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SHARP RESULTS IN THE INTEGRAL-FORM

JOHN–NIRENBERG INEQUALITY

L. SLAVIN AND V. VASYUNIN

Abstract. We consider the strong form of the John-Nirenberg inequality for
the L2-based BMO. We construct explicit Bellman functions for the inequality
in the continuous and dyadic settings and obtain the sharp constant, as well
as the precise bound on the inequality’s range of validity, both previously
unknown. The results for the two cases are substantially different. The paper
not only gives another instance in the short list of such explicit calculations,
but also presents the Bellman function method as a sequence of clear steps,
adaptable to a wide variety of applications.
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1. Introduction

In this paper, we are dealing with the space BMO that first appeared in the
classical paper [3]. A crucial property of elements of BMO, the exponential decay
of their distribution function, was also established in that paper; it is now known
as the weak-form John–Nirenberg inequality.
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4136 L. SLAVIN AND V. VASYUNIN

For an interval I and a real-valued function ϕ ∈ L1(I), let 〈ϕ〉
I
be the average

of ϕ over I, 〈ϕ〉
I
= 1

|I|
∫
I
ϕ. For 1 ≤ p < ∞, let

(1.1) BMO(I) =
{
ϕ ∈ L1(I) : 〈|ϕ− 〈ϕ〉

J
|p〉

J
≤ Cp < ∞, ∀ interval J ⊂ I

}
with the best (smallest) such C being the corresponding norm of ϕ. The classical
definition of John and Nirenberg uses p = 1; it is known that the norms for different
p’s are equivalent. For every ϕ ∈ BMO(I) and every λ ∈ R one has

Theorem (John, Nirenberg; weak form).

(1.2)
1

|I| |{s ∈ I : ϕ− 〈ϕ〉
I
> λ}| ≤ c1e

−c2λ/‖ϕ‖BMO(I) .

BMO plays a major role in modern analysis (in particular, because it is dual to
the Hardy space H1 [2]). In addition, inequality (1.2) can be viewed as an accurate
characterization of unbounded BMO functions. Thus, finding sharp constants c1
and c2 is of much interest. For the classical case p = 1, Korenvoskii [4] established
the exact value c2 = 2/e. Inequality (1.1) can be integrated to produce an equivalent
statement. For ε ≥ 0, let

BMOε(I) = {ϕ ∈ BMO(I) : ‖ϕ‖ ≤ ε}.
Then we have

Theorem (John, Nirenberg; integral form). There exists ε0 > 0 such that for every
0 ≤ ε < ε0 there is C(ε) > 0 such that for any function ϕ ∈ BMOε(I),

(1.3) 〈eϕ〉
I
≤ C(ε)e

〈ϕ〉
I .

This paper has two main objectives: the first one is to establish, for the case
p = 2, the sharp values for ε0 and C(ε) in (1.3). We accomplish this for the

continuous BMO defined above as well as its dyadic analog BMOd, for which every
subinterval J of I in definition (1.1) is an element of the dyadic lattice rooted in I.

The second objective is to showcase the tool that is at the center of the proofs. It
is the Bellman function method, a powerful harmonic analysis technique developed
during the past 12 years. In the important paper [1], Burkholder found what
can now be understood as the first explicit harmonic analysis Bellman function.
However, his language was different from ours, and the method did not appear in
its present form until 1995, when a two-weight martingale transform was handled
in [8] (later published as [9]). In the big paper [6], the authors define many Bellman
functions, as a matter of both developing the method and solving several important
problems. Many results, using different variants of the technique, have followed.
However, until [13] was published in 2003, none had found their Bellman functions
explicitly, instead relying on Bellman-type arguments, when one uses a substitute
function with required size and concavity properties.

The list of explicit Bellman functions is still very short. Besides [13], we note the
papers [5, 15, 11]; several others are in the works. While the present paper gives
one of the earliest known such computations (see [10, 14]), it has taken time to
bring it to print. Finding the corresponding Bellman function exactly will always
yield sharp results for an inequality, but this paper also has methodical value: it
is our hope that it will further a new paradigm in Bellman investigations and help
bring about a new pure-Bellman template. To describe it briefly, upon choosing
the Bellman variables and setting up the corresponding extremal problem, one is
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SHARP JOHN–NIRENBERG INEQUALITY 4137

to establish the finite-difference inequality(ies) codifying the concavity (convexity)
of the Bellman function along the trajectories defined by the choice of variables.
The inequality then is rephrased as a set of partial differential conditions, which are
“sharpened” to become what we now call “the Bellman PDE”. Using homogeneity
inherent in the problem, one reduces the order of the PDE and finds a solution, a
“candidate” Bellman function. Then, one proves that the candidate is indeed the
true Bellman function, using a dyadic-type induction on scales in one direction and
finding an extremal function to establish the other. We follow this template in both
continuous and dyadic cases.

Surprisingly, in our case the solution of that PDE turns out to be the Bellman
function for the continuous John–Nirenberg setup, and that takes a substantial
amount of work to show. We then solve the dyadic case, using the continuous solu-
tion as a starting point. The results for the two cases turn out to be substantially
different.

As its name suggests, the method has its origins in stochastic optimal control. We
refer the reader to papers [7, 16], where the connection between the two incarnations
of the method is explored. In fact, it was in an early version of [7] where we first
saw a Bellman setup for a dyadic version of inequality (1.3). The authors then
stated a formal PDE for the problem and found a majorant of its solution, in
effect establishing the dyadic inequality with some suboptimal values. Each of us,
independently, solved the PDE exactly, and we then pooled our efforts to proceed
from this formal solution to the rigorous proof of our theorems. We would especially
like to acknowledge the help of A. Volberg who formulated the problem to each of
us and brought us together.

2. The Bellman setup

We use definition (1.1) with p = 2. The reason is that it can be rewritten as

BMO(I) =
{
ϕ ∈ L1(I) : 〈ϕ2〉

J
− 〈ϕ〉2

J
≤ C2, ∀ interval J ⊂ I

}

with the norm

‖ϕ‖BMO(I) =

(
sup
J⊂I

{
〈ϕ2〉

J
− 〈ϕ〉2

J

})1/2

,

with the appropriate modifications for the dyadic space BMOd. This rewriting
greatly facilitates the description of the problem in terms of Bellman variables, as
shown below.

As mentioned before, by BMOε(I) and BMOd
ε(I) we denote the ε-ball (the ball

of radius ε centered at 0) in the corresponding space. With every such ball and
the set of all subintervals J ⊂ I we associate the domain Ωε = {x = (x1, x2) : x1 ∈
R, x2

1 ≤ x2 ≤ x2
1 + ε2} as follows:

(2.1) (ϕ, J) �−→
(
〈ϕ〉

J
, 〈ϕ2〉

J

)
.
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4138 L. SLAVIN AND V. VASYUNIN

This map is well-defined because 〈ϕ〉2
J

≤ 〈ϕ2〉
J

(Cauchy inequality) and ϕ ∈
BMOε(I) (BMOd

ε(I)). On Ωε, we define the following Bellman functions:

B+
ε (x) = sup

ϕ∈BMOε(I)

{
〈eϕ〉

I
: 〈ϕ〉

I
= x1, 〈ϕ2〉

I
= x2

}
,(2.2)

B−
ε (x) = inf

ϕ∈BMOε(I)

{
〈eϕ〉

I
: 〈ϕ〉

I
= x1, 〈ϕ2〉

I
= x2

}
,(2.3)

Bd+
ε (x) = sup

ϕ∈BMOd
ε(I)

{
〈eϕ〉

I
: 〈ϕ〉

I
= x1, 〈ϕ2〉

I
= x2

}
,(2.4)

Bd−
ε (x) = inf

ϕ∈BMOd
ε(I)

{
〈eϕ〉

I
: 〈ϕ〉

I
= x1, 〈ϕ2〉

I
= x2

}
.(2.5)

Observe that these functions do not depend on I. The functions with “+” give the
exact upper bound on 〈eϕ〉

I
(and so the sharp John–Nirenberg inequality), while

the ones with “−” give the lower bound. While the overall lower bound (over

all x) is well known (〈eϕ〉
I
≥ e

〈ϕ〉
I , by Jensen’s inequality), the lower Bellman

functions give nontrivial results for each particular choice of x. In addition, they
arise naturally in the process of solving the Bellman PDE.

Until now, a typical Bellman function paper would first establish a dyadic result
and then modify the proof to cover the continuous case. A notable feature of our
result is that we first find a family of “continuous” Bellman functions and then
choose appropriate members of that family to deal with the dyadic case.

3. Main results

Throughout the paper, we will mark results about the continuous case with index
“c” and their dyadic analogs with index “d.”

Theorem 1c. Let ε0 = 1. For every 0 ≤ ε < ε0, let

(3.1) C(ε) =
e−ε

1− ε
.

Then, for any ϕ ∈ BMOε(I),

(3.2) 〈eϕ〉
I
≤ C(ε)e

〈ϕ〉
I .

Moreover, ε0 and C(ε) are sharp.

Theorem 1d. Let εd0 =
√
2 log 2. For every 0 ≤ ε < εd0, let

(3.3) Cd(ε) =
e
− ε√

2

2− e
ε√
2

.

Then, for any ϕ ∈ BMOd
ε(I),

(3.4) 〈eϕ〉
I
≤ Cd(ε)e

〈ϕ〉
I .

Moreover, εd0 and Cd(ε) are sharp.

In our proofs, we will repeatedly use the function

H(t) = (1− t)et.

The following proposition summarizes the simple properties of H we will need; the
proof is omitted.
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SHARP JOHN–NIRENBERG INEQUALITY 4139

Proposition 1.

(a) H is strictly increasing for t < 0 and strictly decreasing for t > 0;
(b) H(−t) > H(t) for t > 0.

Theorems 1c and 1d are immediate consequences of Proposition 1 and the fol-
lowing results for the Bellman functions (2.2)–(2.5). Let

(3.5) B±
δ (x) =

H
(
±
√

δ2 + x2
1 − x2

)
H(±δ)

ex1 .

Theorem 2c. If 0 ≤ ε < 1, then

B+
ε (x) = B+

ε (x).

If ε ≥ 1, then

B+
ε (x) =

{
ex1 if x2 = x2

1,

+∞ if x2 > x2
1.

In addition,

B−
ε (x) = B−

ε (x), ∀ε ≥ 0.

Theorem 2d. If 0 ≤ ε <
√
2 log 2, then

Bd+
ε (x) = B+

δ+(ε)(x),

where δ = δ+(ε) is the unique solution of the equation

(3.6) (1−
√

δ2 − ε2)e
√
δ2−ε2

(
2− eε/

√
2
)
− (1− δ)eδ−ε/

√
2 = 0

in the interval (ε, 1).

If ε ≥
√
2 log 2, then

Bd+
ε (x) =

{
ex1 if x2 = x2

1,

+∞ if x2 > x2
1.

In addition,

Bd−
ε (x) = B−

δ−(ε)(x), ∀ε ≥ 0,

where δ = δ−(ε) is the unique solution of the equation

(3.7) (1 +
√
δ2 − ε2)e−

√
δ2−ε2

(
2− e−ε/

√
2
)
− (1 + δ)e−δ+ε/

√
2 = 0

in the interval
(
ε, 3

2
√
2
ε
)
.

Indeed, Proposition 1 implies that the functions B+
δ , for any δ ≥ ε, assume their

maxima on Ωε on its upper boundary, i.e. when x2 = x2
1 + ε2. Then we have

B+
ε (x) ≤ H(0)

H(ε)
=

e−ε

1− ε
ex1

and

B+
δ+(ε)(x) ≤

H(
√
δ+(ε)2 − ε2 )

H(δ+(ε))
ex1 =

e
− ε√

2

2− e
ε√
2

ex1 ,

giving (3.2) and (3.4) with the sharp constants (3.1) and (3.3).
The rest of the paper is devoted to proving Theorems 2c and 2d. We will first

consider the continuous case and then the dyadic one.
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4140 L. SLAVIN AND V. VASYUNIN

4. The continuous case

We split the proof of Theorem 2c into two parts.

