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1. Introduction.

Let $G$ be a group of permutations on a finite set $\Omega$ and $\theta$ be the permuta-
tion character; $g$ and $n$ denote $|G|$ and $|\Omega|$ respectively. For a set $L$ of
non-negative integers less than $n-1,$ $G$ is called an L-group if $L$ contains $\theta(x)$

for any non-identity element $x$ of $G$ . The following inequality holds for an
L-group:

$(^{*})$
$g\leqq\prod_{t\in L}(n-l)$ .

(This was conjectured by Bannai and Deza and was proved by Kiyota [10].) $G$

is said to be sharp (or L-sharp) if the equality holds in $(^{*})$ . This terminology
suggested by Deza can be justified by the fact that a $\{0,1, \cdots , r-1\}$ -sharp
group is a sharply r-transitive group. From the literature on permutation groups,
we can find many papers that deal with the classification of L-sharp groups
for some particular $L$ . For example, $G$ has a representation as an L-group
with $L=\{l\},$ $l>0$, if and only if $G$ has a G-invariant proper partition (com-

municated by T. Kondo, see [8]), and such nonsolvable groups were classified
by Suzuki [13]. L-sharp groups were classified for $L=\{2\},$ $\{3\}$ and $\{0,2\}$ ([6],

[7], [14], see also [12]). Also, the reader is referred to Deza [4] for the
relevant topics.

The purpose of this paper is to determine L-sharp groups for $L=\{l, 1+2\}$ ,
$\{1, l+3\}$ and $\{1, l+1, l+2, \cdots , l+r-1\}$ with $r\geqq 2$ . Let $F(G)$ be the set of
points which are fixed by any element of $G$ .

THEOREM 1. Let $G$ be an $\{l, 1+1, l+2, \cdots , l+r-1\}- sharP$ grouP on $\Omega$ with
$r\geqq 2$ . Then $|F(G)|=l$, and $G$ is sharPly r-transitive on $\Omega-F(G)$ .

THEOREM 2. Let $G$ be an $\{l, l+2\}- sharp$ group on $\Omega$ . Then either (i) or
(ii) holds:

(i) $|F(G)|=l,$ $G$ is transitive and is of rank 3 on $\Omega-F(G)$ , and $G\cong D_{8}$ ,
$S_{4},$ $GL(2,3)$ or $PSL(2,7)$ , where $|\Omega-F(G)|=4,6,8,14$ , respectively,

(ii) $|F(G)|=l-1,$ $G$ has two orbits on $\Omega-F(G)$ , and $G\cong S_{4}$ or $PSL(2,7)$ ,

where $|\Omega-F(G)|=7,15$, respectively.
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In the case (i), $S_{4}$ has two nonequivalent representati0ns on 6 points as a
$\{0,2\}$ -sharp group.

THEOREM 3. Let $G$ be an $\{1, 1+3\}$ -sharp group on $\Omega$ . Then either (i) or
(ii) holds:

(i) $|F(G)|=l,$ $G$ is transitive on $\Omega-F(G)$ , and $G\cong(Z_{3}\times Z_{3})\rangle\triangleleft Z_{2},$ $(Z_{3}\times Z_{3})\times S_{3}$ ,
$(z_{3}\times z_{3}\times z_{3})\rangle\triangleleft S_{4},$ $Z_{3}\times PSL(2,4)$ or $Z_{3}\times PSL(2,7)$ , where $|\Omega-F(G)|=6,9,27,15$ ,
24, respectjvely,

(ii) $|F(G)|=l-2,$ $G$ has three orbits on $\Omega-F(G)$ , and $G\cong(Z_{3}\times Z_{3})\rangle\triangleleft Z_{2}$ ,

where $|\Omega-F(G)|=8$ .
All the semidirect pr0ducts are determined uniquely except $(Z_{3}\times Z_{3})\rangle\triangleleft S_{3}$ .

$(Z_{3}\times Z_{3})xS_{3}$ has two nonequivalent representati0ns on 9 points as a $\{0,3\}$ -sharp
group; one has a trivial center and the other has a center of order 3.

2. Reduction lemmas.

LEMMA 2.1. Let $G$ be a $\{0, l_{2}, \cdots , l_{r}\}- sharpgroup$ on $\Omega$ , where $0<l_{2}<\cdots<l_{r}$ .
Then $G$ is transitive on $\Omega$ and $G_{\alpha}$ is an $\{l_{2}-1, \cdots , l_{r}-1\}- sharp$ group on $\Omega-$

$\{\alpha\}$ for any element $\alpha$ of $\Omega$ .
PROOF. We have $|G|=n\prod_{i=2}^{r}(n-l_{i})$ . Since $|G|=|G_{\alpha}|\cdot|\alpha^{G}|,$ $|\alpha^{G}|\leqq n$ and

since $|G_{a}|\leqq\prod_{i=2}^{r}(n-l_{i})$ by the inequality $(^{*})$ , we get that $|\alpha^{G}|=n$ and $G_{\alpha}|$

$=\prod_{i=2}^{r}(n-l_{i})$ , the desired result.

