0, y) = y
p
2 in this case.

Proof of Corollary 1.12. We consider the function B constructed for f(t) = eεt and observe that

C(ε) = sup
06y61

B(0, y, 0). (3.64)

This case falls under the scope of Theorem 1.10. Similar to the previous proof,

C(ε) = sup
06y61

b1(0, y) =
e−ε

1− ε
, (3.65)

as it may be derived from the exact formula for the latter function (see either Theorem 3.2, or the original
paper [17]).

Finally, we present a local version of Theorem 3.13, which may be obtained by the same proof.
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Theorem 3.14. Let 0 < ε1 < ε2 6 1. Suppose that there are continuous functions a, b : [2ε1, 2ε2] → R
such that a is decreasing, b is increasing, and b(l) − a(l) = l for l ∈ [2ε1, 2ε2]. Let tL, tR ∈ R satisfy
inequalities tL < a(2ε2), b(2ε2) < tR. Suppose that f is continuous on [tL, a(2ε1)] ∪ [b(2ε1), tR]. Assume
that for any ε ∈ [ε1, ε2] the function bε satisfies the following properties:

• formula (3.7) with the coefficients given in (3.17) holds on the domain

ϑ1(ε; tL) =
{

(x, y) ∈ ωε
∣∣∣ tL 6 uL(x, y) 6 a(2ε)

}
;

• formula (3.16) holds on any chord
[
(a(l), a2(l)), (b(l), b2(l))

]
, l ∈ [2ε1, 2ε], these chords foliate a

domain we denote by ϑ2(ε; ε1);

• formula (3.3) with the coefficients given in (3.18) holds on the domain

ϑ3(ε; tR) =
{

(x, y) ∈ ωε
∣∣∣ b(2ε) 6 u

R
(x, y) 6 tR

}
.

Assume that bε(x, y) is continuous as a function of (x, y, ε) on the domain

ϑ =
{

(x, y) ∈ ωε
∣∣∣ (x, y) ∈ ϑ1(ε; tL) ∪ ϑ2(ε; ε1) ∪ ϑ3(ε; tR), ε1 6 ε 6 ε2

}
.

Then,
B(x, y, z) = b√1−z2(x, y),

(
x, y,

√
1− z2

)
∈ ϑ. (3.66)

4 Case f(t) = χ
[0,+∞)

(t) and sharp tail estimates

In this section, we will present the proofs of Theorem 1.13 and Corollary 1.14. In other words, we will
describe the trace of the Bellman function (1.11) with f(t) = χ

[0,+∞)
(t) on ΩR defined in (1.19).

The exposition is organized as follows. We start with solving an auxiliary optimization problem,
which we call the model problem, in Subsection 4.1. Subsection 4.2 contains the proof of Theorem 1.13,
the solution of the model problem from the previous subsection plays the crucial role there. Finally, we
establish Corollary 1.14 in Subsection 4.3.

4.1 Model problem
4.1.1 Setting

Consider the domain
ωsmile = {(x, y) ∈ R2

∣∣ 2x2 6 y 6 x2 + 1, x ∈ [−1, 1]}. (4.1)

We say that a function R : ωsmile → R satisfies the main inequality of the model problem provided

R(x, y) > α+R(x+, y+) + α−R(x−, y−), where

x = α+x+ + α−x−, y = α+y+ + α−y−,
y+ − y−
x+ − x−

= 2x,

α+ + α− = 1, α0, α1 ∈ (0, 1), and (x, y), (x+, y+), (x−, y−) ∈ ωsmile,

(4.2)

for any choice of the parameters. Geometrically, the main inequality of the model problem is the usual
convexity condition when the point (x, y) splits into (x+, y+) and (x−, y−) along the tangent to the
parabola y = x2 + c passing through (x, y).
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We posit the model problem: find the pointwise minimal function R among all function R : ωsmile → R
that satisfy the main inequality of the model problem and the boundary conditions

R(x, 2x2) = h(x), x ∈ [−1, 1], where h(x) =

{
1, x > 0;
1
2 , x < 0.

(4.3)

Remark 4.1. One may consider a similar homogeneous extremal problem on a larger domain {y > 2x2}
(with the same boundary value h). It is easy to see that the restriction to ωsmile of the solution of this
new problem coincides with R. Thus,

R(λx, λ2y) = R(x, y), (x, y) ∈ ωsmile, 0 < λ 6 1. (4.4)

4.1.2 Parametrization and differential equation

The domain ωsmile can be split into the parabolic arcs

Pc =
{

(x, x2 + c2)
∣∣ |x| 6 c

}
, 0 6 c 6 1. (4.5)

By the homogeneity relation (4.4), it suffices to focus on the case c = 1 and determine the values of R
on P1.