Lemma 1c. For every x ∈ Ωε,

(4.1) B+
ε (x) ≥ B+

ε (x), B−
ε (x) ≤ B−

ε (x),

where 0 ≤ ε < 1 for B+ and ε ≥ 0 for B−.

We prove each of inequalities (4.1) by explicitly finding a function ϕ for every
point x ∈ Ωε such that

(
〈ϕ〉

I
, 〈ϕ2〉

I

)
= (x1, x2) and

〈eϕ〉
I
= Bε(x1, x2).

Here Bε stands for B+
ε or B−

ε , as appropriate, and the result will then follow from
the definition of B±

ε .

Proof. Since x2 = x2
1 occurs if and only if ϕ = x1 = const, it is clear that B±

0 (x) =
B±

0 (x) = ex1 . So we only need to consider ε > 0.
Take I = [0, 1], a ∈ (0, 1], b ∈ R, γ ∈ R\{0}. Let

ϕa,b,γ(t) =

{
γ log a

t + b for 0 ≤ t ≤ a,

b for a ≤ t ≤ 1.

Let us calculate the BMO norm of ϕa,b,γ . To simplify calculations, let l(t) = log(a/t)
and observe that ∫

(γl(t) + b) dt = (γ + b)t+ γtl(t) + C

and ∫
(γl(t) + b)

2
dt = (2γ2 + 2γb+ b2)t+ γ2tl2(t) + 2γ(b+ γ)tl(t) + C.

Take an interval [c, d] ⊂ I. We have the following trichotomy:

(1) 0 ≤ c < d ≤ a ≤ 1. In this case

〈ϕ〉
[c,d]

= γ + b+ γ
dl(d)− cl(c)

d− c

and

〈ϕ2〉
[c,d]

= 2γ2 + 2γb+ b2 + 2γ(b+ γ)
dl(d)− cl(c)

d− c
+ γ2 dl

2(d)− cl2(c)

d− c
.

Therefore,

〈ϕ2〉
[c,d]

− 〈ϕ〉2
[c,d]

= γ2 +
γ2

(d− c)2
[
(dl2(d)− cl2(c))(d− c)− (dl(d)− cl(c))2

]
= γ2 − γ2cd

(d− c)2
[l(d)− l(c)]2 ≤ γ2.

(2) 0 ≤ c ≤ a ≤ d ≤ 1. In this case

〈ϕ〉
[c,d]

=
−γcl(c) + (b+ γ)(a− c) + b(d− a)

d− c
= γ

−cl(c) + a− c

d− c
+ b
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and

〈ϕ2〉
[c,d]

=
(2γ2 + 2γb+ b2)(a− c) + γ2(−cl2(c)) + 2γ(b+ γ)(−cl(c)) + b2(d− a)

d− c

=
γ

d− c

[
2(b+ γ)(a− c)− γcl2(c)− 2(b+ γ)cl(c)

]
+ b2,

so

〈ϕ2〉
[c,d]

− 〈ϕ〉2
[c,d]

=
γ2

d− c

[
2(a− c)− cl2(c)− 2cl(c)

]
− γ2

(d− c)2
[
(a− c)2 − 2c(a− c)l(c) + c2l2(c)

]
=

γ2

(d− c)2
[
2(a− c)(d− c)− (a− c)2 − cdl2(c)− 2c(d− a)l(c)

]
≤ γ2 a− c

d− c

[
2− a− c

d− c

]
≤ γ2,

since d ≥ a and log(a/c) ≥ 0 if a ≥ c. The last inequality follows from the
fact that the vertex of the parabola (x, x(2− x)) is at (1, 1).

(3) 0 ≤ a ≤ c < d ≤ 1. In this case,

〈ϕ2〉
[c,d]

− 〈ϕ〉2
[c,d]

= b2 − b2 = 0.

We have shown that ϕa,b,γ ∈ BMO|γ|(I). Also, using Case 2 above with c = 0,

d = 1, we get 〈ϕa,b,γ〉I = γa+ b and 〈ϕ2
a,b,γ〉I = 2γ2a+ 2γab+ b2. Finally,

〈eϕa,b,γ 〉
I
=

∫ a

0

eb
(a
t

)γ
dt+

∫ 1

a

eb dt =

⎧⎨
⎩

1− γ + aγ

1− γ
eb if γ < 1,

∞ if γ ≥ 1.

Since Bε(x1, x
2
1) = Bε(x1, x

2
1) = ex1 for all ε, we only need to consider the points

x ∈ Ωε with x2 > x2
1. Then we can set a = 1− 1

|γ|
√
γ2 + x2

1 − x2 and b = x1 − γa,

which yields 〈ϕa,b,γ〉I = x1, 〈ϕ2
a,b,γ〉I = x2. Now, if we put γ = ε ≥ 1, we get

B+
ε (x) = ∞. For γ = ε ∈ (0, 1), we get

B+
ε (x) ≥ 〈eϕa,b,γ 〉

I
=

1−
√
ε2 + x2

1 − x2

1− ε
exp

(
x1 +

√
ε2 + x2

1 − x2 − ε

)
= B+

ε (x).

If we set γ = −ε ∈ (−∞, 0), we obtain

B−
ε (x) ≤ 〈eϕa,b,γ 〉

I
=

1 +
√

ε2 + x2
1 − x2

1 + ε
exp

(
x1 −

√
ε2 + x2

1 − x2 + ε

)
= B−

ε (x). �

Lemma 2c. For every x ∈ Ωε,

(4.2) B+
ε (x) ≤ B+

ε (x), B−
ε (x) ≥ B−

ε (x),

where 0 ≤ ε < 1 for B+ and ε ≥ 0 for B−.

Proof. To establish (4.2), we first prove that B+
ε (x) ≤ B+

ε1(x), B−
ε (x) ≥ B−

ε1(x),
∀ε1 > ε, ∀x ∈ Ωε, and take the limit as ε1 → ε. (Observe that B+

ε and B−
ε are

continuous in ε.) We need the following two results; their proofs will be postponed
until the end of the proof of Lemma 2c.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4142 L. SLAVIN AND V. VASYUNIN

Lemma 3c. The function B+
ε is locally concave and the function B−

ε locally convex
in Ωε, i.e.

(4.3)
B+

ε (α−x
− + α+x

+) ≥ α−Bε(x
−) + α+Bε(x

+),

B−
ε (α−x

− + α+x
+) ≤ α−Bε(x

−) + α+Bε(x
+)

for any straight-line segment with the endpoints x± that lies entirely in Ωε and any
pair of nonnegative numbers α± such that α− + α+ = 1.

Lemma 4c. Fix ε. Take any ε1 > ε. Then for every interval I and every ϕ ∈
BMOε(I), there exists a splitting I = I− ∪ I+ such that the whole straight-line

segment with the endpoints x± =
(
〈ϕ〉

I±
, 〈ϕ2〉

I±

)
is inside Ωε1 . Moreover, the

splitting parameter α+ = |I+|/|I| can be chosen uniformly (with respect to ϕ and
I) separated from 0 and 1.

Assuming these lemmas for the moment, take ϕ ∈ BMOε(I). Take any ε1 > ε.
Observe that ϕ ∈ BMOε(J) for any subinterval J of I. Split I according to the
rule from Lemma 4c. Let I0,0 = I, I1,0 = I−, and I1,1 = I+. Now split I− and
I+ according to the rule from Lemma 4c and continue this splitting process. By

In,m we denote the intervals of the n-th generation as follows: In,2k = In−1,k
− and

In,2k+1 = In−1,k
+ , so the second index runs from 0 to 2n−1. We call the quasi-dyadic

lattice so obtained Dϕ = Dϕ(I). Let x
n,m =

(
〈ϕ〉

In,m , 〈ϕ2〉
In,m

)
. Since Lemma 4c

provides for the value of α+ uniformly separated from 0 and 1 on every step, we
have

max
k=0,1,...,2n−1

{
|In,k|

}
−→ 0 as n → ∞.

With this notation, for a given ϕ ∈ BMOε(J) let us now introduce two sequences

of step functions, ϕn(s) = xn,k
1 and sn(s) = xn,k

2 − (xn,k
1 )2 for s ∈ In,k. Note that

ϕn −〈ϕ〉
I
is the partial sum of the expansion of the function ϕ−〈ϕ〉

I
with respect

to the orthonormal family of the generalized Haar functions related to Dϕ(I):

hJ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
|J+|

|J| |J−|

)1/2
on J−,

−
(

|J−|
|J| |J+|

)1/2
on J+.

It is clear that because the lengths of intervals In,k go to zero as n → ∞, the family
{hJ}J∈Dϕ

forms a basis in L2
0(I) = {ψ ∈ L2(I) : 〈ψ〉

I
= 0}. So ϕn → ϕ in the

L2-norm, and since

‖ϕ− ϕn‖2L2 =

∫
I

|ϕ(s)− ϕn(s)|2ds =
∑
In,k

∫
In,k

|ϕ(s)− ϕn(s)|2ds

=
∑
In,k

|In,k|
(
xn,k
2 − (xn,k

1 )2
)
=

∫
I

sn(s) ds,

we can choose a subsequence nj such that ϕnj
(s) → ϕ(s) and snj

(s) → 0 almost
everywhere on I.
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Now, using the statement about B+ from Lemma 3c repeatedly, we get

B+
ε1(x

0,0) ≥ |I1,0|
|I0,0|Bε1(x

1,0) +
|I1,1|
|I0,0|B

+
ε1(x

1,1)

≥ |I1,0|
|I0,0|

|I2,0|
|I1,0|B

+
ε1(x

2,0) +
|I1,0|
|I0,0|

|I2,1|
|I1,0|B

+
ε1(x

2,1)

+
|I1,1|
|I0,0|

|I2,2|
|I1,1|B

+
ε1(x

2,2) +
|I1,1|
|I0,0|

|I2,3|
|I1,1|B

+
ε1(x

2,3)(4.4)

=
|I2,0|
|I0,0|B

+
ε1(x

2,0) +
|I2,1|
|I0,0|B

+
ε1(x

2,1) +
|I2,2|
|I0,0|B

+
ε1(x

2,2) +
|I2,3|
|I0,0|B

+
ε1(x

2,3)

≥ 1

|I0,0|

2n−1∑
k=0

|In,k|B+
ε1(x

n,k) =
1

|I|

∫
I

eϕn(s)b+(sn(s)) ds,

where

b+(t) =
H
(√

ε21 − t
)

H(ε1)
.

The last equality is just the statement B+
ε1(x

n,k) = eϕn(s)b+(sn(s)), for s ∈ In,k.
Likewise, applying the corresponding statement from Lemma 3c repeatedly, we

obtain

(4.5) B−
ε1(x

0,0) ≤ 1

|I0,0|

2n−1∑
k=0

|In,k|B−
ε1(x

n,k) =
1

|I|

∫
I

eϕn(s)b−(sn(s)) ds.

Here

b−(t) =
H
(
−
√
ε21 − t

)
H(−ε1)

.

For functions ϕ bounded from above we can pass to the limit in (4.4) and (4.5) using
the dominated convergence theorem. Therefore, for such functions ϕ ∈ BMOε(J)
we have the double inequality

(4.6) B−
ε1(〈ϕ〉I , 〈ϕ

2〉
I
) ≤ 1

|I|

∫
I

eϕ(s) ds ≤ B+
ε1(〈ϕ〉I , 〈ϕ

2〉
I
).