The following is the most crucial reduction lemma to treat L-sharp permu-
tation groups with $|L|=2$ .

LEMMA 2.2. Let $G$ be an $\{l, l+s\}- sharP$ grouP on $\Omega$ . Then $|F(G)|\geqq m$

holds, where $m=l+(1-s)s^{\prime}+s^{\prime 2}-1$ with $s^{\prime}=\max\{1, [(s-1)/2]\}$ .
PROOF. Let us decompose the permutation character $\theta$ into the sum of

irreducible characters $\chi_{i}$ of $G$ in the complex field: $\theta=\sum a_{i}x_{i}$ with $\chi_{0}$ the prin-
cipal character. Since each G-orbit on $\Omega-F(G)$ contributes at least one non‘
principal irreducible character to $\theta$ , we have

(2.1) $|F(G)|+\sum^{\prime}a_{i}\geqq a_{0}$ ,

the summation $\sum^{\prime}$ taking over nonzero $i’ s$ . Let us set $\hat{\theta}=(\theta-l\chi_{0})(\theta-(l+s)\chi_{0})$ .
Since $\hat{\theta}$ is the regular character of $G[10]$ , we have $(\hat{\theta}, \chi_{0})=1$ and so
(2.2) $\sum^{\prime}a_{\ell}^{2}=1-(a_{0}-l)(a_{0}-l-s)$ .
The identity (2.2) implies $l\leqq a_{0}\leqq l+s$ , but $a_{0}$ cannot be $l$ because $(\theta, \chi_{0})=\frac{1}{g}\sum_{x\in G}\theta(x)$

$>l$ . Therefore we get

(2.3) $l<a_{0}\leqq l+s$ .
By (2.1) and (2.2), we have that
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$|F(G)|\geqq a_{0}-1+(a_{0}-l)(a_{0}-l-s)$ ,

and an elementary calculation shows that

min $\{a_{0}-1+(a_{0}-l)(a_{0}-l-s)|a_{0}=l+1, l+2, -- , l+s\}$

$=l+(1-s)s^{\prime}+s^{\prime_{2}}-1$ ,

where $s^{\prime}=\max\{1, [(s-1)/2]\}$ . This completes the proof.

3. Proof of Theorem 1.

LEMMA 3.1. Let $G$ be an $\{l, l+1, l+2, \cdots , l+r-1\}$ -group on $\Omega$ . Then we
have

$l+1\leqq k\leqq l+r-1+\frac{n-(l+r-1)}{g}$ ,

where $k$ is the number of G-orbits on $\Omega$ .
PROOF. The inequality $l+1\leqq k$ is trivial from $k=\frac{1}{g}\sum_{x\in G}\theta(x)>l$ . Let $\alpha_{i}=$

$\#\{x\in G^{\#}|\theta(x)=l+i\}$ for $0\leqq i\leqq r-1$ . Then we have

$g=1+\sum_{i=0}^{r-1}\alpha_{i}$

and

$gk=n+\sum_{i=\Downarrow}^{r- 1}(l+i)\alpha_{i}$ .

Since

$\sum_{i=0}^{r-1}(l+i)\alpha_{i}\leqq(l+r-1)\sum_{i=0}^{r-1}\alpha_{i}=(l+r-1)(g-1)$ ,

we get
$gk-n\leqq(l+r-1)(g-1)$ ,

and hence the desired result.
Let $\Delta_{1},$ $\Delta_{2},$ $\cdots$ , $\Delta_{k}$ be the G-orbits on $\Omega$ . We may assume $|\Delta_{i}|\geqq 2$ for all $i$

by induction on $n$ . Choose $\Delta_{i_{j}}$ and subsets $\Gamma_{i_{j}}$ of $\Delta_{i_{j}}$ ($j=1,2,$ $\cdots$ , t) such that

$|\Gamma_{i_{1}}|+|\Gamma_{i_{2}}|+\cdots+|\Gamma_{t_{i}}|=l+r-k$ ,
and

$|\Delta_{i_{j}}-\Gamma_{i_{j}}|=1$ for $j=1,2,$ $\cdots$ , $t-1$ ,

$|\Delta_{i_{t}}-\Gamma_{i_{t}}|\geqq 1$ .

