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Sharp scattering threshold for the cubic-quintic NLS in the

focusing-focusing regime

Yongming Luo ∗†

Abstract

We consider the large data scattering problem for the 2D and 3D cubic-quintic nonlinear

Schrödinger equation in the focusing-focusing regime. Our attention is firstly restricted to the

2D space, where the cubic nonlinearity is L
2-critical. We establish a new type of scattering

criterion that is uniquely determined by the mass of the initial data, which differs from the

classical setting based on the Lyapunov functional. At the end, we formulate a solely mass-

determining scattering threshold for the 3D cubic-quintic nonlinear Schrödinger equation in

the focusing-focusing regime.

1 Introduction and main results

In this paper, we consider the cubic-quintic nonlinear Schrödinger equation

i∂tu+∆u+ µ1|u|
2u+ µ2|u|

4u = 0 in R× R
d (1.1)

for d = 2, 3. The cubic-quintic nonlinear Schrödinger equation (CQNLS) serves as a toy model in
many physical applications such as nonlinear optics and Bose-Einstein condensation. Physically,
the cubic and quintic nonlinearities model the two-body and three-body interactions respectively.
The signs µi can be tuned to be defocusing (µi < 0) or focusing (µi > 0), indicating the repulsivity
or attractivity of the many-body interactions. We refer to [17, 21, 36] and the references therein
for a comprehensive introduction on the physical background of the CQNLS.

On the other hand, the CQNLS has also attracted much attention from the mathematical
community due to its abundant analytical structure: one easily verifies the L2-criticality of the
quintic term in 1D, the L2-criticality of the cubic term in 2D and the Ḣ1-criticality of the quintic
term in 3D. Additionally, the mixed type nature of the CQNLS prevents any possible application of
scaling invariance property, which makes the mathematical analysis more subtle and challenging.
For recent mathematical progress on the study of the CQNLS with a particular focus on the
scattering and blow-up phenomenon, we refer to [37, 16, 27, 15, 12, 33, 26, 11].

Our particular interest is firstly devoted to establishing a sharp scattering threshold for the
2D CQNLS in the focusing-focusing regime (µ1, µ2 > 0), which has not been considered in any of
the above mentioned references. In particular, we see no possibility to easily adapt the existing
arguments to the focusing-focusing model; To achieve our aim, we need some new ideas and
ingredients. For simplicity, we set µ1 = µ2 = 1 and in the following we consider the normalized
CQNLS

i∂tu+∆u+ |u|2u+ |u|4u = 0 in R× R
2. (1.2)

In [37], it was shown that as long as µ1, µ2 < 0 (namely both nonlinearities are defocusing), (1.1)
is globally well-posed and scatters in time for any initial data u(0) = u0 ∈ H1(R2). The proof
relies on the so-called interaction Morawetz inequalities and the defocusing nature of the model is
essential, hence the proof can not be adapted to other types of models. In fact, the result from [37]
does not hold when at least one of the µi is positive: (1.1) might possess solutions that blow-up
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in finite time, or soliton solutions. Here, the soliton solutions are referred to solutions u of (1.1)
having the form u(t, x) = eiωtS(x) with ω ∈ R, where S satisfies the stationary CQNLS

−∆S + ωS − µ1|S|
2S − µ2|S|

4S = 0 in R
2. (1.3)

For the normalized focusing-focusing model, (1.3) reads

−∆S + ωS − |S|2S − |S|4S = 0 in R
2. (1.4)

It turns out that the energy level corresponding to soliton solutions is the minimal threshold for a
solution being failed to meet the dichotomy of scattering and blow-up. Our starting point is the
result in [34] given by Soave, where the author studied the existence problem of solutions of (1.4).
Therein, Soave considered the following variational problem

mc = inf
u∈H1(R2)

{H(u) : M(u) = c,K(u) = 0} (1.5)

for c > 0, where

M(u) := ‖u‖22,

H(u) :=
1

2
‖∇u‖22 −

1

4
‖u‖44 −

1

6
‖u‖66,

K(u) := ‖∇u‖22 −
1

2
‖u‖44 −

2

3
‖u‖66.

Physically, M(u),H(u),K(u) denote the mass, energy and virial respectively. It was shown in [34]
that K(u) = 0 is a natural constraint, thus using the Lagrange multiplier theorem we know that
any optimizer of (1.5) is automatically a solution of (1.4). An optimizer of mc is also said to be
a ground state since it has the least energy among all candidates. To formulate the result in [34],
we also denote by Q the unique positive and radially symmetric solution of

−∆Q+Q−Q3 = 0.