It remains to approximate an arbitrary function ψ ∈ BMOε(I) by its cut-offs in a
standard manner; namely, we take

ψm(s) =

{
ψ(s) if ψ(s) ≤ m,

m if ψ(s) > m.

If we denote J1 = {s ∈ J : ψ(s) ≤ m} and J2 = {s ∈ J : ψ(s) > m}, we have the
following identity:(
〈ψ2〉

J
− (〈ψ〉

J
)2
)
−
(
〈ψ2

m〉
J
− (〈ψm〉

J
)2
)

=
|J2|
|J |

(
〈ψ2〉

J2
− (〈ψ〉

J2
)2
)
+

|J2| |J1|
|J |2

(
〈ψ〉

J2
−m)

)(
〈ψ〉

J2
+m− 2〈ψ〉

J1

)
≥ 0,

which implies that if ψ is in BMOε(I), then so is ψm. Therefore, for ϕ = ψm

inequalities (4.6) hold, and we can pass to the limit as m → ∞. Clearly, the
averages of ψm converge to the averages of ψ, and the values of B±

ε1(〈ψm〉 , 〈ψ2
m〉)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4144 L. SLAVIN AND V. VASYUNIN

converge to B±
ε1(〈ψ〉 , 〈ψ2〉) because of continuity of the functions B±. Due to the

monotone convergence of ψm we can pass to the limit under the integral. Taking
first the supremum and then infimum over all ψ ∈ BMOε(I) with 〈ψ〉

I
= x1 and

〈ψ2〉
I
= x2, we obtain the inequalities

B+
ε1(x) ≥ B+

ε (x), B−
ε1(x) ≤ B−

ε (x),

thus proving the lemma. �

Proof of Lemma 3c. To prove the lemma, we need to check that

(4.7) ∓ ∂2B±
ε

∂xi∂xj

is a nonnegative matrix. Direct calculation yields

∂B±
ε

∂x1
=

1− x1 ∓
√
ε2 + x2

1 − x2

1∓ ε
exp

{
x1 ±

√
ε2 + x2

1 − x2 ∓ ε

}
,

∂B±
ε

∂x2
=

1

2(1∓ ε)
exp

{
x1 ±

√
ε2 + x2

1 − x2 ∓ ε

}
,

∂2B±
ε

∂x2
1

= ∓

(
x1 ±

√
ε2 + x2

1 − x2

)2
√
ε2 + x2

1 − x2(1∓ ε)
exp

{
x1 ±

√
ε2 + x2

1 − x2 ∓ ε

}
,

∂2B±
ε

∂x1∂x2
= ± x1 ±

√
ε2 + x2

1 − x2

2
√

ε2 + x2
1 − x2(1∓ ε)

exp

{
x1 ±

√
ε2 + x2

1 − x2 ∓ ε

}
,

∂2B±
ε

∂x2
2

= ∓ 1

4
√

ε2 + x2
1 − x2(1∓ ε)

exp

{
x1 ±

√
ε2 + x2

1 − x2 ∓ ε

}
.

Therefore, the quadratic form of the matrix (4.7) is

∓
2∑

i,j=1

∂2B±
ε

∂xi∂xj
ΔiΔj

(4.8)

=

((
x1 ±

√
ε2 + x2

1 − x2

)
Δ1 − 1

2Δ2

)2
√
ε2 + x2

1 − x2(1∓ ε)
exp

{
x1 ±

√
ε2 + x2

1 − x2 ∓ ε

}
≥ 0,

which establishes the result. �

Proof of Lemma 4c. We fix an interval I and a function ϕ ∈ BMOε(I). We now
explicitly construct an algorithm to find the splitting I = I− ∪ I+, i.e. choose the
splitting parameters α± = |I±|/|I|. As before, x±

1 = 〈ϕ〉
I±

, x±
2 = 〈ϕ2〉

I±
. Also, put

x0
1 = 〈ϕ〉

I
and x0

2 = 〈ϕ2〉
I
. Lastly, by [s, t] we will denote the straight-line segment

connecting two points s and t in the plane.
First, we take α− = α+ = 1

2 (see Figure 1). If the whole segment [x−, x+] is
in Ωε1 , we fix this splitting. Assuming it is not the case, there exists a point x on
this segment with x2−x2

1 > ε21. Observe that only one of the segments [x−, x0] and
[x+, x0] contains such points. Call the corresponding endpoint (x− or x+) ξ. Its
position is completely defined by the choice of α+. Define the function ρ as follows:
ρ(α+) = maxx∈[ξ,x0]{x2 − x2

1}. By assumption, ρ
(
1
2

)
> ε21. We will now change

α+ so that ξ approaches x0, i.e. we will increase α+ if ξ = x+ and decrease it if
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�

�

x−
x0

ξ

�

�

�

x2 = x2
1

x2 = x2
1 + ε2

x2 = x2
1 + ε21

Figure 1. The initial splitting: α− = α+ = 1
2 , ξ = x+.

ξ = x−. We stop when ρ(α+) = ε21 and fix that splitting. It remains to check that
such a moment occurs and that the corresponding α+ is separated from 0 and 1.
Without loss of generality, assume that ξ = x+. Let I = [a, b]. Since ϕ ∈ L2(I),

the functions ξ1(α+) = 1
α+

∫ b

b−|I|α+
ϕ(w) dw and ξ2(α+) = 1

α+

∫ b

b−|I|α+
ϕ2(w) dw

are continuous on the interval (0, 1] and ξ(1) = x0. Therefore, ρ is continuous on
(0, 1]. Since ρ

(
1
2

)
> ε21 and ρ(1) ≤ ε2 < ε21 (recall that x0 ∈ Ωε), we conclude that

there is a point α+ ∈
[
1
2 , 1

]
with ρ(α+) = ε21 (Figure 2).

Having just proved that the desired point exists, we need to check that the
corresponding α+ is not too close to 0 or 1. If ξ = x+, we have α+ > 1

2 and

ξ1 − x0
1 = x+

1 − x0
1 = α−(x

+
1 − x−

1 ). Likewise, if ξ = x−, we have α− > 1
2 and

ξ1 − x0
1 = x−

1 − x0
1 = α+(x

−
1 − x+

1 ). Thus |ξ1 − x0
1| = min{α±}|x−

1 − x+
1 |. For the

stopping value of α+, the straight line through the points x−, x+ and x0 is tangent
to the parabola x2 = x2

1+ε21 at some point y. The equation of this line is, therefore,
x2 = 2x1y1 − y21 + ε21. The line intersects the graph of x2 = x2

1 + ε2 at the points

x±
ε =

(
y1 ±

√
ε21 − ε2, y2 ± 2y1

√
ε21 − ε2

)

and the graph of x2 = x2
1 at the points

x±
0 = (y1 ± ε1, y2 ± 2y1ε1).

We then have

[x−
ε , x

+
ε ] ⊂ [x0, ξ] ⊂ [x−, x+] ⊂ [x−

0 , x
+
0 ]

and, therefore,

2
√
ε21 − ε2 = |(x+

ε )1 − (x−
ε )1| ≤ |x0

1 − ξ1| = min{α±}|x+
1 − x−

1 |

≤ min{α±}|(x+
0 )1 − (x−

0 )1| = min{α±}2ε1,
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x2 = x2
1

x2 = x2
1 + ε2

x2 = x2
1 + ε21

x− x0 x−
ε

y
x+
ε

ξ

x+
0

x−
0

Figure 2. The stopping time: [x−, ξ] is tangent to the parabola
x2 = x2

1 + ε2.

which implies √
1−

(
ε

ε1

)2

≤ α+ ≤ 1−

√
1−

(
ε

ε1

)2

.

As promised, this estimate does not depend on ϕ or I. �

4.1. How to find the Bellman function. We first observe that the Bellman
functions B± must be of the form

(4.9) B±
ε (x) = exp

{
x1 + w±

ε (x2 − x2
1)
}

for some positive functions w± on [0, ε2] such that w±
ε (0) = 0.

Indeed, fix an interval I. Then ϕ ∈ BMOε(I) if and only if ϕ + c ∈ BMOε(I),
where c is an arbitrary constant. Let ϕ̃ = ϕ+ c. We have (all averages are over I)
〈ϕ̃〉 = 〈ϕ〉+ c, 〈ϕ̃〉2 = 〈ϕ2〉+ 2c〈ϕ〉+ c2, and 〈eϕ̃〉 = ec〈eϕ〉. Then

sup
ϕ∈BMOε(I)

{
〈eϕ̃〉 : 〈ϕ〉 = x1, 〈ϕ〉2 = x2

}
= ec sup

ϕ∈BMOε(I)

{
〈eϕ〉 : 〈ϕ〉 = x1, 〈ϕ2〉 = x2

}
or

sup
ϕ̃∈BMOε(I)

{
〈eϕ̃〉 : 〈ϕ̃〉 = x1 + c, 〈ϕ̃2〉 = x2 + 2cx1 + c2

}
= ec sup

ϕ∈BMOε(I)

{
〈eϕ〉 : 〈ϕ〉 = x1, 〈ϕ2〉 = x2

}
.

Completely analogous statements with inf instead of sup can be made. Altogether,
we get

B±
ε (x1 + c, x2 + 2cx1 + c2) = ecB±

ε (x1, x2).

Setting c = −x1 and omitting the index ε, we get

B±(0, x2 − x2
1) = e−x1B±(x1, x2).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SHARP JOHN–NIRENBERG INEQUALITY 4147

Jensen’s inequality (〈eϕ〉 ≥ e〈ϕ〉) gives B±(0, x2 − x2
1) ≥ 1. Hence, there exists a

positive function w± = logB±(0, ·) defined on the interval [0, ε2] such that (4.9)
holds. Furthermore, x2 = x1 = 0 if and only if ϕ = 0. Thus B±(0, 0) = 1 and
w±(0) = 0.

The successful Bellman function candidate B (we will omit the index ± when
no confusion results) must be of the form (4.9). Moreover, to use the machinery of
Lemma 2c, we need the statements of Lemma 3c to hold. So we want

(4.10) ∓ ∂2B±

∂xi∂xj

to be a nonnegative matrix.
Using (4.9), we get

∂B

∂x1
= (1− 2x1w

′)B,

∂B

∂x2
= w′B,

∂2B

∂x2
1

=
(
(1− 2x1w

′)2 − 2w′ + 4x2
1w

′′)B,

∂2B

∂x1∂x2
= (w′(1− 2x1w

′)− 2x1w
′′)B,

∂2B

∂x2
2

=
(
(w′)2 + w′′)B.

Matrix (4.10) turns into

(4.11) ∓

⎡
⎢⎢⎣

∂2B±

∂x2
1

∂2B±

∂x1∂x2

∂2B±

∂x1∂x2

∂2B±

∂x2
2

⎤
⎥⎥⎦ = ∓B±

[
1 −2x1

0 1

]
R

[
1 0

−2x1 1

]
,

where

(4.12) R =

[
1− 2w′ w′

w′ (w′)2 + w′′

]
.

For the extremal function (if any) we must have equality at every step in (4.4)
and (4.5) in Lemma 2c, so the matrix (4.10) has to be degenerate. Because of the
representation (4.11) and (4.12), this translates into

(4.13) (1− 2w′)
(
(w′)2 + w′′) = (w′)2,

while the nonnegativity condition (4.10) is equivalent to the inequality

(4.14) ±(2(w±)′ − 1) ≥ 0.
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We solve equation (4.13):

(1− 2w′)w′′ = 2(w′)3,(
1

2(w′)3
− 1

(w′)2

)
w′′ = 1,

(
1

w′ −
1

4(w′)2

)′
= 1,

1

w′ −
1

4(w′)2
= t+ const,

−
(
1− 1

2w′

)2

= t+ const.

This implies that the constant has to be nonpositive. We parametrize the family
of possible solutions by a positive parameter δ setting const = −δ2. Then(

1− 1

2w′

)2

= δ2 − t

and

(4.15) 1− 1

2w′ = ±
√
δ2 − t.