This choice is possible because $\sum_{i=1}^{k}(|\Delta_{i}|-1)=n-k\geqq l+r-k$ . Notice that $l+r-k$

$\geqq 1$ by Lemma 3.1. By renumbering, we may assume $i_{1}=1,$ $i_{2}=2,$ $\cdots$ , $i_{t}=t$ .
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Let $H$ denote the pointwise stabilizer of $\Gamma_{1}\cup\Gamma_{2}\cup\cdots\cup\Gamma_{t}$ . We shall find
upper and lower bounds for the order of $H$.

It is clear that

$(\theta, \chi_{0})_{H}\geqq(\theta, \chi_{0})_{G}+|\Gamma_{1}|+|\Gamma_{2}|+\cdots+|l_{t}^{\urcorner}|=l+r$ ,

where $\chi_{0}$ is the principal character. On the other hand, we have

$(\theta, \chi_{0})_{H}\leqq l+r-1+\frac{n-(l+r-1)}{|H|}$

by Lemma 3.1. Therefore we get

(3.1) $|H|\leqq n-(l+r-1)$ .
Let us set $\gamma_{i}=|\Gamma_{i}|$ and $\delta_{i}=|\Delta_{i}|$ . We have an inequality

$|G$ : $H|=|G^{\Delta_{1}}$ : $H^{\Delta_{1}}|\cdot|G_{\Delta_{1}^{2}}^{\Delta}$ : $H_{\Delta_{1}^{2}}^{\Delta}|\cdots\cdot\cdot|G_{\Delta_{1}^{t}\cup\cdots\cup\Delta_{t-1}}^{\Delta}$ : $H_{\Delta_{1}^{t}\cup\cdots\cup\Delta_{t-1}}^{\Delta}|$

$\leqq\delta_{1}$ ! $\cdot\delta_{2}$ ! $\cdots\delta_{t-1}$ ! $\cdot\delta_{t}(\delta_{t}-1)\cdots(\delta_{t}-\gamma_{t}+1)$ ,

where $G^{\Delta_{1}}$ is the restriction of $G$ to $\Delta_{1},$ $G_{\Delta_{1}}$ is the pointwise stabilizer of $\Delta_{1}$

and so on. Since $g=(n-l)(n-l-1)\cdots(n-l-r+1)$ , we get

(3.2) $|H|\geqq\frac{(n-l)(n-l-1)\cdots(n.-l-r+1)}{\delta_{1}!\cdots\delta_{t-1}!\delta_{t}(\delta_{t}-1)\cdot\cdot(\delta_{t}-\gamma_{t}+1)}$ .

By (3.1) and (3.2), we obtain

(3.3) $\delta_{t}(\delta_{t}-1)\cdots(\delta_{t}-\gamma_{t}+1)\delta_{t-1}$ ! $\cdots\delta_{1}!\geqq(n-l)(n-l-1)\cdots(n-l-r+2)$ .
The right hand side of (3.3) is the product of $r-1$ consecutive integers begin-
ning from $n-l-r+2(\geqq 3)$ and ending at $n-l(\geqq\delta_{t})$ ; the inequality $n-l\geqq\delta_{t}$

comes from the inequality $\delta_{t}=n-\sum_{i\neq t}|\Delta_{i}|\leqq n-2(k-1)$ and Lemma 3.1. Neglect-

ing 1, the left hand side of (3.3) is a product of $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{t}$ integers with
$\gamma_{1}+\gamma_{2}+\cdots+\gamma_{t}\leqq r-1$ ; the last inequality comes from $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{t}=l+r-k$

and Lemma 3.1. Therefore (3.3) holds if and only if $t=1,$ $\delta_{t}=n-l$ and $\gamma_{t}=r-1$ .
The identity $\delta_{t}=n-l$ implies $l=0$ . Using Lemma 2.1 repeatedly, we get the
desired result.

4. Proof of Theorem 2.

We may assume $ F(G)=\emptyset$ without loss of generality. The following two
cases are possible by Lemma 2.2

Case I $L=\{0,2\}$ ,

and

Case II $L=\{1,3\}$ .
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Suppose that Case I holds. $G$ is transitive on $\Omega$ by Lemma 2.1 and $G_{a}$ has
three orbits of length 1, 1, $G_{\alpha}|$ . Such rank 3 groups have been determined by
Tuzuku [14], and $G$ is one of the groups listed in Theorem 1 (i).

Suppose that Case II holds. By (2.1), (2.2) and (2.3), we have that $\sum^{\prime}a_{i}^{2}=1$

$-(a_{0}-1)(a_{0}-3)\geqq a_{0}$ and $2\leqq a_{0}\leqq 3$ . Therefore we get $a_{0}=2,$ $\sum^{\prime}a_{i}^{2}=2$ and $\theta=2\chi_{0}$

$+x_{1}+x_{2}(\chi_{1}\neq\chi_{2})$ . $G$ has two orbits $\Delta_{1},$ $\Delta_{2}$ and $G$ is 2-transitive on both $\Delta_{1}$ and $\Delta_{2}$ .
Let us set $n_{i}=|\Delta_{i}|(i=1,2)$ and $d_{i}=|G_{\alpha,\beta}|$ for distinct $\alpha,$ $\beta\in\Delta_{i}(i=1,2)$ .