Consider a parametrization (v(t), w(t)) of the arc P1. More specifically, we consider two functions
v and w = v2 + 1 defined on [1,+∞] such that v increases, v(1) = −1, and v(+∞) = 1. We split
every point (v(t), w(t)) ∈ P1 into (x+(t), y+(t)) lying on the boundary {y = 2x2, x > 0} and an in-
finitesimally close point (x−(t), y−(t)), according to the rules (4.2) (see Figure 2). We will search for the
function M : ωsmile → R satisfying homogeneity relation (4.4) (with M instead of R) for which the main
inequality “turns into equality” along the said splitting. It will appear that the function M constructed
in such a way satisfies the equation

M(v, w) +
〈
∇M

(
v, w

)
, (x+ − v, y+ − w)

〉
= 1. (4.6)

Note that the parametrization has not been specified yet. It will be specified in Subsubsection 4.1.3
below.

The trace of M on P1 will be denoted by Ψ:

Ψ(x) = M(x, x2 + 1), x ∈ [−1, 1]; M(x, y) = Ψ
( x√

y − x2
)
, (x, y) ∈ ωsmile. (4.7)

Recall the boundary values (4.3). We will search for the functions v, w, and Ψ in the form

v(t) =
1

t

t∫
0

ϕ(s) ds, w(t) =
1

t

t∫
0

2ϕ2(s) ds, Ψ(v(t)) =
1

t

t∫
0

h(ϕ(s)) ds, t > 1, (4.8)

where ϕ satisfies the conditions

ϕ : [0,∞)→ R, ϕ(t) = −1 for t ∈ [0, 1); ϕ(1) = 0; ϕ(t) > 0 for t > 1. (4.9)

We also require ϕ to be a non-decreasing function. One may check that x+(t) = ϕ(t), y+(t) = 2ϕ2(t) in
the sense that the tangent vector to the curve (v(t), w(t)) points to (ϕ(t), 2ϕ2(t)), and

v′(t) = −v(t)

t
+
ϕ(t)

t
, w′(t) = −w(t)

t
+

2ϕ2(t)

t
, (4.10)

d

dt
M(v(t), w(t)) = −M(v(t), w(t))

t
+
h(ϕ(t))

t
. (4.11)
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Figure 2: Illustration to the model problem

We rewrite the left hand side of (4.11):

d

dt
M(v(t), w(t)) = 〈∇M(v(t), w(t)), (v′(t), w′(t))〉 =

− 1

t
〈∇M(v(t), w(t)), (v(t)− ϕ(t), w(t)− 2ϕ(t)2)〉, (4.12)

then plug (4.12) into (4.11) taking into account that h(ϕ(t)) = 1 for t > 1, and obtain (4.6).

4.1.3 Solution of differential equation

Using (4.8) and the relation w = v2 + 1, we can write down the following chain of equalities:

t(v2(t) + 1) = tw(t) = 2

∫ t

0

ϕ2(s) ds
(4.10)
= 2

∫ t

0

(
v(s) + sv′(s)

)2
ds. (4.13)

We differentiate this relation and obtain

v2(t) + 1 + 2tv(t)v′(t) = 2(v(t) + tv′(t))2,

or
(v(t) + 2tv′(t))2 = 2− v2(t).

We are looking for increasing functions ϕ and v. Thereby, we have to solve the following Cauchy problem

2tv′(t) = −v(t) +
√

2− v2(t), v(1) = −1, t > 1,

or
dt

t
=

2dv√
2− v2 − v

.

Hence

log t =

∫ v

−1

2√
2− z2 − z

dz =

∫ arcsin( v√
2
)

−π/4

2

cos θ − sin θ
cos θ dθ =

(
θ − log(cos θ − sin θ)

)∣∣∣arcsin( v√
2
)

−π/4
= arcsin

(
v√
2

)
+
π

4
+

log 2

2
− log

(√
1− v2

2
− v√

2

)
.
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Therefore,

t =
2√

2− v2 − v
e
arcsin

(
v√
2

)
+π

4 . (4.14)

Note that t runs from 1 to +∞ as v runs from −1 to 1.
Now, we are able to compute Ψ(v(t)). Recall that ϕ(t) = −1, when t ∈ [0, 1), and ϕ(t) > 0 for t > 1.

Therefore, for t ∈ [0, 1) we have

Ψ(v(t)) = M(−1, 2) =
1

2
.