We see that the solution is defined on the interval [0, δ2]. Condition (4.14) with “+”
means that w′ ≥ 1

2 . This requires the “+” sign in (4.15), and this square root has
to be strictly less than 1. Therefore, the only feasible solution for w+ is that for
δ < 1. We get the solution for w− by choosing the “−” sign in (4.15); it works for
all δ > 0. Thus, equation (4.15) gives

(w±)′ =
1

2(1∓
√
δ2 − t)

and, taking into account that w(0) = 0, we obtain

w±(t) =
1

2

∫ t

0

1

1∓
√
δ2 − s

ds = log
1∓

√
δ2 − t

1∓ δ
±
√
δ2 − t∓ δ,

which, together with (4.9), gives (3.5):

B±
δ (x) =

1∓
√
δ2 + x2

1 − x2

1∓ δ
exp

(
x1 ±

√
δ2 + x2

1 − x2 ∓ δ

)
.

4.2. How to find the extremal function. We now show how to find the extremal
function that appeared without an explanation in the proof of Lemma 1c. As
mentioned in the previous section, for the extremal function there is equality at
every step in the chain of inequalities (4.4). Thus in the splitting process we only
proceed along the vector field defined by the kernel of the matrix (4.10). The
quadratic form of that matrix is given by (4.8):
(4.16)

∓
2∑

i,j=1

∂2B±
δ

∂xi∂xj
ΔiΔj

=

((
x1 ±

√
δ2 + x2

1 − x2

)
Δ1 − 1

2Δ2

)2
√
δ2 + x2

1 − x2 (1∓ δ)
exp

{
x1 ±

√
δ2 + x2

1 − x2 ∓ δ

}
.
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Hence, the trajectories along which B is a linear function are given by

(4.17)

(
x1 ±

√
δ2 + x2

1 − x2

)
dx1 =

1

2
dx2.

Introducing the variable t = ±
√
δ2 + x2

1 − x2, we have t2 = δ2 + x2
1 − x2 and

2t dt = 2x1 dx1−dx2. Replacing
1
2dx2 in (4.17) by x1 dx1−t dt, we get t dx1 = −t dt,

i.e. t = c− x1 and

(4.18) x2 = δ2 + x2
1 − t2 = 2cx1 + δ2 − c2.

The corresponding trajectories are straight lines tangent to the upper boundary
x2 = x2

1+ δ2 of Ωδ at the point x = (c, c2+ δ2). Consider the following two families
of such straight-line segments:

ω+
δ (c) =

{
x = (x1, 2cx1 + δ2 − c2) : c− δ ≤ x1 ≤ c

}
,

ω−
δ (c) =

{
x = (x1, 2cx1 + δ2 − c2) : c ≤ x1 ≤ c+ δ

}
.

Each of these families covers the whole domain, i.e.

Ωδ =
⋃
c∈R

ω+
δ (c) =

⋃
c∈R

ω−
δ (c).

Furthermore, B+ is a linear function on each segment ω+
δ (c), while B− is a linear

function on each segment ω−
δ (c). Indeed, since

√
δ2 + x2

1 − x2 = |x1− c| on the line
x2 = 2cx1 + δ2 − c2, we have

B+
δ (x1, 2cx1 + δ2 − c2) =

1 + x1 − c

1− δ
ec−δ for c− δ ≤ x1 ≤ c,

B−
δ (x1, 2cx1 + δ2 − c2) =

1 + x1 − c

1 + δ
ec+δ for c ≤ x1 ≤ c+ δ.

Therefore, if both points x± are on a segment ω+
δ (c) or ω

−
δ (c), we have equality in

the corresponding line in (4.3) (with δ = ε).1

Note that we have one more “acceptable trajectory”: the envelope of the seg-
ments ω+

δ (c) (or ω
−
δ (c)), i.e. the parabola x2 = x2

1 + δ2.
Let x0 be an arbitrary point inside Ωδ. Then we make the splitting so that x−

is on the boundary x2 = x2
1+ δ2 and the segment ω+

δ (x
−
1 ) passes through the point

x0. Every point on that segment satisfies the equation

x2 = 2x−
1 x1 + δ2 − (x−

1 )
2,

so x−
1 = x0

1+
√
δ2 + (x0

1)
2 − x0

2. We choose the second endpoint x+ to be the point

of intersection of ω+
δ (x

−
1 ) and the lower boundary of Ωδ, x2 = x2

1. This is equivalent

to letting ϕ be constant on I+. Then x+
2 = (x+

1 )
2 = 2x−

1 x
+
1 +δ2−(x−

1 )
2 and, hence,

x+
1 = x−

1 − δ.
Assume that ϕc is the extremal function (defined on [0, 1]) that corresponds

to the point (c, c2 + δ2) on the upper boundary. Then for ϕ|I− we have to take

1To avoid misunderstanding, we note that ± in x± and in ω±
δ are independent: x± are two

points in the domain Ωδ whose convex combination is the point x, while ± in ω±
δ means that we

consider either B+ or B−, as appropriate.
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the function ϕx−
1

rescaled to the interval I−. So, if I = [0, 1], then I− = [0, α−],

I+ = [α−, 1], and

(4.19) ϕ(t) =

{
ϕx−

1

(
t

α−

)
, 0 ≤ t < α−,

x+
1 , α− ≤ t ≤ 1.

We have defined the extremal function ϕ for an arbitrary point of Ωδ under the
assumption that the extremal functions ϕc for the upper boundary are known.
Note that it is sufficient to find one of these functions, say ϕ0, because ϕc = ϕ0+ c.
Indeed, it is clear that ϕ0 and ϕ0 + c have the same BMO-norms and

〈ϕ0 + c〉 = c, 〈(ϕ0 + c)2〉 = 〈ϕ2
0〉 + 2c〈ϕ0〉 + c2 = δ2 + c2.

Let the point x0 approach the point x− along the upper boundary, i.e. let α+ → 0.
If we assume that the extremal function smoothly depends on the point x0, then
the function ϕ in (4.19) coincides up to terms of the first order in α+ with the
function ϕx0

1
:

x0
1 = α−x

−
1 + α+x

+
1 = (1− α+)x

−
1 + α+(x

−
1 − δ) = x−

1 − α+δ,

x0
2 = 2x−

1 x
0
1 + δ2 − (x−

1 )
2 = (x0

1)
2 − (x−

1 − x0
1)

2 + δ2

= (x0
1)

2 + (1− α2
+)δ

2 ≈ (x0
1)

2 + δ2.

Therefore

ϕx−
1

( t

α−

)
≈ ϕx0

1
(t)

up to terms of the first order in α+. Since

ϕx−
1

( t

α−

)
= ϕ0

( t

α−

)
+ x−

1 ϕ0

( t

1− α+

)
+ x−

1 ≈ x−
1 + ϕ0(t) + α+ϕ

′
0(t)

and

ϕx0
1
(t) = ϕ0(t) + x−

1 = x−
1 + ϕ0(t)− α+δ,

we have

tϕ′
0(t) = −δ,

ϕ0(t) = −δ log t+ const.

Condition 〈ϕ0〉 = 0 implies

ϕ0(t) = δ

(
log

1

t
− 1

)
.

This yields the function we used to prove Lemma 1c.

5. The dyadic case

To prove Theorem 2d, we follow the procedure of the continuous case. Namely,
we first produce extremal functions ϕ± ∈ BMOd

ε(I) with appropriate averages, for

which 〈eϕ±〉
I
= B±

δ±(ε). This proves that B
d+
ε ≥ B+

δ+(ε) and Bd−
ε ≤ B−

δ−(ε). Then,

we use a concavity-type result similar to Lemma 3c, which allows us to run the
inductive machine of Lemma 2c to prove the converse inequalities.

Lemma 1d. For every x ∈ Ωε,

(5.1) Bd+
ε (x) ≥ B+

δ+(ε)(x), Bd−
ε (x) ≤ B−

δ−(ε)(x).
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Proof. Let I = [0, 1]. We prove (5.1) by explicitly finding functions ϕ+, ϕ− ∈
BMOd

ε(I) for every x ∈ Ωε such that (〈ϕ±〉I , 〈ϕ
2
±〉I ) = (x1, x2) and

〈eϕ+〉
I
= B+

δ+(ε)(x), 〈eϕ−〉
I
= B−

δ−(ε)(x).

As before, we only need to consider ε > 0.
Fix ε > 0. Let the function ϕ0 be defined on I = (0, 1] as follows:

ϕ0|(2−(k+1),2−k] = (k − 1)a, k = 0, 1, ...,

with the constant a to be determined later (see Figure 3). We now calculate the

�

�
11

2
1
4

1
8

1
16

−a

a

2a

3a

4a

5a

Figure 3. The function ϕ0.

BMOd norm of ϕ0 and choose a so that ‖ϕ0‖BMOd = ε. The only dyadic intervals
on which ϕ0 is not constant and, hence, 〈ϕ2

0〉I − 〈ϕ0〉2I �= 0, are the ones with 0 as

their left endpoint. Let In = (0, 2−n] . Then

〈ϕ0〉In = 2n
∫ 1/2n

0

ϕ0(s) ds = 2n
∞∑

k=n−1

ka

2k+2
=

a

4
2n
(
1

2

)n−2

n = an

and

〈ϕ2
0〉In =2n

∫ 1/2n

0

ϕ2
0(s) ds = 2n

∞∑
k=n−1

k2a2

2k+2
=

a2

4
2n
(
1

2

)n−2(
n2+2

)
= a2(n2 + 2),

where we have used the identities
∞∑

k=N−1

k

(
1

2

)k

=

(
1

2

)N−2

N,

∞∑
k=N−1

k2
(
1

2

)k

=

(
1

2

)N−2

(N2 + 2).

Then

‖ϕ0‖2BMOd = sup
J dyad⊂I

{
〈ϕ2

0〉J − 〈ϕ0〉2J
}

= sup
n

{
〈ϕ2

0〉In − 〈ϕ0〉2In
}
= sup

n

{
a2(n2 + 2)− a2n2

}
= 2a2.
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Setting ‖ϕ0‖BMOd = ε, we get a = ε/
√
2. Now,

〈eϕ0〉
I
=

∞∑
k=−1

eka

2k+2
=

∞∑
k=−1

1

4

(
ea

2

)k

.

The latter sum converges if and only if ea < 2, i.e. a < log 2. In that case,

(5.2) 〈eϕ0〉
I
=

e−ε/
√
2

2− eε/
√
2
.

Likewise,

〈e−ϕ0〉
I
=

eε/
√
2

2− e−ε/
√
2

for arbitrary ε > 0.

Remark 5.1. We pause to observe that the calculation for 〈eϕ0〉 has an immediate
implication for the threshold εd0 from Theorem 1d. Namely,

εd0 ≤
√
2 log 2.

We now use ϕ0 to construct the desired functions ϕ±. Let

r1 =
√
δ2 − ε2, r2 =

√
δ2 − x2 + x2

1, β = r2 − r1, γ = r2 − δ, α =
δ − r2
δ − r1

.

Here δ will mean either δ+ or δ−, depending on the context. Define ϕ̃± on I by

ϕ̃±(t) = x1 ± ψ̃(t), where ψ̃(t) =

{
ϕ0

(
t
α

)
+ β for 0 < t < α,

γ for α < t < 1.

Observe that 〈ϕ0〉I = 0, 〈ϕ2
0〉I = ε2. Since α = γ/(γ − β), we have 〈ψ̃〉

I
= βα +

γ(1−α) = 0, and so 〈ϕ̃±〉I = x1. Also, 〈ψ̃2〉
(0,α)

= 〈ϕ2
0〉I +2〈ϕ0〉Iβ+β2 = ε2+β2,

and we get 〈ϕ̃2
±〉I = x2

1+(ε2+β2)α+γ2(1−α) = x2. It remains to calculate 〈eϕ̃±〉
I
.

