Sharp permutation groups

By Tatsuro Ito and Masao Kiyota

(Received March 12, 1979)
(Revised Sept. 11, 1979)

1. Introduction.

Let G be a group of permutations on a finite set Ω and θ be the permutation character; g and n denote $|G|$ and $|\Omega|$ respectively. For a set L of non-negative integers less than $n-1, G$ is called an L-group if L contains $\theta(x)$ for any non-identity element x of G. The following inequality holds for an L-group:

$$
\begin{equation*}
g \leqq \prod_{l \in L}(n-l) . \tag{}
\end{equation*}
$$

(This was conjectured by Bannai and Deza and was proved by Kiyota [10].) G is said to be sharp (or L-sharp) if the equality holds in (*). This terminology suggested by Deza can be justified by the fact that a $\{0,1, \cdots, r-1\}$-sharp group is a sharply r-transitive group. From the literature on permutation groups, we can find many papers that deal with the classification of L-sharp groups for some particular L. For example, G has a representation as an L-group with $L=\{l\}, l>0$, if and only if G has a G-invariant proper partition (communicated by T. Kondo, see [8]), and such nonsolvable groups were classified by Suzuki [13]. L-sharp groups were classified for $L=\{2\},\{3\}$ and $\{0,2\}$ ([6], [7], [14], see also [12]). Also, the reader is referred to Deza [4] for the relevant topics.

The purpose of this paper is to determine L-sharp groups for $L=\{l, l+2\}$, $\{l, l+3\}$ and $\{l, l+1, l+2, \cdots, l+r-1\}$ with $r \geqq 2$. Let $F(G)$ be the set of points which are fixed by any element of G.

Theorem 1. Let G be an $\{l, l+1, l+2, \cdots, l+r-1\}$-sharp group on Ω with $r \geqq 2$. Then $|F(G)|=l$, and G is sharply r-transitive on $\Omega-F(G)$.

Theorem 2. Let G be an $\{l, l+2\}$-sharp group on Ω. Then either (i) or (ii) holds:
(i) $|F(G)|=l, G$ is transitive and is of rank 3 on $\Omega-F(G)$, and $G \cong D_{8}$, $S_{4}, G L(2,3)$ or $\operatorname{PSL}(2,7)$, where $|\Omega-F(G)|=4,6,8,14$, respectively,
(ii) $|F(G)|=l-1, G$ has two orbits on $\Omega-F(G)$, and $G \cong S_{4}$ or $\operatorname{PSL}(2,7)$, where $|\Omega-F(G)|=7,15$, respectively.

In the case (i), S_{4} has two nonequivalent representations on 6 points as a $\{0,2\}$-sharp group.

Theorem 3. Let G be an $\{l, l+3\}$-sharp group on Ω. Then either (i) or (ii) holds:
(i) $|F(G)|=l$, G is transitive on $\Omega-F(G)$, and $G \cong\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2},\left(Z_{3} \times Z_{3}\right) \rtimes S_{3}$, $\left(Z_{3} \times Z_{3} \times Z_{3}\right) \rtimes S_{4}, Z_{3} \times P S L(2,4)$ or $Z_{3} \times \operatorname{PSL}(2,7)$, where $|\Omega-F(G)|=6,9,27,15$, 24, respectively,
(ii) $|F(G)|=l-2, G$ has three orbits on $\Omega-F(G)$, and $G \cong\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}$, where $|\Omega-F(G)|=8$.

All the semidirect products are determined uniquely except $\left(Z_{3} \times Z_{3}\right) \ngtr S_{3}$. $\left(Z_{3} \times Z_{3}\right) \rtimes S_{3}$ has two nonequivalent representations on 9 points as a $\{0,3\}$-sharp group; one has a trivial center and the other has a center of order 3 .

2. Reduction lemmas.

Lemma 2.1. Let G be a $\left\{0, l_{2}, \cdots, l_{r}\right\}$-sharp group on Ω, where $0<l_{2}<\cdots<l_{r}$. Then G is transitive on Ω and G_{α} is an $\left\{l_{2}-1, \cdots, l_{r}-1\right\}$-sharp group on Ω $\{\alpha\}$ for any element α of Ω.

Proof. We have $|G|=n \prod_{i=2}^{r}\left(n-l_{i}\right)$. Since $|G|=\left|G_{\alpha}\right| \cdot\left|\alpha^{G}\right|,\left|\alpha^{G}\right| \leqq n$ and since $\left|G_{\alpha}\right| \leqq \prod_{i=2}^{r}\left(n-l_{i}\right)$ by the inequality (*), we get that $\left|\alpha^{G}\right|=n$ and $\left|G_{\alpha}\right|$ $=\prod_{i=2}^{r}\left(n-l_{i}\right)$, the desired result.

The following is the most crucial reduction lemma to treat L-sharp permutation groups with $|L|=2$.