Then we have

(4.1) $g=(n-1)(n-3)=d_{i}n_{i}(n_{i}-1)$ .
We may assume $n_{1}\geqq n_{2}$ . We shall show that the solutions of (4.1) are

$(d_{1}, d_{2}, n_{1}, n_{2})=(2,4,4,3),$ $(3,4,8,7)$ . Since $d_{i}(n_{t}-1)^{2}<g<(n-2)^{2}$ and $(n-3)^{2}<$

$g<d_{i}(n_{i}-\frac{1}{2})^{2}$ , we get $(n_{i}-1)/(n-2)<1/\sqrt{d_{i}}<(n_{i}-\frac{1}{2})/(n-3)$ . Therefore we

have

(4.2) $1<1/\sqrt{d_{1}}+1/\sqrt{d_{2}}<1+\frac{2}{n-3}$ .

The possible values of $d_{1}$ are 1, 2 and 3, because $n_{1}\geqq n/2$ and $(n-1)(n-3)$

$\geqq d_{1}\frac{n}{2}\frac{n-2}{2}$ by (4.1). If $d_{1}=1$ holds, then $n_{1}^{2}-n_{1}-(n-1)(n-3)=0$ by (4.1) and

so $n-2<n_{1}<n-1$ , a contradiction. If $d_{1}=2$ holds, then $d_{2}\leqq 11$ and $n\leqq 235$ by
(4.2), and the solution of (4.1) is $(d_{1}, d_{2}, n_{1}, n_{2})=(2,4,4,3)$ . If $d_{1}=3$ holds, then
$d_{2}\leqq 5$ and $n\leqq 84$ by (4.2), and the solution of (4.1) is $(d_{1}, d_{2}, n_{1}, n_{2})=(3,4,8,7)$ .
The groups $S_{4},$ PS$L(2,7)$ in the theorem come from the above parameters.

This completes the proof.

5. Proof of Theorem 3.

We may assume $ F(G)=\emptyset$ without loss of generality. By Lemma 2.2, the
following three cases are possible:

Case I $L=\{0,3\}$ ,

Case II $L=\{1,4\}$ ,

and

Case III $L=\{2,5\}$ .
Case I. Suppose that Case I holds. Then $G$ is transitive and $G_{\alpha}$ is a sharp

{2}-group on $\Omega-\{\alpha\}$ by Lemma 2.1. By Iwahori [6],

(1) $G_{\alpha}$ fixes two points on $\Omega-\{\alpha\}$ and is regular on the remaining points,
(2) $G_{\alpha}$ is a generalized dihedral group,

or
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(3) $G_{\alpha}$ is $A_{4},$ $S_{4}$ or $A_{5}$ .
Suppose that the subcase (1) holds. Set $A=F(G_{\alpha}),$ $\Sigma=\{A^{x}|x\in G\}$ and

$|\Sigma|=r$. Then $|A|=3,$ $n=3r,$ $g=9r(r-1)$ and $G$ is doubly transitive on $\Sigma$ .
For a subgroup $X$ of $G$ and $A,$ $ B\in\Sigma$ , we use the following notation:

$X_{A}=$ { $ x\in X|\alpha^{x}=\alpha$ for all $\alpha\in A$ },

$X_{A}^{*}=\{x\in X|A^{x}=A\}$ ,

$X_{A,B}^{*--}\{x\in X|A^{x}=A, B^{x}=B\}$ ,
and

$X_{\{A.B\}}^{*}=\{x\in X|\{A, B\}^{x}=\{A, B\}\}$ .
$I(X)$ denotes the set of involutions of $X$.

Choose distinct blocks $A,$ $ B\in\Sigma$ . Let $K=G_{A.B}^{*}$ . Then $K$ is of order 9, $K_{A}$

and $K_{B}$ are of order 3. Choose an involutim $t$ which interchanges $A$ and $B$,
and let $K_{A}=\langle a\rangle,$ $ K_{B}--\langle b\rangle$ . We may assume $a^{t}=b$ , where $a^{t}=t^{-1}at$ . Then $ K=\langle a\rangle$