In our notation, equations (3.6) and (3.7) can be rewritten (for the appropriate δ’s)
as

e−ε/
√
2

2− eε/
√
2
=

1− r1
1− δ

er1−δ =

(
1 +

δ − r2
α(1− δ)

)
er1−δ,

eε/
√
2

2− e−ε/
√
2
=

1 + r1
1 + δ

e−r1+δ =

(
1− δ − r2

α(1 + δ)

)
e−r1+δ.

Therefore, using (5.2) we get

〈eϕ̃+〉
I
= ex1〈eψ̃〉

I
=

ex1+β−ε/
√
2

2− eε/
√
2

α+ ex1+γ (1− α)

=

(
1 +

δ − r2
1− δ

)
exp(x1 + r2 − δ) =

1− r2
1− δ

exp(x1 + r2 − δ) = B+
δ+(ε)(x).

Similarly,

〈eϕ̃−〉
I
= B−

δ−(ε)(x).

We observe that ψ̃ (and so ϕ̃±) does not, in general, belong to BMOd
ε , since the

jumps in the scaled function ϕ0 are not at dyadic nodes for an arbitrary α. We
overcome this problem by constructing a rearrangement of ψ̃ that belongs to BMOd

ε ,
while preserving the necessary averages. Namely, let αn be the n-th digit in the
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dyadic representation of α (we will assume this representation is infinite, completing
the sequence with zeros if needed). We define ψ as follows:

(5.3) ψ(t) =

∞∑
k=1

{
αk

[
ϕ0(2

kt− 1) + β
]
+ (1− αk)γ

}
χ(2−k,2−k+1)(t).

Naturally, we set

ϕ± = x1 ± ψ.

Then, for any function μ,

〈μ ◦ ψ〉
I
=

∞∑
k=1

{
αk〈μ(ϕ0(2

kt− 1) + β)〉
(2−k,2−k+1)

+ μ(γ)(1− αk)
}
2−k

=

∞∑
k=1

{
〈μ(ϕ0(t) + β)〉

I
αk + μ(γ)(1− αk)

}
2−k

= 〈μ ◦ (ϕ0 + β)〉
I
α+ μ(γ)(1− α).

This calculation, with the appropriate choice of μ and the reasoning used above
for ϕ̃±, gives 〈ϕ±〉I = x1, 〈ϕ2

±〉I = x2, 〈eϕ±〉
I
= B±

δ±(x). It remains to check that
‖ψ‖BMOd(I) = ε. This will immediately imply that ‖ϕ±‖BMOd(I) = ε.

Take any (open) dyadic interval J ⊂ I. We have the following trichotomy:

(1) J ⊆ (2−n, 2−n+1) for a certain n and αn = 0. Then ψ|J = γ and 〈ψ2〉
J
−

〈ψ〉2
J
= 0.

(2) J ⊆ (2−n, 2−n+1) for a certain n and αn = 1. Then ψ(t) = ϕ0(2
nt − 1) +

β, ∀t ∈ J, and 〈ψ2〉
J
− 〈ψ〉2

J
≤ ε2 (see the detailed consideration for ϕ0

above). Also, if J = (2−n, 2−n+1), then 〈ψ2〉
J
− 〈ψ〉2

J
= ε2.

(3) J = (0, 2−n) for a certain n. Then

ψ(t) =

∞∑
k=n+1

{
αk

[
ϕ0(2

kt− 1) + β
]
+ (1− αk)γ

}
χ(2−k,2−k+1)(t)

for almost every t ∈ J . So,

〈ψ〉
J
=

1

|J |

∞∑
k=n+1

{
αk〈ϕ0 + β〉

I
+ γ(1− αk)

}
2−k = βp+ γ(1− p)

and

〈ψ2〉
J
= (ε2 + β2)p+ γ2(1− p),

where p = 2n
∑∞

k=n+1 αk2
−k. We have

〈ψ2〉
J
− 〈ψ〉2

J
= p

[
ε2 + (β − γ)2(1− p)

] def
= η(p).

We maximize η, subject to the constraint 0 ≤ p ≤ 1. Since

η′(p) = ε2 + (β − γ)2(1− 2p) ≥ ε2 − (β − γ)2

= ε2 −
(
δ −

√
δ2 − ε2

)2
= 2

√
δ2 − ε2

(
δ −

√
δ2 − ε2

)
≥ 0,

we have 〈ϕ2〉
J
− 〈ϕ〉2

J
≤ η(1) = ε2.

This completes the proof of the lemma. �
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Lemma 2d. For every x ∈ Ωε,

(5.4) Bd+
ε (x) ≤ B+

δ+(ε)(x); Bd−
ε (x) ≥ B−

δ−(ε)(x).

Proof. We follow the template of Lemma 2c. As in the continuous case, we have
a concavity-type result, Lemma 3d, allowing us to use the induction on the order
of the dyadic generation to construct an integral sum for 〈eϕ〉

I
. Lemma 4c, the

splitting lemma, cannot have a dyadic analog, since in the dyadic setting an interval
is always split in half. This lack of splitting flexibility forces us to use a Bellman
function candidate satisfying a stronger concavity (convexity) condition. Namely,
the following two inequalities are true.

Lemma 3d.

B+
δ+(ε)

(
1

2
x− +

1

2
x+

)
≥ 1

2
B+

δ+(ε)(x
−) +

1

2
B+

δ+(ε)(x
+),(5.5)

B−
δ−(ε)

(
1

2
x− +

1

2
x+

)
≤ 1

2
B−

δ−(ε)(x
−) +

1

2
B−

δ−(ε)(x
+)(5.6)

for any straight-line segment with the endpoints x± ∈ Ωε such that (x− + x+)/2 ∈
Ωε.

Assuming this lemma for the time being, take ϕ ∈ BMOd
ε(I). Observe that

ϕ ∈ BMOd
ε(J) for any dyadic subinterval J of I. Let I0,0 = I and let In,m be

the m-th interval of the n-th generation in the dyadic lattice based on I. Let

xn,m =
(
〈ϕ〉

In,m , 〈ϕ2〉
In,m

)
. The argument of Lemma 2c now translates verbatim

to the dyadic case. For the sake of completeness we repeat its major points. Using
(5.5) from Lemma 3d repeatedly, we get

B+
δ+(ε)(x

0,0) ≥ 1

2
B+

δ+(ε)(x
1,0) +

1

2
B+

δ+(ε)(x
1,1)

≥ 1

4
B+

δ+(ε)(x
2,0) +

1

4
B+

δ+(ε)(x
2,1) +

1

4
B+

δ+(ε)(x
2,2) +

1

4
B+

δ+(ε)(x
2,3)(5.7)

≥ 1

2n

2n−1∑
m=0

B+
δ+(ε)(x

n,m) =
1

|I|

∫
I

eϕn(s)b+(sn(s)) ds,

where ϕn and sn are the same step functions that appeared in the proof of Lemma 2c:

ϕn(s) = xn,k
1 and sn(s) = xn,k

2 −(xn,k
1 )2 for s ∈ In,k. The function b+ has a meaning

similar to that in the proof of Lemma 2c:

b+(t) =
H
(√

δ+(ε)2 − t
)

H
(
δ+(ε)

) .

The last equality is just the statement B+
δ+(ε)(x

n,k) = eϕn(s)b+(sn(s)), s ∈ In,k.

Likewise, applying (5.6) repeatedly, we obtain

B−
δ−(ε)(x

0,0) ≤ 1

|I0,0|

2n−1∑
k=0

|In,k|B−
δ−(ε)(x

n,k) =
1

|I|

∫
I

eϕn(s)b−(sn(s)) ds.

Here

b−(t) =
H
(
−
√
δ+(ε)2 − t

)
H
(
−δ+(ε)

) .
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The technical convergence arguments of Lemma 2c completely carry over to the
dyadic case (the quasi-Haar system in the proof of Lemma 2c now becomes the
usual Haar system), and we obtain

B−
δ−(ε)(〈ψ〉I , 〈ψ

2〉
I
) ≤ 1

|I|

∫
I

eψ(s) ds ≤ B+
δ+(ε)(〈ψ〉I , 〈ψ

2〉
I
).

Taking first supremum and then infimum over all ψ ∈ BMOd
ε(I) with 〈ψ〉

I
= x1

and 〈ψ2〉
I
= x2, we obtain the inequalities

B+
δ+(ε)(x) ≥ Bd+

ε (x), B−
δ−(ε)(x) ≤ Bd−

ε (x),

thus proving the lemma. �

Proof of Lemma 3d. We prove the inequality in the most constructive manner: for
every ε we will choose the smallest δ so that the statement of the lemma holds.
From the proof of Lemma 1d, it is clear that δ(ε) > ε.

One straightforward approach would be to choose δ(ε) large enough so that any
straight-line segment [x−, x+] with x−, x+, x0 ∈ Ωε fits entirely inside Ωδ(ε). The
statement of Lemma 3d would then follow from Lemma 3c. Let us investigate how
large the δ(ε) so chosen would be with regard to ε. �

Proposition 2. If ε ≤ 2
√
2

3 δ, then the segment [x−, x+] lies entirely in Ωδ, for all

x−, x+ ∈ Ωε, such that 1
2x

− + 1
2x

+ ∈ Ωε.

Proof. We need to consider only those segments [x−, x+] that have points outside
Ωε, because otherwise [x−, x+] ⊂ Ωε ⊂ Ωδ. Fix such a segment and parameterize
its points by

x(t) = (1− t)x− + tx+, 0 ≤ t ≤ 1.

To prove the proposition, we need to check that for the function

τ (t) = x2(t)− x2
1(t), 0 ≤ t ≤ 1,

the inequality τ (t) ≤ δ2 holds.
Denote by a and b the points of intersection of [x−, x+] with the upper boundary

of Ωε, the parabola x2 = x2
1 + ε2. Since 1

2x
− + 1

2x
+ ∈ Ωε, the segment [a, b] lies

between this point and one of the endpoints x±. Call this endpoint x−. Since
τ (t) ≤ ε2 for x(t) ∈ Ωε, we have

max
x(t)∈[x−,x+]

τ (t) = max
x(t)∈[a,b]

τ (t).

Therefore, instead of the initial segment [x−, x+], it is sufficient to consider the
shorter segment [a, 2b − a]. This means that without loss of generality we may
assume the points x− and 1

2x
− + 1

2x
+ to be on the upper boundary of Ωε, i.e.,

x−
2 = (x−

1 )
2 + ε2,(5.8)

1

2
(x−

2 + x+
2 ) =

1

4
(x−

1 + x+
1 )

2 + ε2.(5.9)

From (5.8) and (5.9) we get

x+
2 =

1

2

(
(x+

1 )
2 − (x−

1 )
2
)
+ x−

1 x
+
1 + ε2.
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Since x+ ∈ Ωε, we have the restriction x+
2 ≥ (x+

1 )
2, which is equivalent to the

inequality

(5.10) (x−
1 − x+

1 )
2 ≤ 2ε2.

Now,

τ (t) = x2(t)− x2
1(t)

=
[
(1− t)x−

2 + tx+
2

]
−
[
(1− t)x−

1 + tx+
1

]2
= ε2 +

1

2
(x−

1 − x+
1 )

2(t− 2t2).

This function attains its maximum at t = 1
4 , so

max τ (t) = ε2 +
1

16
(x−

1 − x+
1 )

2.

Taking into account inequality (5.10), we get

max τ (t) ≤ 9

8
ε2 ≤ δ2.