Lemma 2.2. Let G be an $\{l, l+s\}$-sharp group on Ω. Then $|F(G)| \geqq m$ holds, where $m=l+(1-s) s^{\prime}+s^{\prime 2}-1$ with $s^{\prime}=\max \{1,[(s-1) / 2]\}$.

Proof. Let us decompose the permutation character θ into the sum of irreducible characters χ_{i} of G in the complex field: $\theta=\Sigma a_{i} \chi_{i}$ with χ_{0} the principal character. Since each G-orbit on $\Omega-F(G)$ contributes at least one nonprincipal irreducible character to θ, we have

$$
\begin{equation*}
|F(G)|+\Sigma^{\prime} a_{i} \geqq a_{0} \tag{2.1}
\end{equation*}
$$

the summation Σ^{\prime} taking over nonzero i 's. Let us set $\hat{\theta}=\left(\theta-l \chi_{0}\right)\left(\theta-(l+s) \chi_{0}\right)$. Since $\hat{\theta}$ is the regular character of G [10], we have $\left(\hat{\theta}, \chi_{0}\right)=1$ and so

$$
\begin{equation*}
\Sigma^{\prime} a_{i}^{2}=1-\left(a_{0}-l\right)\left(a_{0}-l-s\right) . \tag{2.2}
\end{equation*}
$$

The identity (2.2) implies $l \leqq a_{0} \leqq l+s$, but a_{0} cannot be l because $\left(\theta, \chi_{0}\right)=\frac{1}{g} \sum_{x \in G} \theta(x)$ $>l$. Therefore we get

$$
\begin{equation*}
l<a_{0} \leqq l+s . \tag{2.3}
\end{equation*}
$$

By (2.1) and (2.2), we have that

$$
|F(G)| \geqq a_{0}-1+\left(a_{0}-l\right)\left(a_{0}-l-s\right),
$$

and an elementary calculation shows that

$$
\begin{aligned}
\min \left\{a_{0}-\right. & \left.1+\left(a_{0}-l\right)\left(a_{0}-l-s\right) \mid a_{0}=l+1, l+2, \cdots, l+s\right\} \\
& =l+(1-s) s^{\prime}+s^{\prime 2}-1
\end{aligned}
$$

where $s^{\prime}=\max \{1,[(s-1) / 2]\}$. This completes the proof.

3. Proof of Theorem 1.

Lemma 3.1. Let G be an $\{l, l+1, l+2, \cdots, l+r-1\}$-group on Ω. Then we have

$$
l+1 \leqq k \leqq l+r-1+\frac{n-(l+r-1)}{g},
$$

where k is the number of G-orbits on Ω.
Proof. The inequality $l+1 \leqq k$ is trivial from $k=\frac{1}{g} \sum_{x \in G} \theta(x)>l$. Let $\alpha_{i}=$ $\#\left\{x \in G^{\#} \mid \theta(x)=l+i\right\}$ for $0 \leqq i \leqq r-1$. Then we have

$$
g=1+\sum_{i=0}^{r-1} \alpha_{i}
$$

and

$$
g k=n+\sum_{i=0}^{r-1}(l+i) \alpha_{i} .
$$

Since

$$
\sum_{i=0}^{r-1}(l+i) \alpha_{i} \leqq(l+r-1) \sum_{i=0}^{r-1} \alpha_{i}=(l+r-1)(g-1),
$$

we get

$$
g k-n \leqq(l+r-1)(g-1),
$$

and hence the desired result.
Let $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{k}$ be the G-orbits on Ω. We may assume $\left|\Delta_{i}\right| \geqq 2$ for all i by induction on n. Choose $\Delta_{i_{j}}$ and subsets $\Gamma_{i_{j}}$ of $\Delta_{i_{j}}(j=1,2, \cdots, t)$ such that

$$
\left|\Gamma_{i_{1}}\right|+\left|\Gamma_{i_{2}}\right|+\cdots+\left|\Gamma_{i_{t}}\right|=l+r-k,
$$

and

$$
\begin{aligned}
& \left|\Delta_{i_{j}}-\Gamma_{i_{j}}\right|=1 \quad \text { for } \quad j=1,2, \cdots, t-1, \\
& \left|\Delta_{i_{t}}-\Gamma_{i_{t}}\right| \geqq 1 .
\end{aligned}
$$

This choice is possible because $\sum_{i=1}^{k}\left(\left|\Delta_{i}\right|-1\right)=n-k \geqq l+r-k$. Notice that $l+r-k$ $\geqq 1$ by Lemma 3.1. By renumbering, we may assume $i_{1}=1, i_{2}=2, \cdots, i_{t}=t$.

Let H denote the pointwise stabilizer of $\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{t}$. We shall find upper and lower bounds for the order of H.