$\times\langle b\rangle,$ $ G_{\{A,B\}}^{*}=K\langle t\rangle$ and $I(K\langle t\rangle)=\{t, t^{a}, t^{b}\}$ .
Let $F_{\Sigma}(K)=$ {$C\in\Sigma|C^{x}=C$ for all $x\in K$}. We shall show $|F_{\Sigma}(K)|\leqq 3$ . Sup-

pose that $F_{\Sigma}(K)$ contains four distinct blocks $A,$ $B,$ $C,$ $D$ . Then $K_{A},$ $K_{B},$ $K_{c}$ and
$K_{D}$ are distinct subgroups of order 3, so we may assume $ K_{C}=\langle ab\rangle$ and $K_{D}=$

$\langle a^{-1}b\rangle$ . Since $t$ normalizes $\langle ab\rangle$ and $\langle a^{-1}b\rangle,$ $t$ acts on $F(\langle ab\rangle)=C$ and $F(\langle a^{-1}b\rangle)$

$=D$ . This contradicts the fact that $G_{C.D}^{*}$ is order 9. Therefore $|F_{\Sigma}(K)|\leqq 3$ .
Suppose $F_{\Sigma}(K)=\{A, B, C\}$ . Since $t$ normalizes $K,$ $t$ acts on $F_{\Sigma}(K)$ and so

$C^{t}=C$. Therefore $r$ is odd. By counting the number of

$\{(u, \{D, E\})|u\in I(G), D, E\in\Sigma, D\neq E, D^{u}=E\}$ ,

we get $|I(G)|(r-1)/2=\left(\begin{array}{l}r\\2\end{array}\right)|I(K\langle t\rangle)|i$ . $e$ . $|I(G)|=3r$ and so $|I(G_{C}^{*})|=3$ . Hence

we have $I(G_{c}^{*})=\{t, t^{a}, t^{b}\}$ . Since $tt^{a}=b^{-1}a$ and $\langle tt^{a}\rangle$ char $\langle t, t^{a}\rangle=\langle I(G_{c}^{*})\rangle\triangleleft G_{c}^{*}$ ,
$\langle b^{-1}a\rangle$ is normal in $GX$ . Since $G_{C}^{*}$ is transitive on $\Sigma-\{C\},$ $\langle b^{-1}a\rangle$ is contained
in $N$, where $N$ is the kernel of $G$ on $\Sigma$ . However, $b^{-1}a$ fixes each point of $C$ .
because $F_{\Sigma}(b^{-1}a)\ni C,$ $F(t)=C$ and $t$ inverts $b^{-1}a$ . So $N$ intersects $G_{D}$ nontrivially
for any $ D\in\Sigma$ . Since $K\supseteq N,$ $K$ intersects $G_{D}$ nontrivially for any $ D\in\Sigma$ and
so we obtain $r=3$ . We can verify directly that $G\cong(Z_{3}\times Z_{3})\rangle\triangleleft S_{3}$ with $|Z(G)|=3$ .

Suppose $F_{\Sigma}(K)=\{A, B\}$ . Let $N$ be the kernel of $G$ on $\Sigma$ and $\overline{G}=G/N$

Since $K$ is of odd order, $G$ has a regular normal subgroup or a normal sub-
group isomorphic to $PSL(2, q),$ $PSU(3, q)$ or $Sz(q)$ (Bender [2]). The 2-point
stabilizers of $PSL(2, q),$ $PSU(3, q),$ $Sz(q)$ are cyclic subgroups of order $(q-1)/$

$(2, q-1),$ $(q^{2}-1)/(3, q+1),$ $q-1$ respectively, whereas $K(=G_{A.B}^{*})$ is an elementary
abelian subgroup of order 9. So the possible normal subgroups are $PSL(2,4)$

and $PSL(2,7)$ . We can verify directly that $G$ is $Z_{3}\times PSL(2,4)$ or $Z_{3}\times PSL(2,7)$ .
(Notice that the Schur multipliers of $PSL(2,4)$ and $PSL(2,7)$ are both $Z_{2}.$)

Therefore we may assume that $G^{\Sigma}$ has a regular normal subgroup R. $\overline{R}$ is an
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elementary abelian 2-group of order $r$, because $|F_{\Sigma}(K)|=2$ . Any involution is
conjugate to an element of $I(G_{A.B}^{*})(=\{t, t^{a}, t^{b}\})$ , so $I(G)$ is one class. By the
same counting method in the case $|F_{\Sigma}(K)|=3$ , we get $|I(G)|=3(r-1)$ . Let $S$ be
a Sylow 2-subgroup of $G$ . Suppose $r>2$ . If some involution inverts the kernel
$N$, then every involution inverts $N$, since $I(G)$ is one class. This is impossible.
Therefore $S$ commutes $N$. Since $\overline{SN}=\overline{R}$ and $N$ is of odd order, $S$ is normal in
$G$ and so $|I(G)|=|S^{*}|=r-1$ , a contradiction. So $r=2$ and $G\cong(Z_{3}\times Z_{3})\aleph Z_{2}$ .