This means that [x−, x+] ⊂ Ωδ, as claimed. �

Remark 5.2. We will make use of Proposition 2 throughout the proof of Lemma 3d;
however, it has an immediate implication that is worth stating separately. Take
ε > 0, δ ≥ 3

2
√
2
ε, and any two points x−, x+ ∈ Ωε, such that 1

2x
− + 1

2x
+ ∈ Ωε.

Then the segment [x−, x+] ⊂ Ωδ, and we can apply Lemma 3c to obtain

(5.11)
B+

δ

(1
2
x− +

1

2
x+
)
≥ 1

2
B+

δ (x−) +
1

2
B+

δ (x
+),

B−
δ

(1
2
x− +

1

2
x+
)
≤ 1

2
B−

δ (x−) +
1

2
B−

δ (x+).

Thus, we can run the machine of Lemma 2d (with the restriction ε < 2
√
2

3 for B+)
to establish that

B+
3

2
√

2
ε
(x) ≥ Bd+

ε (x), B−
3

2
√

2
ε
(x) ≤ Bd−

ε (x), ∀x ∈ Ωε.

Together with Remark 5.1 in the proof of Lemma 1d, this gives us the two-sided
estimate

(5.12)
2
√
2

3
≤ εd0 ≤

√
2 log 2.

At the end of the proof of Lemma 3d we will see that the correct value of εd0 is the
right bound in (5.12).

So far, we have been trying to ensure that the segment [x−, x+] lies inside the
domain of concavity (convexity) of a certain function Bδ, so that we can then infer
(5.11). Now, we try to enforce (5.11) directly instead.

Since we are searching for δ(ε) such that Bd
ε = Bδ(ε), we attempt to solve the

extremal problem

(5.13)
δ±(ε) = min

ε<δ<1

{
δ : ±

[
B±

δ (x0)− 1

2

(
B±

δ (x−) +B±
δ (x+)

)]
≥ 0,

∀x−, x+ ∈ Ωε such that x0 =
1

2
x− +

1

2
x+ ∈ Ωε

}
.
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Recalling representation (3.5),

B±
δ (x) =

H
(
±
√

δ2 + x2
1 − x2

)
H(±δ)

ex1 ,

we are thus looking for the smallest possible δ such that, for every triple x±, x0

from Ωε, either inequality

(5.14)

2H
(√

δ2 + (x0
1)

2 − x0
2

)
− exp

(
x−
1 − x+

1

2

)
H
(√

δ2 + (x−
1 )

2 − x−
2

)

− exp

(
x+
1 − x−

1

2

)
H
(√

δ2 + (x+
1 )

2 − x+
2

)
≥ 0

or inequality
(5.15)

2H
(
−
√
δ2 + (x0

1)
2 − x0

2

)
− exp

(
x−
1 − x+

1

2

)
H
(
−
√
δ2 + (x−

1 )
2 − x−

2

)

− exp

(
x+
1 − x−

1

2

)
H
(
−
√
δ2 + (x+

1 )
2 − x+

2

)
≤ 0

holds, depending on whether we are considering the “+” or “−” in (5.13).
We can simplify this formulation by introducing the variables

z = x0
2 − (x0

1)
2,

y = x+
1 − x0

1,

w = x+
2 − x0

2 − 2x0
1y.

�

�

�

�
�

�

��

�

�

�

x1

x2

x−

x0

x+

y

w

z

x2 = x2
1

x2 = x2
1 + δ2

Figure 4. Geometrical meaning of w, y, and z for the case x0
1 = 0.
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Let

(5.16)
F±(w, y, z)

def
= 2H

(
±
√
δ2 − z

)
− e−yH

(
±
√

δ2 + y2 − z + w
)

− eyH
(
±
√
δ2 + y2 − z − w

)
.

In this notation, inequalities (5.14) and (5.15) become

(5.17) F+(w, y, z) ≥ 0 and F−(w, y, z) ≤ 0 .

Because of the symmetry F (w, y, z) = F (−w,−y, z), we can fix the sign of either w
or y. Let us assume w ≥ 0. Since H is strictly decreasing on the positive semi-axis
and strictly increasing on the negative semi-axis (see Proposition 1), we have

H
(
±
√
δ2 + y2 − z + w

)
≤ H

(
±
√
δ2 + y2 − z − w

)
,

and, therefore,

F±(w, y, z)− F±(w,−y, z)

= (ey − e−y)
[
H
(
±
√
δ2 + y2 − z + w

)
−H

(
±
√
δ2 + y2 − z − w

)]
≤0(5.18)

for y ≥ 0, i.e. each inequality F+(w, y, z) ≥ 0, F−(w,−y, z) ≤ 0 for nonnegative
y implies the same inequality for all y. Therefore, it is sufficient to only consider
y ≥ 0. Note also that it is enough to consider only the special case x± = (±y, z ±
w), x0 = (0, z). Indeed, plugging these points into (5.14), (5.15), we get (5.17).
Figure 4 gives the picture for such a line segment, for the case w > 0, y > 0. The
domain where we need to investigate the function F− is symmetrical to that of F+ :
we have to consider the positively slanted segments [x−, x+] for F+ and negatively
slanted ones for F−. However, it is more convenient to consider the same domain
in both cases and investigate F−(w,−y, z) rather than F−(w, y, z). Therefore, not
only w but also y will be positive in what follows.

Now we determine the appropriate domain on which to investigate the functions
F±. The fact that the point x− is above the parabola x2 = x2

1 is equivalent to the
assertion that x+ is under the parabola x2 = 2z−x2

1. We are only interested in those
segments [x−, x+] intersecting the parabola x2 = x2

1 + ε2 (otherwise, as has been
already pointed out, by Lemma 3c we know that ±F±(w, y, z) ≥ 0). Therefore, the

endpoint x+ must be above the line x2 = 2x1

√
δ2 − z+z, passing through the point

x0 = (0, z) and tangent to the parabola x2 = x2
1 + δ2, and to the right of the point

of tangency. To have at least one such point in Ωε, the point (
√
z − ε2/2, z+ ε2/2)

of intersection of the parabolas x2 = 2z − x2
1 and x2 = x2

1 + ε2 must be above the

tangent line x2 = 2x1

√
δ2 − z + z (see Figure 5), which means

(5.19) z +
ε2

2
≥ 2

√
z − ε2/2

√
δ2 − z + z .

Solving this inequality for z, we get

z ≥ 2δ2 + ε2 + 2δ
√
δ2 − ε2

4
.

On the other hand, the point x0 is in Ωε, hence z ≤ ε2. These two inequalities
give a nonempty domain if and only if ε2 ≥ 8

9δ
2 (in accordance with Proposition 2).

Therefore, the range of z that interests us is

(5.20)
2δ2 + ε2 + 2δ

√
δ2 − ε2

4
≤ z ≤ ε2 .
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x2

√
δ2 − z −

√
δ2 − ε2

√
δ2 − z +

√
δ2 − ε2

√
z − ε2/2

δ −
√
δ2 − z

x2 = 2z − x2
1

x2 = x2
1 + δ2

(
√
δ2 − z, 2δ2 − z)

x0 = (0, z)

x2 = 2x1

√
δ2 − z + z

x2 = x2
1 + ε2

Figure 5. The triangle of the possible position of x+ in which we
are interested.

The tangent line x2 = 2x1

√
δ2 − z + z intersects the parabola x2 = x2

1 + ε2 at

the points with x1 =
√
δ2 − z ±

√
δ2 − ε2 and the parabola x2 = 2z − x2

1 at the

point with x1 = δ −
√
δ2 − z. Since the point x+ must be above the tangent line

x2 = 2x1

√
δ2 − z + z and under the parabolas x2 = x2

1 + ε2 and x2 = 2z − x2
1, we

get the restriction for the first coordinate of x+ (recall that x+
1 = y)

(5.21)
√
δ2 − z +

√
δ2 − ε2 ≤ y ≤ δ −

√
δ2 − z,

and for the second coordinate (x+
2 = z + w)

2y
√

δ2 − z + z ≤ x2 ≤ min{y2 + ε2, 2z − y2} .

Putting these together, we get the following range of w:
(5.22)

2y
√

δ2 − z ≤ w ≤

⎧⎨
⎩

y2 − z + ε2 for
√
δ2 − z −

√
δ2 − ε2 ≤ y ≤

√
z − ε2/2

z − y2 for
√
z − ε2/2 ≤ y ≤ δ −

√
δ2 − z

.

We thus need to investigate the functions F± on the domain given by (5.20), (5.21),
and (5.22).

Proposition 3. F+(w, y, z) ≥ 0 and F−(w,−y, z) ≤ 0 on the domain (5.20),
(5.21), and (5.22) if and only if these inequalities hold for all y satisfying (5.21), z
satisfying (5.20), and w = min{y2 − z + ε2, z − y2}.

Proof. Using the identity

d

dt
H(±

√
t) = −1

2
e±

√
t,

we can easily calculate the partial derivative of F± with respect to w:

∂F±

∂w
(w,±y, z) =

1

2
exp{∓y±

√
δ2 + y2 − z + w}− 1

2
exp{±y±

√
δ2 + y2 − z − w} .
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To prove the proposition, it is sufficient to show that this derivative is negative for
F+ and positive for F−. In both cases we arrive at the same inequality:

(5.23) −y +
√
δ2 + y2 − z + w < y +

√
δ2 + y2 − z − w .

We have the following chain of equivalent inequalities:√
δ2 + y2 − z + w <

√
δ2 + y2 − z − w + 2y ,

w < 2y2 + 2y
√

δ2 + y2 − z − w ,

δ2 − z < y2 + 2y
√

δ2 + y2 − z − w + (δ2 + y2 − z − w) ,√
δ2 − z < y +

√
δ2 + y2 − z − w .

The last inequality is evidently true by (5.21). �

Now, we shall investigate the functions

F±
1 (y, z)

def
= F±(min{y2 − z + ε2, z − y2},±y, z) ,

or, equivalently,

F±
1 (y, z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2H(±
√

δ2 − z )−e∓yH(±
√
δ2 + 2y2 − 2z + ε2 )−e±yH(±

√
δ2−ε2)

for
√
δ2 − z +

√
δ2 − ε2 ≤ y ≤

√
z − ε2/2

2H(±
√
δ2 − z )− e∓yH(±δ)− e±yH(±

√
δ2 + 2y2 − 2z )

for
√
z − ε2/2 ≤ y ≤ δ −

√
δ2 − z

.

Proposition 4. F+
1 (y, z) ≥ 0 and F−

1 (y, z) ≤ 0 on the domain given by (5.20)
and (5.21) if and only if these inequalities hold for all z satisfying (5.20) and y =√
δ2 − ε2/2.

Proof. Checking whether ±F±
1 (y, z) ≥ 0 is equivalent to checking whether

±e∓yF±
1 (y, z) ≥ 0 (or ±e±yF±

1 (y, z) ≥ 0). However, the latter functions are much
better behaved, and so we work with them instead. (We are grateful to the referee
for suggesting this trick; it has significantly shortened our calculations.) Specifi-
cally, to prove the proposition we check that the functions ±e∓yF±

1 (y, z) are de-

creasing on y ∈
(√

δ2 − z+
√
δ2 − ε2 ,

√
z − ε2/2

)
and the functions ±e±yF±

1 (y, z)

are increasing on y ∈
(√

z − ε2/2 , δ −
√
δ2 − z

)
.