It is clear that

$$
\left(\theta, \chi_{0}\right)_{H} \geqq\left(\theta, \chi_{0}\right)_{G}+\left|\Gamma_{1}\right|+\left|\Gamma_{2}\right|+\cdots+\left|\Gamma_{t}\right|=l+r,
$$

where χ_{0} is the principal character. On the other hand, we have

$$
\left(\theta, \chi_{0}\right)_{H} \leqq l+r-1+\frac{n-(l+r-1)}{|H|}
$$

by Lemma 3.1. Therefore we get

$$
\begin{equation*}
|H| \leqq n-(l+r-1) . \tag{3.1}
\end{equation*}
$$

Let us set $\gamma_{i}=\left|\Gamma_{i}\right|$ and $\delta_{i}=\left|\Delta_{i}\right|$. We have an inequality

$$
\begin{aligned}
|G: H|= & \left|G^{\Delta_{1}}: H^{\Delta_{1}}\right| \cdot\left|G \Delta_{1}^{A_{2}^{2}}: H H_{\Delta_{1}^{2}}^{A_{2}}\right| \cdots \cdot\left|G G_{1}^{A_{1}^{t} \cup \cdots \cup \Delta_{t-1}}: H_{\Delta_{1} \cup \cdots \cup \Delta_{t-1}}^{t_{t}}\right| \\
& \leqq \delta_{1}!\cdot \delta_{2}!\cdots \delta_{t-1}!\cdot \delta_{t}\left(\delta_{t}-1\right) \cdots\left(\delta_{t}-\gamma_{t}+1\right),
\end{aligned}
$$

where $G^{\Lambda_{1}}$ is the restriction of G to $\Delta_{1}, G_{\Delta_{1}}$ is the pointwise stabilizer of Δ_{1} and so on. Since $g=(n-l)(n-l-1) \cdots(n-l-r+1)$, we get

$$
\begin{equation*}
|H| \geqq \frac{(n-l)(n-l-1) \cdots(n-l-r+1)}{\delta_{1}!\cdots \delta_{t-1}!\delta_{t}\left(\delta_{t}-1\right) \cdots\left(\delta_{t}-r_{t}+1\right)} . \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2), we obtain

$$
\begin{equation*}
\delta_{t}\left(\delta_{t}-1\right) \cdots\left(\delta_{t}-\gamma_{t}+1\right) \delta_{t-1}!\cdots \delta_{1}!\geqq(n-l)(n-l-1) \cdots(n-l-r+2) . \tag{3.3}
\end{equation*}
$$

The right hand side of (3.3) is the product of $r-1$ consecutive integers beginning from $n-l-r+2(\geqq 3)$ and ending at $n-l\left(\geqq \delta_{t}\right)$; the inequality $n-l \geqq \delta_{t}$ comes from the inequality $\delta_{t}=n-\sum_{i \neq t}\left|\Delta_{i}\right| \leqq n-2(k-1)$ and Lemma 3,1. Neglecting 1 , the left hand side of (3.3) is a product of $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{t}$ integers with $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{t} \leqq r-1$; the last inequality comes from $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{t}=l+r-k$ and Lemma 3.1. Therefore (3.3) holds if and only if $t=1, \delta_{t}=n-l$ and $\gamma_{t}=r-1$. The identity $\delta_{t}=n-l$ implies $l=0$. Using Lemma 2.1 repeatedly, we get the desired result.

4. Proof of Theorem 2.

We may assume $F(G)=\emptyset$ without loss of gencrality. The following two cases are possible by Lemma 2.2

Case I $L=\{0,2\}$,
and
Case II $L=\{1,3\}$.

Suppose that Case I holds. G is transitive on Ω by Lemma 2.1 and G_{α} has three orbits of length $1,1,\left|G_{\alpha}\right|$. Such rank 3 groups have been determined by Tuzuku [14], and G is one of the groups listed in Theorem 1 (i).

Suppose that Case II holds. By (2.1), (2.2) and (2.3), we have that $\Sigma^{\prime} a_{i}^{2}=1$ $-\left(a_{0}-1\right)\left(a_{0}-3\right) \geqq a_{0}$ and $2 \leqq a_{0} \leqq 3$. Therefore we get $a_{0}=2, \Sigma^{\prime} a_{i}^{2}=2$ and $\theta=2 \chi_{0}$ $+\chi_{1}+\chi_{2}\left(\chi_{1} \neq \chi_{2}\right) . \quad G$ has two orbits Δ_{1}, Δ_{2} and G is 2-transitive on both Δ_{1} and Δ_{2}.