Having all the preliminaries we are able to introduce the following result from [34]:

Theorem 1.1 ([34]). We have the following existence and blow-up results:

(i) Existence of ground state: For any c ∈ (0,M(Q)) the variational problem (1.5) has a
minimizer Sc with H(Sc) = mc ∈ (0,∞). Moreover, Sc is a solution of (1.4) with some
ω > 0. In addition, Sc can be chosen to be positive and radially symmetric.

(ii) Blow-up criterion: Assume that u0 ∈ H1(R2) satisfies the conditions M(u0) ∈ (0,M(Q)),
H(u0) < mM(u0) and K(u0) < 0. Assume also that |x|u0 ∈ L2(R2). Then the solution u of
(1.2) with u(0) = u0 blows-up in finite time.

The aim of the present paper is to show that the threshold given by Soave is exactly the sharp
scattering threshold for (1.2).

Theorem 1.2. Define the set

A := {u ∈ H1(R2) : M(u) <M(Q),H(u) < mM(u),K(u) > 0} (1.6)

and assume that u0 ∈ A. Then the solution u of (1.2) with u(0) = u0 is global and scatters in
time.

We should compare the scattering criterion (1.6) with the one given in [2], which is nowadays
the golden rule for large data scattering problems of NLS with combined power type nonlinearities.
Therein, the authors considered the NLS

i∂tu+∆u+ |u|p−2u+ |u|
4

d−2u = 0 in R× R
d (1.7)
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for d ≥ 5 and p ∈ (2 + 4
d
, 2 + 4

d−2 ), namely the focusing energy-critical NLS with a focusing
mass-supercritical and energy-subcritical perturbation. To formulate the scattering threshold, the
authors imposed the so-called Lyapunov functional

Sω(u) :=
ω

2
M(u)2 +H(u) (1.8)

and considered the variational problem

γω := inf
u∈H1(R2)\{0}

{Sω(u) : K(u) = 0}. (1.9)

The following result is due to [1, 2, 3]:

Theorem 1.3 ([1, 2, 3]). Let d ≥ 3 and ω > 0. Then

(i) For any d ≥ 3 and ω > 0 we have γω ∈ (0, S
d
2

d
], where S is the optimal constant for the

Sobolev inequality.

(ii) For any d ≥ 4 and ω > 0 and for d = 3 and any sufficiently small ω > 0 we have γω ∈

(0, S
d
2

d
). Moreover, the variational problem (1.9) possesses an optimizer Pω. Consequently,

the optimizer Pω is a soliton solution of (1.7) with the given ω.

(iii) Assume that

u0 ∈ {v ∈ H1(Rd) : Sω(v) < γω,K(v) > 0}. (1.10)

Additionally we assume that u0 is radially symmetric when d = 3. Then the solution u of
(1.7) with u(0) = u0 is global and scatters in time.

We should point out that the scattering results given in [2] were originally formulated in the
cases d ≥ 5. The results can nonetheless be extended to all dimensions d ≥ 3 in a natural way by
combining with the results from [24] and the recent published paper [19]. The scattering criterion
(1.10) has been later successfully applied in [30, 40, 31, 32, 16, 41] to formulate a sharp scattering
threshold for NLS with combined power type nonlinearities in different regimes. However, (1.10)
seems not to be compatible with problems having focusing L2-critical nonlinearity due to the
following reason: The constraint M(u) < M(Q) is essential since the L2-critical nonlinearity

|u|
4
d u shares the same scaling of the Laplacian ∆u under the scaling operator

Tλu(x) := λ
d
2 u(λx).

However, by considering the Lyapunov functional Sω we would have double constraints on the mass
of the initial data, which might violate the conciseness of the scattering threshold. By comparison
with (1.10) we also see that the scattering criterion (1.6) has the advantage that it is uniquely
determined by the mass of the initial data. Such a solely mass-determining threshold could also
be more physically relevant in the following sense: besides being a conserved quantity, the mass
also measures many physically important quantities such as the power supply in nonlinear optics,
or the total number of particles in the Bose-Einstein condensation.

As a surprising byproduct, we are able to formulate a scattering criterion for the problem (1.7)
within the framework of the present paper by also invoking the results from [35, 38]. In particular,
there is no smallness condition and mass constraint in all dimensions and the energy threshold is
exactly the ground state energy which is positive and smaller than d−1S

d
2 . We will continue the

discussion in Section 6. As a consequence of Theorem 6.2 given below, we are able to impose the
following solely mass-determining scattering threshold for the 3D CQNLS in the focusing-focusing
regime:

Theorem 1.4. Let d = 3 and µ1 = µ2 = 1. Define the set

B := {u ∈ H1(R3) : H(u) < mM(u),K(u) > 0} (1.11)

(where K(u) is suitably redefined in the 3D case) and assume that u0 ∈ B ∩ H1
rad(R

3). Then the
solution u of (1.1) with u(0) = u0 is global and scatters in time.
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Remark 1.5. We note that unlike the 2D case, in Theorem 1.4 there is no mass constraint imposed
for the initial data. This difference stems from the fact that the cubic nonlinearity is mass-critical
and mass-supercritical in 2D and 3D respectively. To be more precise, when applying the L2-scaling
u 7→ Tλu to the quantity 1

2‖∇u‖
2
2 −

1
4‖u‖

4
4 in 2D, we see that

1

2
‖∇(Tλu)‖

2
2 −

1

4
‖Tλu‖

4
4 = λ2

(1
2
‖∇u‖22 −

1

4
‖u‖44

)
.