Since

± ∂

∂y

(
e∓yF±

1 (y, z)
)
= −2e∓yH

(
±
√
δ2 − z

)
+ 2e∓2yH

(
±
√
δ2 + 2y2 − 2z + ε2

)
∓ exp

{
∓ 2y ±

√
δ2 + 2y2 − 2z + ε2

}(
− 1

2

)
4y

= 2e∓y
[
H
(
±
√

δ2 + 2y2 − 2z + ε2 ∓ y
)
−H

(
±
√
δ2 − z

)]
,

we will have proved that this expression is not positive if we check that√
δ2 + 2y2 − 2z + ε2 − y ≥

√
δ2 − z .
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Rewriting this inequality in its equivalent forms,√
δ2 + 2y2 − 2z + ε2 ≥ y +

√
δ2 − z,

y2 − z + ε2 ≥ 2y
√

δ2 − z,

y2 − 2y
√

δ2 − z + (δ2 − z) ≥ δ2 − ε2,

we see that the last inequality is true as the squared left inequality in (5.21).
On the second part of the interval, we have

± ∂

∂y

(
e±yF±

1 (y, z)
)
= 2e±yH

(
±
√

δ2 − z
)
− 2e±2yH

(
±
√
±δ2 + 2y2 − 2z

)
∓ exp

{
± 2y ±

√
δ2 + 2y2 − 2z

}(
− 1

2

)
4y

= 2e±y
[
H
(
±
√
δ2 − z

)
−H

(
±
√

δ2 + 2y2 − 2z ± y
)]

,

and here the situation is even simpler: this expression is clearly positive because
y >

√
δ2 − z. �

Finally, we need to investigate the functions

F±
2 (z)

def
= F±

1 (
√
z − ε2/2 , z)

= 2H
(
±
√

δ2 − z
)
− e∓

√
z−ε2/2H(±δ)− e±

√
z−ε2/2H

(
±
√
δ2 − ε2

)
.

Proposition 5. F+
2 (z) ≥ 0 and F−

2 (z) ≤ 0 on the interval (5.20) if and only if
these inequalities hold at the right endpoint z = ε2.

Proof. We use a trick similar to the one from the proof of Proposition 4. Namely,

to prove the assertion, it is sufficient to check that the functions ±e∓
√

z−ε2/2F±
2 (z)

are strictly decreasing, i.e. to check that the expressions

± d

dz

[
e∓

√
z−ε2/2F±

2 (z)
]

= − 1√
z − ε2/2

e∓
√

z−ε2/2H(±
√

δ2 − z )± e∓
√

z−ε2/2±
√
δ2−z

+
1√

z − ε2/2
e∓2

√
z−ε2/2H(±δ)

=
e∓2

√
z−ε2/2√

z − ε2/2

[
H(±δ)−H

(
±
√
δ2 − z ±

√
z − ε2/2

)]

are not positive. This is the same as checking that δ ≥
√
δ2 − z +

√
z − ε2/2.

Squaring both sides, we get

ε2

2
≥ 2

√
z − ε2/2

√
δ2 − z,

which is the same as (5.19) and so is true by (5.20), as we have already seen. �

Define two functions of δ and ε by putting

g±(δ, ε)
def
= F±

2 (ε2)
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or, equivalently,

g±(δ, ε) =
(
2− e±ε/

√
2
)
H(±

√
δ2 − ε2)− e∓ε/

√
2H(±δ)

= (1∓
√
δ2 − ε2)e±

√
δ2−ε2

(
2− e±ε/

√
2
)
− (1∓ δ)e±δ∓ε/

√
2.

Propositions 3–5 can now be summarized as follows:

B+
δ

(
1

2
x− +

1

2
x+

)
≥ 1

2
B+

δ (x−) +
1

2
B+

δ (x
+) ⇐⇒ g+(δ, ε) ≥ 0,

B−
δ

(
1

2
x− +

1

2
x+

)
≤ 1

2
B−

δ (x−) +
1

2
B−

δ (x+) ⇐⇒ g−(δ, ε) ≤ 0,

where the inequalities on the left are meant to hold for all x−, x+ ∈ Ωε such that
1
2 (x

− + x+) ∈ Ωε.
Accordingly, to find the Bellman functions we are looking for the smallest such

δ for a given ε, i.e.,

δ+(ε) = min
ε<δ<1

{δ : g+(δ, ε) ≥ 0},(5.24)

δ−(ε) = min
ε<δ

{δ : g−(δ, ε) ≤ 0}.(5.25)

The following simple result will complete the proof of Lemma 3d.

Proposition 6. For any ε, 0 ≤ ε <
√
2 log 2, the equation g+(δ, ε) = 0 has a

unique solution in the interval (ε, 1) and it is δ+(ε) from (5.24).
For any ε ≥ 0 the equation g−(δ, ε) = 0 has a unique solution in the interval(

ε, 3
2
√
2
ε
)
and it is δ−(ε) from (5.25).

Proof. At the left endpoint, δ = ε, we have

g±(ε, ε) = 2− e±ε/
√
2 − (1∓ ε)e±ε∓ε/

√
2

= e
±(1− 1√

2
)ε
(
2e

∓(1− 1√
2
)ε − e±(

√
2−1)ε − 1± ε

)
def
= e

±(1− 1√
2
)ε
h(±ε).

The function h satisfies h(0) = h′(0) = 0, h′′(s) = (
√
2− 1)2(e

( 1√
2
−1)s − e(

√
2−1)s),

and sgnh′′(s) = − sgn s. Therefore sgn h(s) = − sgn s, i.e. g+(ε, ε) < 0 and
g−(ε, ε) > 0.

At the point δ = 1, we have

g+(1, ε) = H
(√

1− ε2
) (

2− eε/
√
2
)
.

Since ε <
√
2 log 2, we conclude that g+(1, ε) > 0. Therefore, the equation g+(δ, ε) =

0 has a solution in the interval (ε, 1).
At the point δ = 3

2
√
2
ε, we have

g−
( 3

2
√
2
ε, ε

)
=
(
1− ε

2
√
2

)
e
− ε

2
√

2 −
(
1 +

ε

2
√
2

)
e
− 3ε

2
√

2

= e
− ε√

2

[
H
( ε

2
√
2

)
−H

(
− ε

2
√
2

)]
< 0

by statement (b) of Proposition 1. This proves the existence of a root of g− in the
interval

(
ε, 3

2
√
2
ε
)
.
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To check the uniqueness of these roots, we differentiate g± with respect to δ:

∂g±

∂δ
(δ, ε) = δ

[
e±(δ−ε/

√
2) − e±

√
δ2−ε2

(
2− e±ε/

√
2
)]

.

Since δ >
√
δ2 − ε2, we have

∂g+

∂δ
(δ, ε) > δe±

√
δ2−ε2

[
e−ε/

√
2 − 2 + eε/

√
2
]
> 0 ,

i.e. the function g+ is increasing in δ and the root of the equation g+(δ, ε) = 0 is
unique and satisfies (5.24).

Since −δ + ε/
√
2 < −

√
δ2 − ε2 for ε < δ < 3

2
√
2
ε, we have

∂g−

∂δ
(δ, ε) ≤ δe−

√
δ2−ε2

(
−1 + e−ε/

√
2
)
< 0 ,

i.e. the function g− is decreasing in δ on (ε, 3ε
2
√
2
) and the root of the equation

g+(δ, ε) = 0 is unique in this interval and satisfies (5.25). �

The proof of Lemma 3d is now complete. �

5.1. How to find the dyadic Bellman function. For simplicity, we only con-
sider the case of Bd = Bd+. What prompted us to look for the dyadic Bellman
function in the family Bδ from (3.5)? First, this family was first developed when
solving the formal optimal control problem from [7, 16], where the space under con-
sideration was the dyadic BMO. Second, and more important, the following simple
proposition shows that the dyadic Bellman function is locally concave, something
that could not be shown directly in the continuous case.

Proposition 7. For any three points x−, x+, x ∈ Ωε such that x = 1
2 (x

− + x+) we
have

Bd
ε(x) ≥

1

2
Bd

ε(x
−) +

1

2
Bd

ε(x
+).

Proof. Take a sequence {ϕn} ∈ BMOd
ε(I−) ∪ BMOd

ε(I+) such that

〈eϕn〉
I±

−→ Bd
ε(x

±) as n → ∞.

We need to check that ϕn ∈ BMOd
ε(I). However,

BMOd
ε(I) =

{
ϕ : ϕ|I− ∈ BMOd

ε(I−), ϕ|I+ ∈ BMOd
ε(I+), 〈ϕ2〉

I
− 〈ϕ〉2

I
≤ ε2

}
.

Since, by assumption, x ∈ Ωε, we have 〈ϕ2〉
I
− 〈ϕ〉2

I
≤ ε2. Then we can pass to the

limit in the identity

〈eϕn〉
I
=

1

2
〈eϕn〉

I−
+

1

2
〈eϕn〉

I+

to get

Bd
ε(x) ≥ lim〈eϕn〉

I
=

1

2
Bd

ε(x
−) +

1

2
Bd

ε(x
+),

which completes the proof. �

Observe that the statement of the proposition does not hold in the continuous
case. In that case, we have

BMOε(I) �=
{
ϕ : ϕ|I− ∈ BMOε(I−), ϕ|I+ ∈ BMOε(I+), 〈ϕ2〉

I
− 〈ϕ〉2

I
≤ ε2

}
,
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since there are other intervals to consider: those with the left endpoint in I− and
the right one in I+.

We have just proved that Bd
ε is locally concave in Ωε. Furthermore, the reasoning

of (4.9) still works, and we conclude that

Bd
ε(x) = exp

{
x1 + w(x2 − x2

1)
}

for a nonnegative function w such that w(0) = 0. What is more, we expect the

corresponding matrix −d2Bd
ε (assuming sufficient smoothness) to be degenerate

in order for the supremum to be attained for an extremal function. But we have
already described all functions with these properties. They are the functions Bδ

from (3.5). The condition δ ≥ ε appears because the function Bd
ε has to be defined

on Ωε, Ωε ⊂ Ωδ for δ ≥ ε, and Ωδ is exactly the domain of Bδ. Thus we look for
Bd within that family.

5.2. How to find the dyadic extremal function. Again, we consider only the
“+” case. Recall that in the continuous case we were looking for a function that
would produce equality on every step of (5.7), i.e. in the Bellman induction of
Lemma 2d. Thus, such a function was found by analyzing what it took to make Bδ

behave as a linear function, that is to have

Bδ(α−x
− + α+x

+) = α−Bδ(x
−) + α+Bδ(x

+).

We now employ similar reasoning. Namely, we construct the dyadic extremal func-
tion for a point on the top boundary so that we have equality in Lemma 3d, i.e.

(5.26) Bδ(ε)

(
1

2
x− +

1

2
x+

)
=

1

2
Bδ(ε)(x

−) +
1

2
Bδ(ε)(x

+)

at every dyadic split I = I− ∪ I+. We construct a function ϕ0 on I = [0, 1] for
the point x = (0, ε2). Then the function ϕa, ϕa(t) = ϕ0(t) + a, is an extremal
function for the point (a, a2 + ε2). The proof of Lemma 3d gives us a hint for
our construction: the extremum in (5.13) was realized by a line segment whose
center and one of the endpoints (say x−) lay on the top boundary curve of Ωε,
x2 = x2

1 + ε2, i.e. x = (0, ε2) and x− = (a, a2 + ε2), while the other endpoint, x+,
lay on the bottom boundary curve x2 = x2

1, i.e. x
+ = (−a, a2). From the condition

x = 1
2x−+ 1

2x+ we get a = ε/
√
2. Only constant functions correspond to the points

of the bottom boundary, so we have to put ϕ0(t) = x+
1 = −a for 1

2 < t < 1, and
on I− we have to take the scaled function ϕa: ϕ0(t) = ϕa(2t) = ϕ0(2t) + a for
0 < t < 1

2 . This recursive relation yields ϕ0(t) = (n − 1)a for 2−n−1 < t < 2−n.
This is the function on Figure 3.

We now describe how to construct an extremal function ϕ when (x1, x2) �= (0, ε2).
If x2 = x2

1 + ε2, i.e. x is on the top boundary, we simply let ϕ = ϕ0 + x1 to get
the desired result. Likewise, if x is on the bottom boundary, we let ϕ = x1, i.e. set
the function to be constant on the whole interval. What should we do if x is in the
interior of Ωε? We present two different perspectives on how this situation can be
dealt with. Both lead to the same expression for the extremal function ϕ.