Let us set $n_{i}=\left|\Delta_{i}\right|(i=1,2)$ and $d_{i}=\left|G_{\alpha, \beta}\right|$ for distinct $\alpha, \beta \in \Delta_{i}(i=1,2)$. Then we have

$$
\begin{equation*}
g=(n-1)(n-3)=d_{i} n_{i}\left(n_{i}-1\right) . \tag{4.1}
\end{equation*}
$$

We may assume $n_{1} \geqq n_{2}$. We shall show that the solutions of (4.1) are $\left(d_{1}, d_{2}, n_{1}, n_{2}\right)=(2,4,4,3),(3,4,8,7)$. Since $d_{i}\left(n_{i}-1\right)^{2}<g<(n-2)^{2}$ and $(n-3)^{2}<$ $g<d_{i}\left(n_{i}-\frac{1}{2}\right)^{2}$, we get $\left(n_{i}-1\right) /(n-2)<1 / \sqrt{d_{i}}<\left(n_{i}-\frac{1}{2}\right) /(n-3)$. Therefore we have

$$
\begin{equation*}
1<1 / \sqrt{ } \overline{d_{1}}+1 / \sqrt{d_{2}}<1+\frac{2}{n-3} \tag{4.2}
\end{equation*}
$$

The possible values of d_{1} are 1,2 and 3 , because $n_{1} \geqq n / 2$ and $(n-1)(n-3)$ $\geqq d_{1} \frac{n}{2} \frac{n-2}{2}$ by (4.1). If $d_{1}=1$ holds, then $n_{1}^{2}-n_{1}-(n-1)(n-3)=0$ by (4.1) and so $n-2<n_{1}<n-1$, a contradiction. If $d_{1}=2$ holds, then $d_{2} \leqq 11$ and $n \leqq 235$ by (4.2), and the solution of (4.1) is $\left(d_{1}, d_{2}, n_{1}, n_{2}\right)=(2,4,4,3)$. If $d_{1}=3$ holds, then $d_{2} \leqq 5$ and $n \leqq 84$ by (4.2), and the solution of (4.1) is ($\left.d_{1}, d_{2}, n_{1}, n_{2}\right)=(3,4,8,7)$. The groups $S_{4}, \operatorname{PSL}(2,7)$ in the theorem come from the above parameters. This completes the proof.

5. Proof of Theorem 3.

We may assume $F(G)=\emptyset$ without loss of generality. By Lemma 2.2, the following three cases are possible:

Case I $L=\{0,3\}$,
Case II $L=\{1,4\}$, and

Case III $L=\{2,5\}$.
Case I. Suppose that Case I holds. Then G is transitive and G_{α} is a sharp $\{2\}$-group on $\Omega-\{\alpha\}$ by Lemma 2.1. By Iwahori [6],
(1) G_{α} fixes two points on $\Omega-\{\alpha\}$ and is regular on the remaining points,
(2) G_{α} is a generalized dihedral group,
(3) G_{α} is A_{4}, S_{4} or A_{5}.

Suppose that the subcase (1) holds. Set $A=F\left(G_{\alpha}\right), \Sigma=\left\{A^{x} \mid x \in G\right\}$ and $|\Sigma|=r$. Then $|A|=3, n=3 r, g=9 r(r-1)$ and G is doubly transitive on Σ.

For a subgroup X of G and $A, B \in \Sigma$, we use the following notation:

$$
\begin{aligned}
& X_{A}=\left\{x \in X \mid \alpha^{x}=\alpha \text { for all } \alpha \in A\right\}, \\
& X_{A}^{*}=\left\{x \in X \mid A^{x}=A\right\}, \\
& X_{A, B}^{*}=\left\{x \in X \mid A^{x}=A, B^{x}=B\right\}, \\
& X_{\{A, B\}}^{*}=\left\{x \in X \mid\{A, B\}^{x}=\{A, B\}\right\} .
\end{aligned}
$$

and
$I(X)$ denotes the set of involutions of X.
Choose distinct blocks $A, B \in \Sigma$. Let $K=G_{A, B}^{*}$. Then K is of order $9, K_{A}$ and K_{B} are of order 3. Choose an involution t which interchanges A and B, and let $K_{A}=\langle a\rangle, K_{B}=\langle b\rangle$. We may assume $a^{t}=b$, where $a^{t}=t^{-1} a t$. Then $K=\langle a\rangle$ $\times\langle b\rangle, G_{i A, B\rangle}^{*}=K\langle t\rangle$ and $I(K\langle t\rangle)=\left\{t, t^{a}, t^{b}\right\}$.

Let $F_{\Sigma}(K)=\left\{C \in \Sigma \mid C^{x}=C\right.$ for all $\left.x \in K\right\}$. We shall show $\left|F_{\Sigma}(K)\right| \leqq 3$. Suppose that $F_{\Sigma}(K)$ contains four distinct blocks A, B, C, D. Then K_{A}, K_{B}, K_{C} and K_{D} are distinct subgroups of order 3, so we may assume $K_{C}=\langle a b\rangle$ and $K_{D}=$ $\left\langle a^{-1} b\right\rangle$. Since t normalizes $\langle a b\rangle$ and $\left\langle a^{-1} b\right\rangle, t$ acts on $F(\langle a b\rangle)=C$ and $F\left(\left\langle a^{-1} b\right\rangle\right)$ $=D$. This contradicts the fact that G_{C}^{*}, D is order 9 . Therefore $\left|F_{\Sigma}(K)\right| \leqq 3$.