Suppose that the subcase (2) holds $i$ . $e$ . $G_{\alpha}$ has a normal subgroup $Q$ of index
2 such that $Q$ has a cyclic Sylow 2-subgroup and any element of $G_{\alpha}-Q$ is an
involution which inverts Q. $G_{a}$ has four orbits $\{\alpha\},$ $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}$ of length 1, 2,
$|Q|,$ $|Q|$ respectively, $Q$ fixes $\Gamma_{1}$ pointwise and is regular on both $\Gamma_{2}$ and $\Gamma_{3}$ ,

and any element of $G_{a}-Q$ interchanges the two points of $\Gamma_{1}$ .
Suppose $|Q|=2$ . Then $n=7,$ $g=7\cdot 4$ , so $G$ has an element of order 14, a

contradiction. Therefore $|Q|\geqq 3$ . Choose $x\in G$ and $\beta\in\Gamma_{1}$ such that $\beta=\alpha^{x}$ .
Since $Q$ and $Q^{x}$ are subgroups of $G_{\beta}$ of index 2, $Q\cap Q^{x}$ is not trivial. There-
fore $F(Q)=F(y)=F(Q^{x})$ for nonidentity $y\in Q\cap Q^{x}$ and so $Q^{x}=G_{\alpha\beta}=Q$ . For

$\gamma\in\Gamma_{2}$ , there exist involutions $t\in G_{\alpha}-Q$ and $u\in G_{\beta}-Q$ which fix $\gamma$ . Since $t$ and
$u$ invert $Q$ , tu centralizes $Q$ and so $Q$ acts on $F(tu)$ . Since $F(tu)$ contains $\gamma$

and $\gamma^{Q}=\Gamma_{2}$ , we have $|F(tu)|\geqq|\Gamma_{2}|$ . Since $G$ is a $\{0,3\}$ -group, $|Q|=|\Gamma_{2}|=3$

and so $n=9$ . We can verify that $G\cong(Z_{3}\times Z_{3})\rangle\triangleleft S_{3}$ with $Z(G)=1$ .
Suppose that the subcase (3) holds. We can verify by case by case argu-

ment that $G\cong(Z_{3}\times Z_{3}\times Z_{3})\rangle\triangleleft S_{4}$ with $G_{\alpha}\cong S_{4}$ . Here $\epsilon\chi$ is the character of $S_{4}$

acting on $Z_{3}\times Z_{3}\times Z_{3}$ in the semidirect product, where $\epsilon$ is the signature and
$ 1+\chi$ is the usual 2-transitive permutation character of $S_{4}$ .

REMARK. See also [12] section 6 for the subcase (1) and [11] Corollary
for the subcases (2) and (3). The group $Z_{3}\times A_{5}$ is missed in the theorem 6.3 [12].

Case II and Case III. By (2.1), (2.2) and (2.3), the possible cases are
(1) $G$ is a sharp {1, 4} or {2, 5}-group with three orbits $\Delta_{1},$ $\Delta_{2},$ $\Delta_{3}$ and $G$

is 2-transitive on each orbit. For all distinct $i,$ $j,$ $(G, \Delta_{i})$ is not isomorphic to
$(G, \Delta_{j})$ and $G$ is transitive on $\Delta_{i}\times\Delta_{j}$ .

(2) $G$ is a sharp {1, 4}-group with two orbits $\Delta_{1},$ $\Delta_{2}$ . $G$ is 2-transitive on
$\Delta_{1}$ and is rank 3 on $\Delta_{2}$ . $G$ is transitive on $\Delta_{1}\times\Delta_{2}$ .

We first show that we may assume every orbit of $G$ has length at least 5
(resp. 6) if $G$ is a sharp {1, 4} (resp. {2, 5})-group. Suppose that $G$ is a sharp
{2, 5}-group and has an orbit $\Delta_{1}$ of length 5. Let $N$ be the kernel of $G$ on $\Delta_{1}$ .
Then $G/N\cong Z_{5}\rangle\triangleleft Z_{4},$ $A_{5}$ or $S_{5}$ and $N$ is a regular normal subgroup on each of
the remaining orbits $\Delta_{2},$ $\Delta_{3}$ . So $N$ is elementary abelian, and $|N|^{2}$ divides $|G|$

because $G$ is transitive on $\Delta_{2}\times\Delta_{3}$ . Therefore $|N|=2,3,4,5$ or 8, but this con-
tradicts the condition $g=(n-2)(n-5)$ and $n=5+|N|+|N|$ .