Perspective 1. Let us forget for a moment that we are to construct a dyadic
extremal function; then we can split I so that x+ is on the bottom boundary and
x− is on the top one. Let α be the splitting parameter, i.e. we have I− = (0, α),
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I+ = (α, 1), and x = αx− + (1 − α)x+. We would like to choose the splitting so
that

Bδ(ε)(x) = αBδ(ε)(x
−) + (1− α)Bδ(ε)(x

+).

Then we can set ϕ to be constant on the right subinterval and the appropriately
scaled function ϕ0 on the left one, and apply (5.7) from Lemma 3d to I− and I+
separately. To do this, we place x−, x, and x+ on a line ω+

δ tangent to the curve

x2 = x2
1 + δ2, since, according to section 4.2, B+

δ is a linear function along any
such segment. More precisely, we consider the line through x that is tangent to
x2 = x2

1 + δ2, and we set x− to be the point of intersection of the line and the
curve x2 = x2

1 + ε2 and x+ to be the point of intersection of the line and the curve
x2 = x2

1. Let us calculate α. To avoid confusion, we will temporarily use x0 when
referring to the “midpoint” of our segment. Let us recall the notation of Lemma 1d:
(5.27)

r1 =
√
δ2 − ε2, r2 =

√
δ2 − x0

2 + (x0
1)

2, β = r2 − r1, γ = r2 − δ, α =
δ − r2
δ − r1

.

Also let

(5.28) β1 = β + x0
1; γ1 = γ + x0

1.

According to (4.18), the line ω+
δ (c) tangent to x2 = x2

1 + δ2 at the point (c, c2+ δ2)
has the equation

(5.29) x2 = 2cx1 + δ2 − c2.

We calculate c using the fact that this line passes through x0. Since in our geometry
c ≥ x0

1, we have c = x0
1 + r2. Then (5.29) becomes

x2 = 2(x0
1 + r2)x1 + δ2 − (x0

1 + r2)
2

or, equivalently,
(x1 − (x0

1 + r2))
2 = δ2 + x2

1 − x2.

This line intersects the top boundary curve at the point x− = (β1, β
2
1 + ε2) (where

we have used the fact that x0
1 ≤ x−

1 ≤ c); the intersection with the bottom curve
is at x+ = (γ1, γ

2
1). The (horizontal) length of the segment [x+, x−] is δ− r1, while

that of the segment [x+, x0] is δ − r2; so we get x0 = αx− + (1 − α)x+. Putting
everything together, we obtain the function ϕ̃+ from the proof of Lemma 1d:

ϕ̃+(t) = x0
1 +

{
ϕ0

(
t
α

)
+ β for 0 < t < α,

γ for α < t < 1.

We must pay the price for ignoring the fact that (0, α) is not, in general, a dyadic

interval and, therefore, ϕ̃+ is not in BMOd
ε(I). How to construct an appropriate

rearrangement ϕ+ of ϕ̃+ is detailed in the proof of Lemma 1d.

Perspective 2. It is useful to consider another perspective on constructing an
extremal function. We will start with the function ϕ0 built for the point x = (0, ε2)
and arrive at the same function ϕ+, for an arbitrary point x0, as in Lemma 1d, but
using a different reasoning and skipping the ϕ̃+ phase altogether. The main feature
of this construction is that on every step we define our function on a dyadic subin-
terval of (0, 1), as opposed to choosing an α and then approximating it dyadically
as in Perspective 1.

Here is the simple logic: starting with I = (0, 1), we will define our function
on the right half of I, then redefine I to be the other half, and then repeat the
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procedure. Consider, as before, the line through x0 tangent to x2 = x2
1 + δ2. Let

xt and xb be the points of intersection of the tangent with the top and bottom
boundary of Ωε, respectively. If x0 is closer to xt than to xb, set ϕ to be the
appropriately scaled (and adjusted to have the prescribed average) function ϕ0 on
I+ and replace x0 with 2x0 − xt. If, on the contrary, x0 is closer to xb than to xt,
set ϕ to be the appropriately chosen constant on I+ and replace x0 with 2x0 − xb.
In either case, replace I with I− and repeat. If x0 is exactly in the middle between
xb and xt, let ϕ be the scaled ϕ0 on I+ and constant on I−; then stop.

We will now make this procedure more precise and show why the function so
obtained is the same as the one used to prove Lemma 1d.

Start with a point x0 ∈ Ωε. Let x
∗ = x0, I = (0, 1) (the initial settings; x∗ and

I will be redefined in the procedure). Let r1, β1, and γ1 be defined by (5.27) and
(5.28) (these will not be redefined). Then:

1. Let r2 =
√
δ2 − x∗

2 + (x∗
1)

2

– if δ + r1 < 2r2, go to step 2;
– if δ + r1 > 2r2, go to step 4;
– if δ + r1 = 2r2, go to step 6.

2. Let ϕ|I+ = γ1.

3. Let xb = (γ1, γ
2
1), x∗ := 2x∗ − xb, I := I−. Go to step 1.

4. Let ϕ|I+ = ϕ0(2
kt+ 1) + β1.

5. Let xt = (β1, β
2
1 + ε2), x∗ := 2x∗ − xt, I := I−. Go to step 1.

6. Let ϕ|I+ = ϕ0(2
kt+ 1) + β1, ϕ|I− = γ1. Stop.

Since on every run of the loop we define ϕ on half of the current interval I and then
rename the other half I, in the end we have defined ϕ almost everywhere on (0, 1).

Furthermore, since every interval in the process is dyadic and ϕ ∈ BMOd
ε(J) for

every interval J that turns up on step 2, 4, or 6, we conclude that ϕ ∈ BMOd
ε([0, 1]).

All the action happens on the same line tangent to the parabola x2 = x2
1 + δ2,

guaranteeing equality in (5.7) of Lemma 3d.
The inequality δ+r1 < 2r2 (or >,=) is equivalent to the inequality δ−r2 < r2−r1

(or >,=), i.e. the statement that the distance from x0 to the bottom boundary
curve is smaller than that to the top one. Alternatively, this inequality is equivalent
to δ−r2

δ−r1
< 1

2 , i.e., in the language of Perspective 1, α < 1
2 . But comparing the current

α to 1/2 is the same as determining whether the current dyadic digit of the original
α is 0 or 1. Indeed, if the current x∗ is closer to the top boundary, its next iteration
will be twice as far from it; the same holds for the bottom boundary. Let us quantify
this.

Let z0 = α, zk = δ−(r2)k
δ−r1

, the value on the k-th step of our procedure. By

construction, if zk−1 > 1/2, then zk = 2zk−1−1, and if zk−1 < 1/2, then zk = 2zk−1.

Thus zk = {2zk−1}, the fractional part of 2zk−1. Then αk
def
= [2zk−1] (the integer

part) is the k-th dyadic digit of α. Recalling definition (5.3), we see that the function
ϕ so obtained is indeed the same as ϕ+ in Perspective 1.

6. Conclusion

In this section, we summarize what has been achieved, specify which obstacles
need to be overcome on the way to generalizing the results, and outline immediate
and long-term prospects.
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From a purely practical viewpoint, we have obtained sharp new results in a
widely-used inequality. In addition, the dyadic BMO formulation is common in
applications, therefore exploring the problem in this setting — and showing that
the results differ significantly from the continuous setting — is important.

Equally important is the methodological aspect of this work. We have added
another nontrivial example to the short list of explicit Bellman functions. This
application of the method can be viewed as an excellent case study, following every
step in the recent explicit Bellman template. As far as we know, our transition
to the dyadic case from the continuous one is unique in literature; as mentioned
in the introduction, the usual way is the opposite. The dyadic setting has been
prevalent in Bellman function studies, thus our obtaining of an explicit continuous-
case Bellman function is noteworthy in itself.

There are several natural questions one may ask:
1. Can the results be extended to the Lp-based BMO?
The choice of variables (2.1) (and so the associated Bellman function definitions)

depends heavily on the L2-structure of our BMO. For p > 1 it is possible to consider
the choice x2 = 〈|ϕ|p〉, although the associated norms are not the usual Lp-based
BMO norms. It appears that an altogether different Bellman setup may be needed
for the L1 case.

2. Can the results be extended to higher dimensions?
Once we move to higher dimensions, there is the question of how one defines

BMO. Typical definitions use cubes or balls, although others are possible. Since
our technique depends critically on one’s ability to split a body in R

n into bodies of
the same type, it seems that the dyadic case is more amenable to higher-dimensional
considerations because in the dyadic situation we have no problem splitting a cube
into a union of smaller cubes. In the continuous case, however, the crucial splitting
tool we have used, Lemma 4c, is pointedly one-dimensional. We could easily gen-
eralize our results to the n-parameter BMO on rectangles, but this appears to be
of little interest.

Often in Bellman proofs one relies on a certain dyadic Bellman function to handle
all dimensions. Naturally, our continuous-to-dyadic way of solving the problem does
not go through in that sense. In addition, the continuous and dyadic results are
expected to be increasingly different as dimension grows. Overall, new techniques
are needed (work is underway) to deal with the higher-dimensional case.

Despite our present inability to handle the multi-dimensional case, we would like
to put forth two related conjectures for the BMO defined on cubes.

Conjecture 1. Theorems 1c and 2c remain true in the multi-dimensional case,
i.e. in the nondyadic case the Bellman function does not depend on the dimension.

Conjecture 2. In the dyadic n-dimensional case the Bellman functions are B±
δ±n

,

where the parameters δ±n = δ±n (ε) are the solutions of the equations

(1∓
√

δ2 − ε2) exp(±
√
δ2 − ε2∓δ)

(
2n − e±(2n/2−2−n/2)ε

)
= (1∓δ)(2n−1)e∓ε2−n/2

,

and, therefore, the corresponding constants Cd
n(ε) and εd0(n) are

Cd
n(ε) =

(2n − 1)e−ε2−n/2

2n − e(2n/2−2−n/2)ε
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and

εd0(n) =
n log 2

2n/2 − 2−n/2
.

These conjectures are true if it is true that the extremal function corresponding to
the point (0, ε2) is

ϕ0(t1, . . . , tn) = ε

(
n log

1

max tk
− 1

)
in the nondyadic case and

ϕd
0(t1, . . . , tn) = −ε2−n/2 +

∞∑
k=1

(2n/2 − 2−n/2)εχ
[0,2−k]

(max tk)

in the dyadic one.

3. Can the classical weak-form John–Nirenberg inequality be handled by the
methods of this paper?

At the moment, this appears to be the most promising of all directions of fur-
ther research on the topic. By design, the Bellman function for a distributional
inequality will have one more variable (at least, another parameter), compared to
the integral case. This implies that the order of the Bellman PDE in the weak-form
case will be higher.

On the other hand, we have a ready choice of variables by just reusing the ones
from this paper. The usual logic that allows one to establish a finite-difference
inequality for the Bellman function still applies. In [12], a Bellman-type function
satisfying this inequality (a so-called supersolution) was found for the dyadic BMO.
This showed that the Bellman function method works for the weak form of the
John–Nirenberg inequality. However, not being the true Bellman function, that
supersolution only gave suboptimal (not sharp) constants in the inequality. It is
our hope to be able to find the true Bellman function for this inequality as well.
Being the averages of functions, our variables have a clear martingale structure,
thus we expect to be able to rewrite that inequality as a homogeneous Monge-
Ampère equation, just as we have done here. Though that equation will not reduce
to an ODE, there has been a recent surge (and success) in in-depth studies of the
connection of such PDEs with the Bellman function method. All of this gives the
problem a very promising outlook.
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