Suppose $F_{\Sigma}(K)=\{A, B, C\}$. Since t normalizes K, t acts on $F_{\Sigma}(K)$ and so $C^{t}=C$. Therefore r is odd. By counting the number of

$$
\left\{(u,\{D, E\}) \mid u \in I(G), D, E \in \Sigma, D \neq E, D^{u}=E\right\},
$$

we get $|I(G)|(r-1) / 2=\binom{r}{2}|I(K\langle t\rangle)|$ i. e. $|I(G)|=3 r$ and so $\left|I\left(G_{c}^{*}\right)\right|=3$. Hence we have $I\left(G_{C}^{*}\right)=\left\{t, t^{a}, t^{b}\right\}$. Since $t t^{a}=b^{-1} a$ and $\left\langle t t^{a}\right\rangle$ char $\left\langle t, t^{a}\right\rangle=\left\langle I\left(G_{C}^{*}\right)\right\rangle\left\langle G_{C}^{*}\right.$, $\left\langle b^{-1} a\right\rangle$ is normal in G_{C}^{*}. Since G_{C}^{*} is transitive on $\Sigma-\{C\},\left\langle b^{-1} a\right\rangle$ is contained in N, where N is the kernel of G on Σ. However, $b^{-1} a$ fixes each point of C, because $F_{\Sigma}\left(b^{-1} a\right) \ni C, F(t)=C$ and t inverts $b^{-1} a$. So N intersects G_{D} nontrivially for any $D \in \Sigma$. Since $K \supseteq N, K$ intersects G_{D} nontrivially for any $D \in \Sigma$ and so we obtain $r=3$. We can verify directly that $G \cong\left(Z_{3} \times Z_{3}\right) \rtimes S_{3}$ with $|Z(G)|=3$.

Suppose $F_{\Sigma}(K)=\{A, B\}$. Let N be the kernel of G on Σ and $\bar{G}=G / N$. Since K is of odd order, G has a regular normal subgroup or a normal subgroup isomorphic to $\operatorname{PSL}(2, q), \operatorname{PSU}(3, q)$ or $S z(q)$ (Bender [2]). The 2-point stabilizers of $\operatorname{PSL}(2, q), \operatorname{PSU}(3, q), S z(q)$ are cyclic subgroups of order ($q-1)$ / $(2, q-1),\left(q^{2}-1\right) /(3, q+1), q-1$ respectively, whereas $K\left(=G_{A, B}^{*}\right)$ is an elementary abelian subgroup of order 9 . So the possible normal subgroups are $\operatorname{PSL}(2,4)$ and $\operatorname{PSL}(2,7)$. We can verify directly that G is $Z_{3} \times \operatorname{PSL}(2,4)$ or $Z_{3} \times \operatorname{PSL}(2,7)$. (Notice that the Schur multipliers of $P S L(2,4)$ and $P S L(2,7)$ are both Z_{2}.) Therefore we may assume that G^{Σ} has a regular normal subgroup $\bar{R} . \bar{R}$ is an
elementary abelian 2-group of order r, because $\left|F_{\Sigma}(K)\right|=2$. Any involution is conjugate to an element of $I\left(G_{A, B}^{*}\right)\left(=\left\{t, t^{a}, t^{b}\right\}\right)$, so $I(G)$ is one class. By the same counting method in the case $\left|F_{\Sigma}(K)\right|=3$, we get $|I(G)|=3(r-1)$. Let S be a Sylow 2 -subgroup of G. Suppose $r>2$. If some involution inverts the kernel N, then every involution inverts N, since $I(G)$ is one class. This is impossible. Therefore S commutes N. Since $\overline{S N}=\bar{R}$ and N is of odd order, S is normal in G and so $|I(G)|=\left|S^{\#}\right|=r-1$, a contradiction. So $r=2$ and $G \cong\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}$.

Suppose that the subcase (2) holds i.e. G_{α} has a normal subgroup Q of index 2 such that Q has a cyclic Sylow 2 -subgroup and any element of $G_{\alpha}-Q$ is an involution which inverts $Q . \quad G_{\alpha}$ has four orbits $\{\alpha\}, \Gamma_{1}, \Gamma_{2}, \Gamma_{s}$ of length 1,2, $|Q|,|Q|$ respectively, Q fixes Γ_{1} pointwise and is regular on both Γ_{2} and Γ_{3}, and any element of $G_{\alpha}-Q$ interchanges the two points of Γ_{1}.