Therefore, the quantity 1
2‖∇u‖

2
2 −

1
4‖u‖

4
4 does not vary w.r.t. scaling and keeping the mass below

the (mass-critical) ground state is essential for applications of Gagliardo-Nirenberg inequalities.
Such heuristics do not hold any longer in the 3D case. Indeed, by applying the L2-scaling to the
quantity 1

2‖∇u‖
2
2 −

1
4‖u‖

4
4 in 3D we obtain

1

2
‖∇(Tλu)‖

2
2 −

1

4
‖Tλu‖

4
4 =

λ2

2
‖∇u‖22 −

λ3

4
‖u‖44.

We see in this case that the quantity 1
2‖∇u‖

2
2 −

1
4‖u‖

4
4 does not play the same role as in 2D and

the mass constraint is no longer relevant. Rather, we should consider the function λ 7→ λ2

2 ‖∇u‖22−
λ3

4 ‖u‖44 and the corresponding variational analysis becomes more delicate in comparison with the
2D case. We refer to the papers [34, 35, 38] for a more detailed survey on such phenomenon. △

The study on the existence and stability results of (1.3) is also a very interesting topic. In
this direction, we refer to the classical papers [7, 8, 39, 14, 22, 9] and also the recent papers
[5, 34, 35, 38].

Roadmap for the proof of Theorem 1.2

We summarize here briefly the idea for the proof of Theorem 1.2. The proof follows the classical
concentration compactness arguments given by Kenig and Merle [24]: by assuming that the claim
in Theorem 1.2 does not hold, we are able to derive a minimal blow-up solution uc of (1.2) with

‖〈∇〉
1
2 uc‖L4

t,x(R)
= ∞,

which also satisfies uc = 0 and thus leads to a contradiction. The main challenge arises from the fact
that since the scattering is considered w.r.t. the H1-topology, it is impossible to prove Theorem 1.2
only relying on the energy H. It is at this point to note that the H1-norm of a solution u of (1.2)
can be controlled by the Lyapunov functional Sω(u), which is not the case here. To build up the
inductive contradiction hypothesis, we should rather take the mass and energy of the initial data
into account simultaneously. To be more precise, we utilize the mass-energy-indicator functional
(MEI-functional) D introduced in [27] to derive a minimal blow-up solution. The idea can be
described as follows: a mass-energy pair (M(u),H(u)) being admissible implies D(u) ∈ (0,∞); In
order to escape the admissible region Ω, a function u must approach the boundary of Ω and one
would deduce D(u) → ∞. We can therefore assume that the supremum D∗ of D(u) running over
all admissible u is finite, which leads to a contradiction and we conclude that D∗ = ∞, which will
finish the desired proof. However, the situation by the focusing-focusing model is more delicate: a
mass-energy pair being admissible does not automatically imply the positivity of the virial K. In
particular, it is not trivial that the linear profiles would have positive virial at the first glance. We
will appeal to the geometric properties of the MEI-functional D, combining with the variational
arguments from [2], to overcome this difficulty.

Outline of the paper

In Section 2 we collect some auxiliary tools from [15, 33] that will be useful by the construction of
the minimal blow-up solution; Section 3 is devoted to the variational estimates and the construction
of the MEI-functional D; Finally, we prove in Section 4 and Section 5 the existence and extinction
of the minimal blow-up solution respectively. In Section 6 we formulate a scattering criterion for
the problem (1.7) under the framework of the present paper. In A we establish the precise endpoint
values m0 and mQ of the curve c 7→ mc in 2D.
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1.1 Notation and definitions

We use the notation A . B whenever there exists some positive constant C such that A ≤ CB.
Similarly we define A & B and use A ∼ B when A . B . A. We denote by ‖ · ‖p the L

p(Rd)-norm
for p ∈ [1,∞]. We similarly define the H1(Rd)-norm by ‖ · ‖H1 . The following quantities will be
used throughout the paper:

M(u) := ‖u‖22,

H(u) :=
1

2
‖∇u‖22 −

1

4
‖u‖44 −

1

6
‖u‖66,

K(u) := ‖∇u‖22 −
1

2
‖u‖44 −

2

3
‖u‖66,

I(u) := H(u)−
1

2
K(u) =

1

6
‖u‖66.