Suppose $G$ is a sharp {2, 5}-group and has an orbit $\Delta_{1}$ of length less than
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5. For distinct $\alpha,$ $\beta,$ $\gamma\in\Delta_{1},$ $G_{\alpha.\beta.\gamma}$ is a {5}-group. So we get $(n-2)(n-5)=g$

$\leqq|\Delta_{1}|(|\Delta_{1}|-1)(|\Delta_{1}|-2)|G_{\alpha,\beta,\gamma}|\leqq 4\cdot 3\cdot 2(n-5)i$ . $e$ . $n\leqq 26$ by Kiyota’s inequality $(^{*})$ .
Since $G$ is 2-transitive on each $\Delta_{i}$ and is transitive on $\Delta_{i}\times\Delta_{j}(i\neq j)$ , we have that
$7\leqq n=n_{1}+n_{2}+n_{3}\leqq 26,$ $n_{t}(n_{i}-1)$ divides $(n-2)(n-5)(=g)$ for all $i$ and $n_{i}n_{j}$ divides
$(n-2)(n-5)$ for all distinct $i,$ $j$ , where $n_{i}=|\Delta_{i}|$ . The $(n, n_{1}, n_{2}, n_{3})$ which satis-
fies the above condition is only (8, 2, 3, 3), and we get $G\cong(Z_{3}\times Z_{3})\lambda Z_{2}$ .

Similarly we can show that every orbit of $G$ has length at least 5 if $G$ is
a sharp {1, 4}-group. Therefore we may assume that $G$ is faithful on every
orbit $\Delta_{i}$ .

Next we show that $G$ has no regular normal subgroup on $\Delta_{i}$ , if $G$ is 2-
transitive on $\Delta_{i}$ . Suppose that the subcase (2) holds and $G$ has a regular normal
subgroup $R$ on $\Delta_{1}$ . $R$ acts on $F(x)$ and $F(y)-F(x)$ for $x,$ $y\in R$ , since $R$ is
abelian. $|F(x)|=4$ holds and $\Delta_{2\neq}\supset F(x)$ for any nonidentity $x\in R$ . We can find
nonidentity elements $x,$ $y$ in $R$ such that $F(x)\neq F(y)$ . Let $R_{0}$ be the kernel of
$R$ on $F(x)$ . Then $R_{0}$ is semiregular on $F(y)-F(x)$ . Therefore we get $|R_{0}|$

$\leqq|F(y)-F(x)|\leqq 4$ . Since $|R|=|R_{0}\lceil\cdot|F(x)|,$ $R$ is of order 8 or 16.
Suppose $|R|=8$ . Then $|\Delta_{1}|=8$ and $G_{\alpha}\subseteq GL(3,2)$ for $\alpha\in\Delta_{1}$ . Since $G_{\alpha}$ is

transitive on $\Delta_{2},$ $|\Delta_{2}|$ divides $2^{3}\cdot 3\cdot 7(=|GL(3,2)|)$ . Since 8 divides $|\Delta_{1}|$ and
$(n-1)(n-4)(=g),$ $|\Delta_{2}|\equiv 1$ or 4 mod 8. Therefore $|\Delta_{2}|=12,28$ or 84 and $g=$

$(n-1)(n-4)=19\cdot 16,35\cdot 32$ or 91 $\cdot 88$ . This contradicts the condition that $g$ divi-
des $|R|\cdot|GL(3,2)|$ . Similarly the assumption $|R|=16$ leads to a contradiction.

The subcase (1) is similar and easier to prove the nonexistence of a regular
normal subgroup.

Let $\mu_{\Delta_{i}}$ be the maximal number of fixed points of involutions on $\Delta_{i}$ . Then
$\mu_{\Delta_{i}}\leqq 5$ . Suppose that $\mu_{\Delta_{1}}=5$ with an involution $u$ fixing 5 points on $\Delta_{1}$ . Then
$G$ is {2, 5}-sharp and so has two more orbits $\Delta_{2},$ $\Delta_{3}$ . Since $u$ has no fixed points
on $\Delta_{2}$ and $A_{8},$ $|\Delta_{2}|$ and $|\Delta_{3}|$ are even and so $\mu_{\Delta_{i}}\leqq 4(i=2,3)$ . Therefore in the
subcase (1), we may assume that $\mu_{\Delta_{1}}\leqq 5,$ $\mu_{\Delta_{2}}\leqq 4$ and $\mu_{\Delta_{3}}\leqq 4$ . Obviously in the
subcase (2), $\mu_{\Delta_{1}}\leqq 4$ .