For t > 1 we use the last formula in (4.8) and the definition of the function h in (4.3) and deduce

Ψ(v(t)) =
1

t

1∫
0

1

2
ds+

1

t

t∫
1

1 ds = 1− 1

2t
. (4.15)

If we plug here the solution found in (4.14), we get

Ψ(v) = 1−
√

2− v2 − v
4

e
− arcsin

(
v√
2

)
−π4 , v ∈ [−1, 1]. (4.16)

By the homogeneity relation (4.7) for an arbitrary point (x, y) ∈ ωsmile we have

M(x, y) = 1−
√

1− ρ2 − ρ
2
√

2
e− arcsin ρ−π4 , where ρ = ρ(x, y) =

x√
2(y − x2)

. (4.17)

We have finished the construction of the function M and now will prove that it solves the model problem.

4.1.4 Verification of the main inequality

We would like to prove that the function M defined in (4.17) satisfies the main inequality (4.2) of the
model problem. We will not do this directly, but rather rely upon a principle similar to Lemma 2.4. We
omit the proof of the following lemma because it is completely similar to the proof of Lemma 2.4.

Lemma 4.2. Assume R : ωsmile → R is differentiable on ωsmile and satisfies the inequality

R(x̄, ȳ) 6 R(x0, y0) +
∂R

∂x
(x0, y0) · (x̄− x0) +

∂R

∂y
(x0, y0) · (ȳ − y0) (4.18)

for every points (x0, y0) ∈ ωsmile and (x̄, ȳ) ∈ ωsmile such that ȳ− y0 = 2x0(x̄− x0). Then, R satisfies the
main inequality of the model problem (4.2).

Lemma 4.3. The function M as in (4.17) satisfies (4.18) in the role of R, i. e., the inequality

M(x̄, ȳ) 6 M(x0, y0) +
∂M

∂x
(x0, y0) · (x̄− x0) +

∂M

∂y
(x0, y0) · (ȳ − y0) (4.19)

holds true for any (x0, y0) ∈ ωsmile and (x̄, ȳ) ∈ ωsmile such that ȳ − y0 = 2x0(x̄− x0).

Proof. Case x̄ > x0.
Let c ∈ (0, 1]. For any point (x, y) such that (x, y) ∈ ωsmile and max(−2cx, x2) 6 y 6 x2 + c2 we find

two numbers u
R
and v

R
such that v

R
6 x 6 u

R
and

2u2
R
− v2

R
− c2

uR − vR

=
y − v2

R
− c2

x− vR

= 2vR ,
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Figure 3: Definition of u
R
and v

R
.

see Figure 3.
We deduce that

vR = vR(x, y, c) = x−
√
x2 + c2 − y, uR = uR(x, y, c) =

vR +
√

2c2 − v2
R

2
. (4.20)

We introduce the function G
R
defined on the domain{

(x, y, c)
∣∣∣ c ∈ (0, 1], max(−2cx, x2) 6 y 6 x2 + c2

}
by the formula:

G
R

(x, y, c) =
u

R
− x

u
R
− v

R

Ψ
(v

R

c

)
+

x− v
R

u
R
− v

R

=
u

R
− x

u
R
− v

R

(
Ψ
(v

R

c

)
− 1
)

+ 1, (4.21)

where uR = uR(x, y, c), vR = vR(x, y, c), and Ψ was defined in (4.7) and got its explicit form in (4.16). For
any c fixed the function GR( · , · , c) is linear along each segment connecting the points (vR , v

2
R

+ c2) and
(u

R
, 2u2

R
), and coincides with M at their endpoints. Also from the construction of M (see formula (4.6))

we deduce that the function G
R
has the following property:

M(x0, y0) +
∂M

∂x
(x0, y0) · (x̄− x0) +

∂M

∂y
(x0, y0) · 2x0(x̄− x0) = G

R
(x̄, ȳ, c0) (4.22)

with c0 =
√
y0 − x20.

On the other hand, for c̄ =
√
ȳ − x̄2 we have v

R
(x̄, ȳ, c̄) = x̄, and therefore G

R
(x̄, ȳ, c̄) = M(x̄, ȳ). It

may be seen that c̄ < c0:

c̄2 = ȳ − x̄2 = y0 − x20 − (x̄− x0)2 < y0 − x20 = c20 .

Thus, to prove (4.19) it suffices to show that the function G
R

(x̄, ȳ, c) does not decrease in c. In other
words, we wish to verify the inequality

∂G
R

(x, y, c)

∂c
> 0. (4.23)

It follows from (4.20) that
∂vR

∂c
= − c√

x2 + c2 − y
=

c

v
R
− x

, (4.24)
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∂u
R

∂c
=

1

2

(
∂v

R

∂c
+

4c− 2v
R

∂v
R

∂c

2
√

2c2 − v2
R

)
=

1

2

(
c

v
R
− x

+
2c− cv

R

v
R
−x

2u
R
− v

R

)
=

c(u
R
− x)

(v
R
− x)(2u

R
− v

R
)
. (4.25)

We differentiate (4.21) and obtain

∂GR(x, y, c)

∂c
=

∂u
R

∂c (u
R
− v

R
)− (

∂u
R

∂c −
∂v

R

∂c )(u
R
− x)

(u
R
− v

R
)2

(
Ψ
(vR

c

)
− 1
)

+
uR − x
u

R
− v

R

·
∂v

R

∂c c− vR

c2
Ψ′
(vR

c

)
.