We will also frequently use the scaling operator

Tλu(x) := λ
d
2 u(λx).

One easily verifies that the L2-norm is invariant under this scaling. We denote by Q the unique
positive and radially symmetric ground state of

−∆Q+Q−Q3 = 0.

For the existence and uniqueness of Q, we refer to [39] and [28] respectively. We denote by CGN

the 2D optimal L2-critical Gagliardo-Nirenberg constant, i.e.

CGN = inf
u∈H1(R2)\{0}

‖∇u‖22‖u‖
2
2

‖u‖44
. (1.12)

Using Pohozaev identities (see for instance [7]) and scaling arguments one easily verifies that

CGN =
1

2
M(Q). (1.13)

We also denote by ĈGN the optimal Gagliardo-Nirenberg constant for the quintic nonlinearity, i.e.

ĈGN = inf
u∈H1(R2)\{0}

‖∇u‖42‖u‖
2
2

‖u‖66
. (1.14)

For d ≥ 3 we denote by S the optimal constant of the Sobolev inequality, i.e.

S := inf
u∈D1,2(Rd)\{0}

‖∇u‖22
‖u‖22∗

.

Here, the space D1,2(Rd) is defined by

D1,2(Rd) := {u ∈ L2∗(Rd) : ∇u ∈ L2(Rd)}

and 2∗ = 2d
d−2 . For an interval I ⊂ R, the space LqtL

r
x(I) is defined by

LqtL
r
x(I) := {u : I × R

2 → C : ‖u‖Lq
tL

r
x(I)

<∞},

where

‖u‖q
L

q
tL

r
x(I)

:=

ˆ

R

‖u‖qr dt.

A pair (q, r) is said to be L2-admissible in 2D if q, r ∈ [2,∞], 2
q
+ 2

r
= 1 and (q, r) 6= (2,∞). For

any L2-admissible pairs (q1, r1) and (q2, r2) we have the following Strichartz estimates: if u is a
solution of

i∂tu+∆u = F (u) (1.15)

5



in I ⊂ R with t0 ∈ I and u(t0) = u0, then

‖u‖Lq
tL

r
x(I)

. ‖u0‖2 + ‖F (u)‖
L

q′
2

t L
r′
2

x (I)
, (1.16)

where (q′2, r
′
2) is the Hölder conjugate of (q2, r2). For a proof, we refer to [23, 13]. The S-norm is

defined by

‖u‖S(I) := sup
q∈(2+,∞]

‖u‖Lq
tL

r
x(I)

, (1.17)

where the supremum is taken over all L2-admissible pairs (q, r) with q ∈ (2+,∞] and 2+ > 2
is some positive constant that is sufficiently close to 2. In this paper, the scattering concept is
referred to the following definition:

Definiton 1.6 (Scattering). A global solution u of (1.2) is said to be forward in time scattering
if there exists some φ+ ∈ H1(R2) such that

lim
t→∞

‖u(t)− eit∆φ+‖H1 = 0. (1.18)

A backward in time scattering solution is similarly defined. u is then called a scattering solution
when it is both forward and backward in time scattering.

We define the Fourier transform of a function f by

f̂(ξ) = F(f)(ξ) =

ˆ

R2

f(x)e−iξ·x dx.

For s ∈ R, the multipliers |∇|s and 〈∇〉s are defined by the symbols

|∇|sf(x) = F−1
(
|ξ|sf̂(ξ)

)
(x),

〈∇〉sf(x) = F−1
(
(1 + |ξ|2)

s
2 f̂(ξ)

)
(x).

Let ψ ∈ C∞
c (R2) be a fixed radial, non-negative function such that ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0

for |x| ≥ 11
10 . Then for N > 0, we define the Littlewood-Paley projectors by

P≤Nf(x) = F−1
(
ψ
( ξ

N

)
f̂(ξ)

)
(x),

PNf(x) = F−1
((
ψ
( ξ
N

)
− ψ

(2ξ
N

))
f̂(ξ)

)
(x),

P≥Nf(x) = F−1
((

1− ψ
( ξ
N

))
f̂(ξ)

)
(x).

2 Auxiliary preliminaries

In this section we collect some useful auxiliary lemmas from [15, 33]. The proofs will be omitted
here and we refer to [15, 33] for further details. We begin with the small data well-posedness and
stability theory, which can be proved in a standard way.