Suppose $|Q|=2$. Then $n=7, g=7 \cdot 4$, so G has an element of order 14 , a contradiction. Therefore $|Q| \geqq 3$. Choose $x \in G$ and $\beta \in \Gamma_{1}$ such that $\beta=\alpha^{x}$. Since Q and Q^{x} are subgroups of G_{β} of index $2, Q \cap Q^{x}$ is not trivial. Therefore $F(Q)=F(y)=F\left(Q^{x}\right)$ for nonidentity $y \in Q \cap Q^{x}$ and so $Q^{x}=G_{\alpha \beta}=Q$. For $\gamma \in \Gamma_{2}$, there exist involutions $t \in G_{\alpha}-Q$ and $u \in G_{\beta}-Q$ which fix γ. Since t and u invert $Q, t u$ centralizes Q and so Q acts on $F(t u)$. Since $F(t u)$ contains γ and $\gamma^{Q}=\Gamma_{2}$, we have $|F(t u)| \geqq\left|\Gamma_{2}\right|$. Since G is a $\{0,3\}$-group, $|Q|=\left|\Gamma_{2}\right|=3$ and so $n=9$. We can verify that $G \cong\left(Z_{3} \times Z_{3}\right) \ngtr S_{3}$ with $Z(G)=1$.

Suppose that the subcase (3) holds. We can verify by case by case argument that $G \cong\left(Z_{3} \times Z_{3} \times Z_{3}\right) \rtimes S_{4}$ with $G_{\alpha} \cong S_{4}$. Here $\varepsilon \chi$ is the character of S_{4} acting on $Z_{3} \times Z_{3} \times Z_{3}$ in the semidirect product, where ε is the signature and $1+\chi$ is the usual 2-transitive permutation character of S_{4}.

Remark. See also [12] section 6 for the subcase (1) and [11] Corollary for the subcases (2) and (3). The group $Z_{3} \times A_{5}$ is missed in the theorem 6.3 [12].

Case II and Case III. By (2.1), (2.2) and (2.3), the possible cases are
(1) G is a sharp $\{1,4\}$ or $\{2,5\}$-group with three orbits $\Delta_{1}, \Delta_{2}, \Delta_{3}$ and G is 2 -transitive on each orbit. For all distinct $i, j,\left(G, \Delta_{i}\right)$ is not isomorphic to (G, Δ_{j}) and G is transitive on $\Delta_{i} \times \Delta_{j}$.
(2) G is a sharp $\{1,4\}$-group with two orbits $\Delta_{1}, \Delta_{2} . \quad G$ is 2 -transitive on Δ_{1} and is rank 3 on $\Delta_{2} . G$ is transitive on $\Delta_{1} \times \Delta_{2}$.

We first show that we may assume every orbit of G has length at least 5 (resp. 6) if G is a sharp $\{1,4\}$ (resp. $\{2,5\}$)-group. Suppose that G is a sharp $\{2,5\}$-group and has an orbit Δ_{1} of length 5 . Let N be the kernel of G on Δ_{1}. Then $G / N \cong Z_{5} \rtimes Z_{4}, A_{5}$ or S_{5} and N is a regular normal subgroup on each of the remaining orbits Δ_{2}, Δ_{3}. So N is elementary abelian, and $|N|^{2}$ divides $|G|$ because G is transitive on $\Delta_{2} \times \Delta_{3}$. Therefore $|N|=2,3,4,5$ or 8 , but this contradicts the condition $g=(n-2)(n-5)$ and $n=5+|N|+|N|$.

Suppose G is a sharp $\{2,5\}$-group and has an orbit Δ_{1} of length less than
5. For distinct $\alpha, \beta, \gamma \in \Delta_{1}, G_{\alpha, \beta, \gamma}$ is a $\{5\}$-group. So we get $(n-2)(n-5)=g$ $\leqq\left|\Delta_{1}\right|\left(\left|\Delta_{1}\right|-1\right)\left(\left|\Delta_{1}\right|-2\right)\left|G_{\alpha, \beta, \gamma}\right| \leqq 4 \cdot 3 \cdot 2(n-5)$ i. e. $n \leqq 26$ by Kiyota's inequality (*). Since G is 2 -transitive on each Δ_{i} and is transitive on $\Delta_{i} \times \Delta_{j}(i \neq j)$, we have that $7 \leqq n=n_{1}+n_{2}+n_{3} \leqq 26, n_{i}\left(n_{i}-1\right)$ divides $(n-2)(n-5)(=g)$ for all i and $n_{i} n_{j}$ divides $(n-2)(n-5)$ for all distinct i, j, where $n_{i}=\left|\Delta_{i}\right|$. The (n, n_{1}, n_{2}, n_{3}) which satisfies the above condition is only ($8,2,3,3$), and we get $G \cong\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}$.

Similarly we can show that every orbit of G has length at least 5 if G is a sharp $\{1,4\}$-group. Therefore we may assume that G is faithful on every orbit Δ_{i}.

Next we show that G has no regular normal subgroup on Δ_{i}, if G is 2transitive on Δ_{i}. Suppose that the subcase (2) holds and G has a regular normal subgroup R on $\Delta_{1} . \quad R$ acts on $F(x)$ and $F(y)-F(x)$ for $x, y \in R$, since R is abelian. $|F(x)|=4$ holds and $\Delta_{2} \supsetneq F(x)$ for any nonidentity $x \in R$. We can find nonidentity elements x, y in R such that $F(x) \neq F(y)$. Let R_{0} be the kernel of R on $F(x)$. Then R_{0} is semiregular on $F(y)-F(x)$. Therefore we get $\left|R_{0}\right|$ $\leqq|F(y)-F(x)| \leqq 4$. Since $|R|=\left|R_{0}\right| \cdot|F(x)|, R$ is of order 8 or 16 .