Formula (4.16) for the function Ψ implies

Ψ′(v) =
1

2
e
−π/4−arcsin v√

2 . (4.26)

Using (4.16) and (4.26), we continue the evaluation of ∂GR
(x,y,c)

∂c and obtain that it equals to(
∂u

R

∂c (uR − vR − uR + x) +
∂v

R

∂c (uR − x)

4(u
R
− v

R
)2

(
vR

c
−
√

2−
v2

R

c2

)
+

uR − x
u

R
− v

R

·
∂v

R

∂c c− vR

2c2

)
e
− arcsin

(
v
R√
2c

)
−π4 .

We may omit the exponent multiplier since we are interested in the sign of the expression ∂G
R
(x,y,c)

∂c only.
Note that relation (4.20) yields

vR

c
−
√

2−
v2

R

c2
= 2

vR − uR
c

.

Applying (4.24) and (4.25), we continue the computation

1

(u
R
− v

R
)2

(
(x− v

R
)

c(u
R
− x)

(v
R
− x)(2u

R
− v

R
)

+
c(u

R
− x)

v
R
− x

)
2(v

R
− u

R
)

4c
+

u
R
− x

2c2(u
R
− v

R
)

(
c2

v
R
− x
− v

R

)

=
uR − x

2(u
R
− v

R
)2

(
1

v
R
− 2u

R

+
1

v
R
− x

)
(vR − uR)− uR − x

2(v
R
− u

R
)

(
1

v
R
− x
− vR

c2

)

=
u

R
− x

2(v
R
− u

R
)

(
1

v
R
− 2u

R

+
v

R

c2

)
=

u
R
− x

2c2(u
R
− v

R
)(2u

R
− v

R
)

(
(v

R
− u

R
)2 + c2 − u2

R

)
,

which is non-negative because 0 6 uR 6 c and vR 6 x 6 uR . This finishes the proof of (4.23).

Case x̄ < x0.
We will construct another auxiliary function G

L
in the following way. Let c > 0. For any point (x, y)

such that (x, y) ∈ ωsmile and max(2cx, x2) 6 y 6 x2 + c2, we find two numbers u
L
and v

L
such that

x 6 vL 6 uL and
2u2

L
− v2

L
− c2

uL − vL

=
y − v2

L
− c2

x− vL

= 2vL ,

see Figure 4. After some calculations, we get

vL = vL(x, y, c) = x+
√
x2 + c2 − y, uL = uL(x, y, c) =

vL +
√

2c2 − v2
L

2
. (4.27)

We introduce the function G
L
defined on the domain{

(x, y, c)
∣∣∣ c ∈ (0, 1], max(2cx, x2) 6 y 6 x2 + c2

}
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Figure 4: Definition of uL and vL .

by the formula:

GL(x, y, c) =
uL − x
u

L
− v

L

Ψ
(vL

c

)
+

x− vL

u
L
− v

L

=
uL − x
u

L
− v

L

(
Ψ
(vL

c

)
− 1
)

+ 1. (4.28)

For any c fixed the function G
L
( · , · , c) is linear on the extension of the segment connecting the points

(v
L
, v2

L
+ c2) and (u

L
, 2u2

L
) beyond the point (v

L
, v2

L
+ c2), and coincides with M at these two points. Also

from the construction of M (see (4.6)) we deduce that the function G
L
satisfies the following property:

M(x0, y0) +
∂M

∂x
(x0, y0) · (x̄− x0) +

∂M

∂y
(x0, y0) · 2x0(x̄− x0) = G

L
(x̄, ȳ, c0), (4.29)

for c0 =
√
y0 − x20.

On the other hand, for c̄ =
√
ȳ − x̄2 we have G

L
(x̄, ȳ, c̄) = M(x̄, ȳ). Again, we have c̄ < c0. Thus, it

suffices to show that the function G
L
(x̄, ȳ, c) increases in c, i. e., the inequality

∂G
L
(x, y, c)

∂c
> 0. (4.30)

From equations (4.27) we obtain

∂v
L

∂c
=

c√
x2 + c2 − y

=
c

v
L
− x

. (4.31)

We note that the right hand side of (4.31) coincides with the right hand side of (4.24) (v
R

is simply
replaced with v

L
), and u

L
is defined by v

L
exactly in the same way as u

R
was defined by v

R
. The same

calculations as we have already done in the proof of (4.23) lead us to the fact that (4.30) is equivalent to

u
L
− x

c2(uL − vL)(2uL − vL)

(
(v

L
− u

L
)2 + c2 − u2

L

)
> 0, (4.32)

which holds true because x 6 v
L
6 u

L
and 0 6 u

L
6 c.