Lemma 2.1 (Small data well-posedness). For any A > 0 there exists some β > 0 such that the
following is true: Suppose that I is some interval and t0 ∈ I. Suppose also that u0 ∈ H1(R2) with

‖u0‖H1 ≤ A (2.1)

and

‖〈∇〉ei(t−t0)∆u0‖L4
t,x(I)

≤ β. (2.2)

6



Then (1.2) has a unique solution u ∈ C(I;H1(R2)) with u(t0) = u0 such that

‖〈∇〉u‖S(I) . ‖u0‖H1 , (2.3)

‖〈∇〉u‖L4
t,x(I)

≤ 2‖〈∇〉ei(t−t0)∆u0‖L4
t,x(I)

. (2.4)

Denote by Imax the maximal lifespan of u. We then have the following blow-up and scattering
criterion: if the solution u of (1.2) satisfies

‖〈∇〉
1
2u‖L4

t,x(Imax) <∞, (2.5)

then Imax = R and u scatters in both positive and negative time.

Remark 2.2. Using Strichartz we infer that

‖〈∇〉ei(t−t0)∆u0‖L4
t,x(I)

. ‖u0‖H1 . (2.6)

Thus Lemma 2.1 is applicable for all u0 with sufficiently small H1-norm. △

Lemma 2.3 (Stability). Let u ∈ C(I;H1(R2)) be a solution of (1.2) defined on some interval
I ∋ t0. Assume also that w is an approximate solution of the following perturbed NLS

i∂tw +∆w = −|w|2w − |w|4w + e (2.7)

such that

‖w‖L∞

t H
1
x(I)

≤ B1, (2.8)

‖〈∇〉
1
2 (u(t0)− w(t0))‖2 ≤ B2, (2.9)

‖〈∇〉
1
2w‖L4

t,x(I)
≤ B3 (2.10)

for some B1, B2, B3 > 0. Then there exists some positive β0 = β0(B1, B2, B3) ≪ 1 with the
following property: if

‖〈∇〉
1
2 ei(t−t0)∆(u(t0)− w(t0))‖L4

t,x(I)
≤ β, (2.11)

‖〈∇〉
1
2 e‖

L
4
3
t,x(I)

≤ β (2.12)

for some 0 < β < β0, then

‖〈∇〉
1
2 (u− w)‖L4

t,x(I)
≤ C(B1, B2, B3)β, (2.13)

‖〈∇〉
1
2 (u− w)‖S(I) ≤ C(B1, B2, B3), (2.14)

‖〈∇〉
1
2u‖S(I) ≤ C(B1, B2, B3). (2.15)

Next we introduce the linear profile decomposition used in present paper. Since (1.2) is a
focusing mass-critical NLS with a mass-supercritical and energy-subcritical perturbation, we should
apply an L2-profile decomposition on the approximating sequence (ψn)n rather than an Ḣ1-profile
decomposition as in [25]. The classical L2-profile decomposition was originally given by [10, 29, 4]
and later applied in [16] for the radial mass-energy double critical NLS. To remove the radial
restriction we should appeal to the following linear profile decomposition from [15]:

Lemma 2.4 (Linear profile decomposition). Let (ψn)n be a bounded sequence in H1(R2). Then up
to a subsequence of (ψn)n, there exist some number K∗ ∈ N ∪ {∞}, a sequence of nonzero linear
profiles (φj)1≤j≤K∗ ⊂ L2(R2), a sequence of symmetry parameters (λjn, t

j
n, x

j
n, ξ

j
n)n∈N,1≤j≤K∗ ⊂

(0,∞)×R×R
2×R

2 with supn∈N |ξjn| .j 1 and a sequence of remainders (wkn)n∈N,1≤k≤K∗ ⊂ H1(R2)
such that

7



(i) The parameters (λjn, t
j
n, x

j
n, ξ

j
n)n,j satisfy

lim
n→∞

{∣∣∣ log λ
j
n

λln

∣∣∣+ |tjn − tln|

(λjn)2

+ λjn|ξ
j
n − ξln|+

|xjn − xln + 2tjn(ξ
j
n − ξln)|

λjn

}
= ∞ (2.16)

for all finite 1 ≤ j, l ≤ K∗ with j 6= l. Moreover,

lim
n→∞

λjn = λj∞ ∈ {1,∞}, (2.17)

λjn ≡ 1 if λj∞ = 1. (2.18)

(ii) There exists some θ ∈ (0, 1) such that for any finite 1 ≤ k ≤ K∗ we have the decomposition

ψn =

k∑

j=1

T jnP
j
nφ

j + wkn, (2.19)

where

T jnu(x) := eix·ξ
j
ne−it

j
n∆(λjn)

−1u
(
(λjn)

−1(· − xjn)
)
(x) (2.20)

and

P jnφ
j =

{
φj , if λj∞ = 1,
P≤(λj

n)θ
φj , if λj∞ = ∞.

(2.21)

Moreover, if λj∞ = 1, then ξjn ≡ 0 and φj ∈ H1(R2).