If $G$ is 2-transitive on $\Delta_{i}$ with $\mu_{\Delta_{i}}\leqq 4$ , then $G$ has a normal subgroup
isomorphic to

(a) $PSL(2, q)$ or $Sz(q)$

or $G$ is isomorphic to

(b) $S_{5},$ $A_{6},$ $S_{6}(n_{i}=6,10),$ $A_{7}(n_{i}=7,15),$ $M_{11},$ $PSL(3,2),$ $PSL(2,11)(n_{t}=11)$

or $P\Gamma L(2,8)(n_{i}=28)$ , where $n_{i}=|\Delta_{i}|$ .

(All $(G, \Delta_{i})$ are usual permutation representations except for $S_{6},$ $A_{7},$ $PSL(2,11)$ ,
$P\Gamma L(2,8)$ . See [1], [2], [3], [5], [9].) The reason why $PSU(3, q)$ is missed in
(a) is that a diagonal element of $PSU(3, q)$ fixes $q+1$ points and that if $q=3$
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or 4, $G$ does not satisfy the condition $g=(n-1)(n-4)$ or $(n-2)(n-5)$ .
Suppose that the subcase (1) holds. Then $(G, \Delta_{i})$ is determined by the list

(a), (b) for $i=2,3$ . Since $(G, \Delta_{2})$ and $(G, \Delta_{3})$ are not isomorphic, $G$ is $S_{6},$ $A_{7}$ ,
$PSL(2,11)$ or $P\Gamma L(2,8)$ . Since these groups have at most two non-isomorphic
2-transitive representations, $(G, \Delta_{1})$ is isomorphic to $(G, \Delta_{2})$ or $(G, \Delta_{3})$ , a con-
tradiction.

Suppose that the subcase (2) holds and $G$ has a normal subgroup $M$ listed
in (a). First suppose that $G$ is a Zassenhaus group on $\Delta_{1}$ . Let $\theta_{i}$ be the per-
mutation character of $G$ on $\Delta_{i}$ for $i=1,2$ , and

$\alpha_{ij}=\#\{x\in G|\theta_{1}(x)=i, \theta_{2}(x)=j\}$ ,

$\alpha_{i}=\#\{x\in G|\theta_{1}(x)=i\}$ .

Then, since $(\theta_{1}, \theta_{2})=1$ , we have

$g=n_{1}n_{2}+3(\alpha_{13}+\alpha_{31})+4\alpha_{22}$ ,

where $n_{i}=|\Delta_{\lambda}|$ . Since $\alpha_{22}=\alpha_{2}=\frac{1}{2}(g-n_{1}^{2}+n_{1})$ , we get

$g\geqq n_{1}n_{2}+4\alpha_{2}=n_{1}n_{2}+2g-2n_{1}(n_{1}-1)$ ,

$i$ . $e$ . $2\geqq g/n_{1}(n_{1}-1)+n_{2}/(n_{1}-1)$ .

Therefore $|G_{a,\beta}|=g/n_{1}(n_{1}-1)=1$ for distinct $\alpha,$ $\beta\in\Delta_{1}$ , a contradiction.
Next suppose that $G$ contains an element $\sigma(\neq 1)$ which Pxes at least 3 points

on $\Delta_{1}$ . If $M$ is $Sz(q)$ , we may assume $\sigma$ is a field automorphism, and then $\sigma$

fixes at least $2^{2}+1$ points on $\Delta_{1}$ , which is a contradiction. Hence $M$ is $PSL(2, q)$ .
We shall show that $\sigma$ is of order 2. Let $H$ be a $\sigma$ -invariant 2-point stabilizer
of $M$ on $\Delta_{1}$ . $H$ is a cyclic subgroup. Let $x$ be a generator of $H$ and $F_{\Delta_{2}}(x)=$

$\{\alpha\in\Delta_{2}|\alpha^{x}=\alpha\}$ . Then $|F_{\Delta_{2}}(x)|=2$ . Since $\sigma$ normalizes $H(=\langle x\rangle),$ $\sigma$ acts on
$F_{\Delta_{2}}(x)(=F_{\Delta_{2}}(\langle x\rangle))$ . Since $\sigma^{2}$ fixes at least 3 points of $\Delta_{1}$ and the two points of
$F_{\Delta_{2}}(x)$ , we get $\sigma^{2}=1$ . Since $\sigma$ fixes at least 3 points on $\Delta_{1},$ $ PSL(2, q)\langle\sigma\rangle$ con-
tains a field automorphism $f$ of order 2. Since $f$ fixes $\sqrt{q}+1$ points on $\Delta_{1},$ $G$

is $PSL(2,4)\langle f\rangle,$ $ PSL(2,9)\langle f\rangle$ or $ PGL(2,9)\langle f\rangle$ . This, however, contradicts the
condition $g=(n-1)(n-4)$ .

Thus in the subcase (2), $G$ is one of the groups listed in (b). But none of
them satisfies the condition $g=(n-1)(n-4)$ . This completes the proof of
Theorem 3.
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