4.1.5 Minimality

Lemmas 4.2 and 4.3 imply M(x, y) > R(x, y) for any (x, y) ∈ ωsmile. Now we wish to prove the reverse
inequality.
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Lemma 4.4. Let R be the solution of the model problem and let M be the function defined in (4.17).
Then, for any (x, y) ∈ ωsmile, we have R(x, y) > M(x, y).

Proof. Due to the homogeneity relation (4.4), it suffices to consider the case (x, y) ∈ P1. Let r(t) =
R(v(t), w(t)), here we use the parametrization (v(t), w(t)) of P1 introduced in Subsubsection 4.1.2. We
will show that r is continuous and for every t > 1 the inequality

d−
dt

[t r(t)] > 1 (4.33)

holds true. By d−
dt we mean the lower derivative, that is

d−r

dt
(t0) = lim inf

t→t0

r(t)− r(t0)

t− t0
.

Once (4.33) is proved, we may use formula (4.15) that implies

d−
dt

[
t
(
r(v(t))−Ψ(v(t))

)]
> 0. (4.34)

This yields the desired estimate R(v(t), w(t))−M(v(t), w(t)) > 0, because the two functions in question
are continuous and are equal at t = 1.

The proof of (4.33) and the continuity of r will take some time. Fix a point (v0, w0), where w0 = v20 +1
and v0 = v(t0) for some t0 ∈ (1,∞). Draw the tangent line through (v0, w0) to the upper boundary
of ωsmile:

y = 2v0x+ 1− v20 . (4.35)

Take two more points on this line (x±, y±), where one of them is the right point of intersection with the
lower boundary of ωsmile, i. e.,

x+ = ϕ(t0) =
v0 +

√
2− v20

2
, y+ = 2ϕ2(t0) = 1 + v0

√
2− v20 ,

and the second is defined as follows:

x− =
vv0 +

√
1 + v2 − v20

1 + v2
v , y− =

(
vv0 +

√
1 + v2 − v20

)2
1 + v2

, (4.36)

where v = v(t) for some t ∈ [1,∞), t 6= t0. At these points we have R(x+, y+) = 1 and R(x−, y−) = r(t).
The latter identity holds true by (4.4), because the points (x−, y−) and (v, v2 + 1) lie on the parabola

y =
1 + v2

v2
x2.

We write down the concavity property (4.2):

r(t0) >
x+ − v0
x+ − x−

· r(t) +
v0 − x−
x+ − x−

· 1, if t < t0 ; (4.37)

r(t) >
x+ − x−
x+ − v0

· r(t0) +
x− − v0
x+ − v0

· 1, if t > t0 . (4.38)

We may rewrite (4.37) and (4.38) as follows

(x+ − v0)(r(t)− r(t0)) 6 (x− − v0)(1− r(t0)), if t < t0 ;

(x+ − v0)(r(t)− r(t0)) > (x− − v0)(1− r(t0)), if t > t0 .
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Both these inequalities turn into

r(t)− r(t0)

t− t0
>
x− − v0
t− t0

· 1− r(t0)

x+ − v0
(4.39)

after dividing by (t− t0)(x+ − v0).
Let us calculate the right hand side of this inequality. Using (4.10) we get

x+ − v0 = ϕ(t0)− v(t0) = t0v
′(t0) .

From the definition (4.36) of x− we deduce

x− − v0 =
v2 − v20

v0 + v
√

1 + v2 − v20
.

Therefore, (4.39) may be rewritten as

r(t)− r(t0)

t− t0
>
v − v0
t− t0

· v + v0

v0 + v
√

1 + v2 − v20
· 1− r(t0)

t0v′(t0)
. (4.40)

We see that the right hand side has a limit as t→ t0:

lim
t→t0

v − v0
t− t0

· v + v0

v0 + v
√

1 + v2 − v20
· 1− r(t0)

t0v′(t0)
=

1− r(t0)

t0
,

whence
lim inf
t→t0

r(t)− r(t0)

t− t0
>

1− r(t0)

t0
,

what is exactly the desired estimate (4.33).
It remains to check continuity of r. First we note that (4.40) implies that r is an increasing function

because v is. We will write down the same property (4.2) with (x+, y+) being not the right but the left
point of intersection with the lower boundary of ωsmile, i. e.,

x+ =
v0 −

√
2− v20

2
.