(iii) The remainders (wkn)n,k satisfy

lim
k→K∗

lim
n→∞

‖〈∇〉
1
2 eit∆wkn‖L4

t,x(R)
= 0. (2.22)

(iv) The following orthogonal properties are satisfied: for s ∈ {0, 1} and finite 1 ≤ J ≤ K∗ we
have

‖|∇|sψn‖
2
2 =

J∑

j=1

‖|∇|sT jnP
j
nφ

j‖22 + ‖|∇|swJn‖
2
2 + on(1), (2.23)

H(ψn) =
J∑

j=1

H(T jnP
j
nφ

j) +H(wJn) + on(1), (2.24)

I(ψn) =

J∑

j=1

I(T jnP
j
nφ

j) + I(wJn) + on(1), (2.25)

K(ψn) =

J∑

j=1

K(T jnP
j
nφ

j) +K(wJn) + on(1). (2.26)

The following large scale approximation result is an immediate consequence of Lemma 2.3 and
the scattering result in [18] for focusing mass-critical NLS.

Lemma 2.5 (Large scale approximation). Let φj be a linear profile given through Lemma 2.4.
Suppose also that M(φj) < M(Q) and λj∞ = ∞. Then for all sufficiently large n (possibly
depending on j) there exists a solution vjn of (1.2) such that vjn is a global and scattering solution
with vjn(0) = T jnP

j
nφ

j . Moreover, we have

lim sup
n→∞

‖〈∇〉
1
2 vjn‖L4

t,x(R)
.M(φj) 1. (2.27)
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3 Variational estimates

In this section we derive some variational estimates as preliminaries for the proofs given in Section
4 and Section 5. Particularly, we give the precise construction of the MEI-functional D, which will
help us to set up the inductive hypothesis given in Section 4.

Lemma 3.1. Let u ∈ H1(R2) \ {0} with M(u) < M(Q). Then there exists a unique λ(u) > 0
such that

K(Tλu)





> 0, if λ ∈ (0, λ(u)),
= 0, if λ = λ(u),
< 0, if λ ∈ (λ(u),∞).

(3.1)

Proof. We first obtain that

K(Tλu) = λ2‖∇u‖22 −
λ2

2
‖u‖44 −

2λ4

3
‖u‖66. (3.2)

By (1.13) we have

2‖∇u‖22 − ‖u‖44 ≥ 2
(
1−

M(u)

M(Q)

)
‖∇u‖22 > 0. (3.3)

Thus one easily sees that K(Tλu) is positive on (0, λ(u)) and negative on (λ(u),∞), where

λ(u) =
(3(2‖∇u‖22 − ‖u‖44)

4‖u‖66

) 1
2

(3.4)

is the unique zero of λ 7→ K(Tλu) on (0,∞). This completes the proof.

Lemma 3.2. Assume that K(u) ≥ 0. Then H(u) ≥ 0. If additionally K(u) > 0, then also
H(u) > 0.

Proof. We have

H(u) ≥ H(u)−
1

2
K(u) =

1

6
‖u‖66 ≥ 0. (3.5)

It is straightforward to obtain that the last inequality can be replaced by the strict one when u 6= 0,
which is the case when K(u) > 0.

Lemma 3.3. Let δ ∈ (0, 1) and let u ∈ A. Suppose also that

M(u) ≤ (1− δ)M(Q) (3.6)

with some δ ∈ (0, 1). Then

‖u‖66 <
3

2
‖∇u‖22, (3.7)

‖u‖44 ≤ 2(1− δ)‖∇u‖22, (3.8)

δ

4
‖∇u‖22 < H(u) ≤

1

2
‖∇u‖22. (3.9)

Proof. The first inequality follows immediately from the fact that K(u) > 0 for u ∈ A. For the
second one, we obtain that

‖u‖44

≤C−1
GN‖∇u‖

2
2‖u‖

2
2

≤ 2M(Q)
−1

‖∇u‖22(1− δ)M(Q)

= 2(1− δ)‖∇u‖22. (3.10)
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The first inequality in (3.9) follows from

H(u) > H(u)−
1

4
K(u)

=
1

8
(2‖∇u‖22 − ‖u‖44)

≥
1

4

(
1−

M(u)

M(Q)

)
‖∇u‖22

≥
δ

4
‖∇u‖22 (3.11)

and the second inequality in (3.9) follows immediately from the non-positivity of the cubic and
quintic nonlinearities.

Lemma 3.4. The mapping c 7→ mc is continuous and monotone decreasing on (0,M(Q)).

Proof. The proof follows the arguments of [6], where we also need to take the effect of the mass
constraint into account. We first show that the function f defined by

f(a, b) := max
t>0

{at2 − bt4}

is continuous on (0,∞)2. Define

g(a, b, t) := at2 − bt4.