Suppose $|R|=8$. Then $\left|\Delta_{1}\right|=8$ and $G_{\alpha} \subseteq G L(3,2)$ for $\alpha \in \Delta_{1}$. Since G_{α} is transitive on $\Delta_{2},\left|\Delta_{2}\right|$ divides $2^{3} \cdot 3 \cdot 7(=|G L(3,2)|)$. Since 8 divides $\left|\Delta_{1}\right|$ and $(n-1)(n-4)(=g),\left|\Delta_{2}\right| \equiv 1$ or $4 \bmod 8$. Therefore $\left|\Delta_{2}\right|=12,28$ or 84 and $g=$ $(n-1)(n-4)=19 \cdot 16,35 \cdot 32$ or $91 \cdot 88$. This contradicts the condition that g divides $|R| \cdot|G L(3,2)|$. Similarly the assumption $|R|=16$ leads to a contradiction.

The subcase (1) is similar and easier to prove the nonexistence of a regular normal subgroup.

Let $\mu_{\Delta_{i}}$ be the maximal number of fixed points of involutions on Δ_{i}. Then $\mu_{\Delta_{i}} \leqq 5$. Suppose that $\mu_{\Delta_{1}}=5$ with an involution u fixing 5 points on Δ_{1}. Then G is $\{2,5\}$-sharp and so has two more orbits Δ_{2}, Δ_{3}. Since u has no fixed points on Δ_{2} and $\Delta_{3},\left|\Delta_{2}\right|$ and $\left|\Delta_{3}\right|$ are even and so $\mu_{\Delta_{i}} \leqq 4(i=2,3)$. Therefore in the subcase (1), we may assume that $\mu_{\Lambda_{1}} \leqq 5, \mu_{د_{2}} \leqq 4$ and $\mu_{A_{3}} \leqq 4$. Obviously in the subcase (2), $\mu_{\Lambda_{1}} \leqq 4$.

If G is 2 -transitive on Δ_{i} with $\mu_{\Delta_{i}} \leqq 4$, then G has a normal subgroup isomorphic to
(a) $\operatorname{PSL}(2, q)$ or $\operatorname{Sz}(q)$
or G is isomorphic to
(b) $S_{5}, A_{6}, S_{6}\left(n_{i}=6,10\right), A_{7}\left(n_{i}=7,15\right), M_{11}, \operatorname{PSL}(3,2), \operatorname{PSL}(2,11)\left(n_{i}=11\right)$

$$
\text { or } P \Gamma L(2,8)\left(n_{i}=28\right) \text {, where } n_{i}=\left|\Delta_{i}\right| \text {. }
$$

(All $\left(G, \Delta_{i}\right)$ are usual permutation representations except for $S_{6}, A_{7}, \operatorname{PSL}(2,11)$, $P \Gamma L(2,8)$. See [1], [2], [3], [5], [9].) The reason why $\operatorname{PSU}(3, q)$ is missed in (a) is that a diagonal element of $\operatorname{PSU}(3, q)$ fixes $q+1$ points and that if $q=3$
or $4, G$ does not satisfy the condition $g=(n-1)(n-4)$ or $(n-2)(n-5)$.
Suppose that the subcase (1) holds. Then (G, Δ_{i}) is determined by the list (a), (b) for $i=2,3$. Since $\left(G, \Delta_{2}\right)$ and (G, Δ_{3}) are not isomorphic, G is S_{6}, A_{7}, $\operatorname{PSL}(2,11)$ or $P \Gamma L(2,8)$. Since these groups have at most two non-isomorphic 2-transitive representations, $\left(G, \Delta_{1}\right)$ is isomorphic to $\left(G, \Delta_{2}\right)$ or (G, Δ_{3}), a contradiction.

Suppose that the subcase (2) holds and G has a normal subgroup M listed in (a). First suppose that G is a Zassenhaus group on Δ_{1}. Let θ_{i} be the permutation character of G on Δ_{i} for $i=1,2$, and

$$
\begin{aligned}
& \alpha_{i j}=\#\left\{x \in G \mid \theta_{1}(x)=i, \theta_{2}(x)=j\right\}, \\
& \alpha_{i}=\#\left\{x \in G \mid \theta_{1}(x)=i\right\} .
\end{aligned}
$$