The point (x−, y−) is defined as before by (4.36), where v = v(t) and t > t0. Thus, now we have
x+ < v0 < x−, R(x+, y+) = 1

2 , R(x−, y−) = r(t), and the concavity property (4.2) takes the form

r(t0) >
x− − v0
x− − x+

· 12 +
v0 − x+
x− − x+

· r(t) .

Therefore,
(x− − v0)(r(t0)− 1

2 ) > (v0 − x+)(r(t)− r(t0)) , (4.41)

whence

0 6 r(t)− r(t0) 6
x− − v0
v0 − x+

(r(t0)− 1
2 ) 6

x− − v0
v0 − x+

· 12

=
v2 − v20

v0 + v
√

1 + v2 − v20
· 1

v0 +
√

2− v20
6

v − v0
v0 +

√
2− v20

.
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Since v is a continuous function, this inequality proves that r is continuous at any point t0, t0 > 1 (i. e.,
v0 > −1). It remains to verify continuity of the function r at the point t = 1 from the right. We know
that r is an increasing function, therefore, there exists a limit

lim
t→1+

r(t)
def
= r1. (4.42)

Due to (4.41) we have r(t0) > 1
2 for every t0 > 1, whence r1 > 1

2 . At the same time we have already
proved that r(t) 6 Ψ(v(t)) = 1 − 1

2t , i. e., r1 6 1
2 . So, r1 = 1

2 and we have proved continuity of r
on [1,∞).

Summarizing all preceding consideration, we conclude that the solution of the model problem is given
by the following formula:

R(x, y) = 1−
√

1− ρ2 − ρ
2
√

2
e− arcsin ρ−π4 , where ρ = ρ(x, y) =

x√
2(y − x2)

. (4.43)

4.2 Construction of the function and verification of the main inequality
The set ΩR defined in (1.19) has special relationship with the splitting rules (2.1). It follows from
Lemma 2.3 that if (x, y, z) ∈ ΩR is split into some points (xj , yj , zj) according to the rules (2.1), then,
first, all the points (xj , yj) lie on the tangent line to the parabola y − x2 = 1 − z2, and second, all the
points (xj , yj , zj) belong to ΩR. One may say that ΩR has separate dynamics.

Thus, if we denote B(x, y,
√

1− y + x2) by B̂(x, y), then B̂ may be described as the minimal among
functions G : ω1 → R that satisfy the boundary conditions G(x, x2) = χ

[0,∞)
(x) and the main inequality

G(x, y) >
N∑
j=1

αjG(xj , yj), where

x =

N∑
j=1

αjxj , y =

N∑
j=1

αjyj ,
yj − y
xj − x

= 2x,

N∑
j=1

αj = 1, αj > 0, and (x, y), (xj , yj) ∈ ω1.

(4.44)

Note that the main inequality (or the splitting rules) almost coincides with the main inequality (4.2) of
the model problem. The only difference is that the two extremal problems are set on different domains
(the splitting into N points with arbitrary N may be reduced to many splittings into 2 points; formally,
we will not use this principle).

Lemma 4.5. The function B̂ satisfies the following equality :

B̂(x, y) = b√
y−x2(x, y), x2 6 y 6 min(2x2, x2 + 1).

Proof. Lemma 1.8 implies

B̂(x, y) 6 b√
y−x2(x, y), x2 6 y 6 min(2x2, x2 + 1), (4.45)

therefore, it suffices to prove the reverse inequality. Note that here we cannot use theorems from Section 3
directly due to the discontinuity of f .

First, let x2 6 y 6 min(2x2, x2 + 1) and x > 0. Then, by (3.48) we have B̂(x, y) > 1.
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Second, let (x0, y0) ∈ ω1 with x20 6 y0 6 2x20 and x0 < 0. Let ε =
√
y0 − x20. Take any small θ > 0

and apply Remark 3.6 with (x, y) = (−ε+ θ, (−ε+ θ)2 + ε2):

B̂(x0, y0) > e−
x−x0
ε lim inf

δ→0+
B̂(x, y − δ)

(3.48)

>

e−
x−x0
ε lim inf

δ→0+

f(x−
√
y − δ − x2) + f(x+

√
y − δ − x2)

2
=

1

2
e−

x−x0
ε .