Then for any a, b > 0, there exists a unique t∗ > 0 such that

∂tg(t∗, a, b) = 0, (3.12)

∂ttg(t∗, a, b) < 0. (3.13)

By the implicit function theorem we deduce the existence of a continuous function h in a neigh-
borhood of (a, b) such that ∂tg(h(a, b), a, b) = 0. Hence

f(a, b) = g(h(a, b), a, b) (3.14)

and therefore the mapping (a, b) 7→ f(a, b) is continuous. Next we show that for any 0 < c1 < c2 <
M(Q) and ε > 0 we have

mc2 ≤ mc1 + ε. (3.15)

Define the set V (c) by

V (c) := {u ∈ H1(R2) : M(u) = c,K(u) = 0}.

By the definition of mc1 there exists some u1 ∈ V (c1) such that

H(u1) ≤ mc1 +
ε

2
. (3.16)

Let η ∈ C∞
0 (R2; [0, 1]) be a cut-off function with η(x) = 1 for |x| ≤ 1 and η(x) = 0 for |x| ≥ 2. For

δ > 0, define
ũ1,δ(x) := η(δx) · u1(x).

Then ũ1,δ → u1 in H1(R2) as δ → 0. Therefore,

‖∇ũ1,δ‖
2
2 → ‖∇u1‖

2
2, (3.17)

‖ũ1,δ‖p → ‖u1‖p (3.18)

for all p ∈ [2, 6] as δ → 0. Using (3.3) we know that

1

2
‖∇v‖22 >

1

4
‖v‖44 (3.19)
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for all v ∈ H1(R2) with M(v) ∈ (0,M(Q)). Since c1 ∈ (0,M(Q)), we infer that M(ũ1,δ) ∈
(0,M(Q)) for sufficiently small δ. Combining with the continuity of the function f given previously
we conclude that

max
t>0

H(Ttũ1,δ) = max
t>0

{t2(
1

2
‖∇ũ1,δ‖

2
2 −

1

4
‖ũ1,δ‖

4
4)−

t4

6
‖ũ1,δ‖

6
6}

≤ max
t>0

{t2(
1

2
‖∇u1‖

2
2 −

1

4
‖u1‖

4
4)−

t4

6
‖u1‖

6
6}+

ε

4

= max
t>0

H(Ttu1) +
ε

4
(3.20)

for sufficiently small δ > 0. Now let v ∈ C∞
0 (R2) with supp(v) ⊂ R2\B(0, 2−1δ) and define

v0 :=
(c2 −M(ũ1,δ)

M(v)

) 1
2

v.

We have M(v0) = c2 −M(ũ1,δ). Let

wλ := ũ1,δ + Tλv0

with some to be determined λ ∈ (0, 1). By definition one easily sees that for all λ ∈ (0, 1) the
supports of ũ1,δ and Tλv0 are disjoint, thus

‖wλ‖p = ‖ũ1,δ‖p + ‖Tλv0‖p (3.21)

for all p ∈ [2, 6]. Particularly we infer that M(wλ) = c2. Moreover one easily verifies that

‖∇wλ‖2 → ‖∇ũ1,δ‖2, (3.22)

‖wλ‖p → ‖ũ1,δ‖p (3.23)

for all p ∈ (2, 6] as λ→ 0. Using the continuity of the function f once again we obtain that

max
t>0

H(Ttwλ) ≤ max
t>0

H(Ttũ1,δ) +
ε

4
(3.24)

for sufficiently small λ > 0. Finally, combing with (3.16) and (3.20) we conclude that

mc2 ≤ max
t>0

H(Ttwλ) ≤ max
t>0

H(Ttũ1,δ) +
ε

4

≤ max
t>0

H(Ttu1) +
ε

2
= H(u1) +

ε

2
≤ mc1 + ε. (3.25)

Choosing ε arbitrarily small then completes the proof of the monotonicity. The arguments for
proving the continuity of the mapping c 7→ mc are very similar to the previous ones, we therefore
omit the details of the straightforward but tedious modification and refer for instance to [6, Lem.
5.4] or [34, Lem. 3.3] for a complete proof.

The following lemma shows that the NLS-flow leaves solutions starting from A invariant.

Lemma 3.5. Let u be a solution of (1.2) such that u(0) ∈ A. Then u(t) ∈ A for all t in the
maximal lifespan Imax. Assume also M(u) = (1 − δ)M(Q). Then

K(u(t)) ≥ min
{
δH(u(0)),

((2
δ

) 1
2

− 1
)−1(

mM(u(0)) −H(u(0))
)}
. (3.26)

for all t ∈ Imax.