Then, since $\left(\theta_{1}, \theta_{2}\right)=1$, we have

$$
g=n_{1} n_{2}+3\left(\alpha_{13}+\alpha_{31}\right)+4 \alpha_{22},
$$

where $n_{i}=\left|\Delta_{i}\right|$. Since $\alpha_{22}=\alpha_{2}=\frac{1}{2}\left(g-n_{1}^{2}+n_{1}\right)$, we get

$$
\begin{aligned}
& g \geqq n_{1} n_{2}+4 \alpha_{2}=n_{1} n_{2}+2 g-2 n_{1}\left(n_{1}-1\right), \\
& \text { i. e. } \quad 2 \geqq g / n_{1}\left(n_{1}-1\right)+n_{2} /\left(n_{1}-1\right) .
\end{aligned}
$$

Therefore $\left|G_{\alpha, \beta}\right|=g / n_{1}\left(n_{1}-1\right)=1$ for distinct $\alpha, \beta \in \Delta_{1}$, a contradiction.
Next suppose that G contains an element $\sigma(\neq 1)$ which fixes at least 3 points on Δ_{1}. If M is $S z(q)$, we may assume σ is a field automorphism, and then σ fixes at least $2^{2}+1$ points on Δ_{1}, which is a contradiction. Hence M is $\operatorname{PSL}(2, q)$. We shall show that σ is of order 2 . Let H be a σ-invariant 2 -point stabilizer of M on Δ_{1}. H is a cyclic subgroup. Let x be a generator of H and $F_{\Delta_{2}}(x)=$ $\left\{\alpha \in \Delta_{2} \mid \alpha^{x}=\alpha\right\}$. Then $\left|F_{\Lambda_{2}}(x)\right|=2$. Since σ normalizes $H(=\langle x\rangle), \sigma$ acts on $F_{\Delta_{2}}(x)\left(=F_{\Delta_{2}}(\langle x\rangle)\right)$. Since σ^{2} fixes at least 3 points of Δ_{1} and the two points of $F_{\Delta_{2}}(x)$, we get $\sigma^{2}=1$. Since σ fixes at least 3 points on $\Delta_{1}, \operatorname{PSL}(2, q)\langle\sigma\rangle$ contains a field automorphism f of order 2. Since f fixes $\sqrt{q}+1$ points on Δ_{1}, G is $\operatorname{PSL}(2,4)\langle f\rangle, \operatorname{PSL}(2,9)\langle f\rangle$ or $\operatorname{PGL}(2,9)\langle f\rangle$. This, however, contradicts the condition $g=(n-1)(n-4)$.

Thus in the subcase (2), G is one of the groups listed in (b). But none of them satisfies the condition $g=(n-1)(n-4)$. This completes the proof of Theorem 3,

Acknowledgement. The authors wish to express their gratitude to E. Bannai and M. Deza for suggesting this problem and giving us much useful information on it. Their advice and help can be found throughout this paper. For example, we owe to them Lemma 2.1 and the proof of Theorem 1 for $r=2$.

Reference

[1] H. Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haven, Math. Z., 104 (1968), 175-204.
[2] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra, 17 (1971), 527-554.
[3] F. Buekenhout and P. Rowlinson, On (1, 4)-Groups III, J. London Math. Soc., 14 (1976), 487-495.
[4] M. Deza, On permutation cligues, (preprint, Universite de Montreal, CRM-778, March 1978).
[5] C. Hering, Zweifach transitive Permutationsgruppen, in denen 2 die maximale Anzahl von Fixpunkten von Involutionen ist, Math. Z., 104 (1968), 150-174.
[6] N. Iwahori, On a property of finite groups, J. Fac. Sci. Univ. Tokyo, 11 (1964), 47-64.
[7] N. Iwahori and T. Kondo, On finite groups admitting a permutation representation P such that $\operatorname{Tr} P(\sigma)=3$ for all $\sigma \neq 1$, J. Fac. Sci. Univ. Tokyo, 11 (1964), 113-144.
[8] N. Iwahori and T. Kondo, A criterion for the existence of a non-trivial partition of a finite group with applications to finite reflection groups, J. Math. Soc. Japan, 17 (1965), 207-215.
[9] J.D. King, Doubly transitive groups in which involutions fix one or three points, Math. Z., 111 (1969), 311-321.
[10] M. Kiyota, An inequality for finite permutation groups, J. Combinatorial Theory Ser. A, 27 (1979), 119.
[11] O. Pretzel and A. Schleiermacher, On permutation groups whose non-trivial elements have at most three fixed points, Proc. London Math. Soc., 31 (1975), 1-20.
[12] O. Pretzel and A. Schleiermacher, On permutation groups in which non-trivial elements have p fixed points or none, Proc. London Math. Soc., 30 (1975), 471-495.
[13] M. Suzuki, On a finite group with a partition, Arch. Math., 12 (1961), 241-254.
[14] T. Tuzuku, Transitive extensions of certain permutation groups of rank 3, Nagoya Math. J., 31 (1968), 31-36.

Tatsuro Iто
Royal Holloway College
University of London
Egham, Surrey, U.K.

Masao Kiyota

Department of Mathematics University of Tokyo
Tokyo 113
Japan and

Department of Mathematics
University of Tsukuba
Ibaraki 305
Japan