Considering arbitrarily small θ > 0, we obtain

B̂(x0, y0) >
1

2
e
x0
ε +1 (1.18)

= bε(x0, y0). (4.46)

Lemma 4.5 implies that B̂(x, y) = b√
y−x2(x, y) on ω1\ωsmile. Moreover, B̂|ωsmile

satisfies the boundary
conditions (4.3) and the main inequality (4.2) of the model problem. Thus,

B̂(x, y) > R(x, y), (x, y) ∈ ωsmile. (4.47)

To prove Theorem 1.13, it suffices to show that the function G defined as

G(x, y) =

{
b√

y−x2(x, y), (x, y) ∈ ω1 \ ωsmile,

R(x, y), (x, y) ∈ ωsmile,
(4.48)

satisfies the main inequality (4.44). This is our target for the remaining part of the subsection. It is
convenient to introduce the domains

ω
R

= {(x, y) ∈ ω1 | y 6 2x2, x > 0}; ω
L

= {(x, y) ∈ ω1 | y 6 2x2, x 6 0}. (4.49)

The function G is homogeneous: G(λx, λ2y) = G(x,y) for λ ∈ (0, 1], therefore, without loss of generality
we may assume that y = x2 + 1. If (x, y) /∈ ωsmile then

G(x, y) = b√
y−x2

(x, y)
(2.12)

>
N∑
j=1

αjb√
yj−x2

j

(xj , yj) >
N∑
j=1

αjG(xj , yj).

In what follows we consider only (x, y) ∈ ωsmile such that y 6= 2x2. Instead of verifying (4.44) we will
prove the inequality

G(x̄, ȳ) 6 G(x, y) +
∂G

∂x
(x, y) · (x̄− x) +

∂G

∂y
(x, y) · (ȳ − y) (4.50)

for (x̄, ȳ) ∈ ω1 ∩ `, where ` = {(x,y) | y − y = 2x(x − x)}. Indeed, one may argue as in the proof of
Lemma 2.4 to show that (4.50) yields (4.44).

The right hand side of (4.50) is linear with respect to x̄ when (x̄, ȳ) ∈ ` and is equal to

L(x̄) = M(x, y) +
∂M

∂x
(x, y) · (x̄− x) +

∂M

∂y
(x, y) · 2x(x̄− x)

since G = M on ωsmile. Lemma 4.3 implies that (4.50) holds true for (x̄, ȳ) ∈ ωsmile∩ ` because G(x̄, ȳ) =

M(x̄, ȳ). The point (x+
√
2−x2

2 , 1 + x
√

2− x2) is the intersection of ` with the common boundary of ω
R
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and ωsmile, therefore, L(x+
√
2−x2

2 ) = 1 by the construction of M (see (4.6)). Also, we know that L(x) =
M(x, y) < 1, therefore L(x̄) > 1 for (x̄, ȳ) ∈ ω

R
∩ `.

Thus, it remains to prove that (4.50) holds for (x̄, ȳ) ∈ ω
L
∩ `:

G(x̄, ȳ) 6 L(x̄) = 1 +
2x̄− (x+

√
2− x2)

x−
√

2− x2
(
G(x, x2 + 1)− 1

)
. (4.51)

Recall that G(x̄, ȳ) = b√
ȳ−x̄2

(x̄, ȳ) is given by (1.18) for (x̄, ȳ) ∈ ω
L
:

G(x̄, ȳ) =
1

2
e
1+ x̄√

ȳ−x̄2 =
1

2
e
1+ x̄√

1−(x−x̄)2 , (4.52)

here we have used that ȳ = 2x(x̄− x) + x2 + 1. The value G(x, x2 + 1) equals to Ψ(x) defined in (4.16):

G(x, x2 + 1) = Ψ(x) = 1−
√

2− x2 − x
4

e
− arcsin

(
x√
2

)
−π4 . (4.53)

We rewrite (4.51) using (4.52) and (4.53):

1

2
e
1+ x̄√

1−(x−x̄)2 6 1 +
2x̄− (x+

√
2− x2)

4
e
− arcsin

(
x√
2

)
−π4 . (4.54)

We introduce the variables

α =
π

4
+ arcsin

x√
2
, γ = arcsin(x− x̄). (4.55)

Then,

x =
√

2 sin
(
α− π

4

)
= sinα− cosα,

x̄ = x− sin γ = sinα− cosα− sin γ,

x+
√

2− x2 =
√

2 sin
(
α− π

4

)
+
√

2 cos
(
α− π

4

)
= 2 sinα.

Note that α, γ ∈ [0, π2 ]. The condition (x̄, ȳ) ∈ ω
L
implies that x̄ 6 x−

√
2−x2

2 , i. e., x − x̄ > x+
√
2−x2

2 .
From this we obtain 0 6 α 6 γ 6 π

2 . Rewrite (4.54) in the variables α, γ:

1

2
e1+

sinα−cosα−sin γ
cos γ 6 1− cosα+ sin γ

2
e−α. (4.56)

It suffices to show that for the fixed parameter γ, 0 6 γ 6 π
2 , the function

F (α) = e1+
sinα−cosα−sin γ

cos γ − 2 + cosαe−α + sin γe−α

attains only non-positive values for 0 6 α 6 γ. Our next step is to prove the convexity of F . Its first and
second derivatives are written below

F ′(α) = e−α (− sinα− cosα− sin γ) + e1+
sinα−cosα−sin γ

cos γ

(
cosα+ sinα

cos γ

)
;

F ′′(α) = e−α (2 sinα+ sin γ) + e1+
sinα−cosα−sin γ

cos γ

(
cosα+ sinα

cos γ

)2

+e1+
sinα−cosα−sin γ

cos γ

(
cosα− sinα

cos γ

)
.
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The first term on the right side in the last equality is non-negative. By grouping the second and third
terms, we get that the second derivative of the function F is also always non-negative. Indeed, it follows
from the estimate 1 > sinα cos γ and that all other expressions involved are positive. We have shown
that the function F is convex. To estimate its values from above on [0, γ], it suffices to show F (0) 6 0
and F (γ) 6 0. We start with the case α = 0:

F (0) = (1 + sin γ) + e1−
1+sin γ
cos γ − 2.

The statement we need to prove is equivalent to the fact that the function

Φ(γ) = 1− 1 + sin γ

cos γ
− log(1− sin γ)

takes only non-positive values when γ ∈ [0, π/2]. It should be noted that Φ(0) = 0, while

Φ′(γ) = −cos2 γ + sin γ(1 + sin γ)

cos2 γ
+

cos γ

1− sin γ
=

(cos γ − 1)(1 + sin γ)

cos2 γ
6 0.

We have obtained that Φ(γ) 6 0, so the estimate F (0) 6 0 follows. Now, we verify the inequality for the
right endpoint of the segment, i. e., for α = γ:

F (γ) = e−γ(sin γ + cos γ)− 1 6 0.

One may easily see that for γ = 0 the inequality turns into equality. Taking the derivative of the function
on the left side of this inequality, we get −2 sin γe−γ . The last term is negative for γ ∈ (0, π2 ] and the
estimate F (γ) 6 0 follows.

4.3 Computation of the constant
In this section, we present the proof of Corollary 1.14. Recall that our goal is to find the optimal constant
in (1.22). Since the square function is homogeneous and vanishes on constants, it suffices to find the best
possible constant copt in the estimate

P (ϕ∞ > 0) 6 ce−λ, where ϕ0 = −λ and ‖Sϕ‖L∞ = 1. (4.57)

Recall that the Bellman function B(x, y, z) was defined by formula (1.11), and in Lemma 1.8 we have
shown that the inequality B(x, y, z) 6 b√1−z2(x, y) is true. Thus, the optimal constant copt may be
estimated as follows

copt = sup
{
eλB(−λ, y, 0) | λ ∈ R, λ2 6 y 6 λ2 + 1

}
6 sup

{
e−xb1(x, y) | (x, y) ∈ ω1

}
. (4.58)

Recall that we have split the domain ω1 into the subdomains D1
1, D

1
2, D1

3, D1
4, and the function b1(x, y)

was defined on them by (1.18). We will continue the argument by the estimation of s(x, y) := e−xb1(x, y)
in each subdomain.

Clearly, s(x, y) 6 1, when (x, y) ∈ D1
1.

For (x, y) ∈ D1
2, we have

s(x, y) = e−x
(

1− y − 2x

8

)
6 e−x

(
1− |x| − x

4

)
,

since y > 2|x|. The function on the right hand side decreases on [−1, 1] and takes value e
2 at −1, therefore

s(x, y) 6 e
2 on D1

2.
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Next, consider (x, y) ∈ D1
3. The relations y 6 −2x and −2 6 x 6 0 imply

s(x, y) =

(
1− x2

y

)
e−x 6

(
1 +

x

2

)
e−x 6

e

2
.

Finally, we take (x, y) ∈ D1
4 and set t =

√
1− y + x2 to get

s(x, y) =
e

2
(1− t)et 6 e

2
, (4.59)

since t ∈ [0, 1]. Thus, we have proved copt 6 e
2 .

Now we notice that for x = −1 and y = 2 we have B(−1, 2, 0) = b1(−1, 2) = 1
2 , and therefore, (4.58)

implies that copt > e
2 , which means copt = e

2 .
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[11] A. Osȩkowski, On the best constant in the weak type inequality for the square function of a condi-
tionally symmetric martingale, Statist. Probab. Lett. 79 (2009), no. 13, 1536–1538.
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