Proof. By the mass and energy conservation, to show the invariance of A under the NLS-flow we
only need to show that K(u(t)) > 0 for all t ∈ Imax. Suppose that there exists some t ∈ Imax such
that K(u(t)) ≤ 0. By continuity of u(t) there exists some s ∈ (0, t] such that K(u(s)) = 0. By

11



conservation of mass we also know that 0 <M(u(s)) <M(Q). Now using the definition of mc we
immediately obtain that

mM(u(s)) ≤ H(u(s)) < mM(u(0)) = mM(u(s)), (3.27)

a contradiction. We now show (3.26). Direct calculation yields

d2

dλ2
H(Tλu(t)) = −

1

λ2
K(Tλu(t)) +

2

λ2

(
K(Tλu(t))−

2

3
‖Tλu(t)‖

6
6

)
. (3.28)

If

K(u(t)) −
2

3
‖u(t)‖66 ≥ 0, (3.29)

then using (3.3) we deduce that

K(u(t)) = ‖∇u‖22 −
1

2
‖u‖44 −

2

3
‖u‖66

≥ δ‖∇u‖22 − K(u(t)), (3.30)

which combining with (3.9) implies

K(u(t)) ≥
δ

2
‖∇u(t)‖22 ≥ δH(u(0)), (3.31)

where for the last inequality we also used the conservation of energy. Suppose now that

K(u(t)) −
2

3
‖u(t)‖66 < 0. (3.32)

Then

2

3
‖u(t)‖66 > ‖∇u(t)‖22 −

1

2
‖u‖44 −

2

3
‖u‖66

≥ δ‖∇u(t)‖22 −
2

3
‖u(t)‖66, (3.33)

hence

‖u(t)‖66 >
3δ

4
‖∇u(t)‖22. (3.34)

Since K(u(t)) > 0, by Lemma 3.1 we know that there exists some λ∗ ∈ (1,∞) such that

K(Tλu(t)) ≥ 0 ∀λ ∈ [1, λ∗] (3.35)

and

0 = K(Tλ∗
u(t))

= λ2∗(‖∇u(t)‖
2
2 −

1

2
‖u(t)‖44)−

2λ4∗
3

‖u(t)‖66, (3.36)

which in turn gives

‖u(t)‖66 =
3λ−2

∗

2
(‖∇u(t)‖22 −

1

2
‖u(t)‖44) ≤

3λ−2
∗

2
‖∇u(t)‖22. (3.37)

(3.34) and (3.37) then result in

λ∗ <
(2
δ

) 1
2

. (3.38)
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On the other hand, direct calculation yields

d

ds

( 1

s2

(
K(Tsu(t))−

2

3
‖Tsu(t)‖

6
6

))
= −

8

3
s‖u(t)‖66 < 0 (3.39)

for s > 0. Integrating (3.39) over [1, λ] and using (3.32), we find that for λ ≥ 1

1

λ2

(
K(Tλu(t))−

2

3
‖Tλu(t)‖

6
6

)
≤ 0. (3.40)

(3.28), (3.35) and (3.40) imply that d2

dλ2H(Tλu(t)) ≤ 0 for all λ ∈ [1, λ∗]. Finally, combining with
(3.38), the fact that K(Tλ∗

u(t)) = 0 and Taylor expansion we infer that

((2
δ

) 1
2

− 1
)
K(u(t))

≥
(
λ∗ − 1

)( d

dλ
|λ=1H(Tλu(t))

)

≥ H(Tλ∗
u(t))−H(u(t))

≥ mM(u(0)) −H(u(0)). (3.41)

This together with (3.31) yields (3.26).

Lemma 3.6. Let

m̃c := inf
u∈H1(R2)

{I(u) : ‖u‖2 = c,K(u) ≤ 0}. (3.42)

Then mc = m̃c.

Proof. Let (un)n be a minimizing sequence for the variational problem of m̃δ, i.e.

lim
n→∞

I(un) = m̃c, (3.43)

M(un) = c ∀n ∈ N, (3.44)

K(un) ≤ 0 ∀n ∈ N. (3.45)

Using Lemma 3.1 we know that there exists some λn ∈ (0, 1] such that K(Tλn
un) is equal to zero.

Thus

mc ≤ H(Tλn
un) = I(Tλn

un) ≤ I(un) = m̃c + on(1). (3.46)

Sending n→ ∞ we infer that mc ≤ m̃c. On the other hand,

m̃c ≤ inf
u∈H1(R2)

{I(u) : M(u) = c,K(u) = 0}

= inf
u∈H1(R2)

{H(u) : M(u) = c,K(u) = 0} = mc. (3.47)

This completes the proof.

We now define

m0 := lim
c→0

mc ∈ (0,∞],

mQ := lim
c→M(Q)

mc ∈ [0,∞).

Also define the set Ω by its complement

Ωc := {(c, h) ∈ R
2 : c ≥ M(Q)} ∪ {(c, h) ∈ R

2 : c ≥ 0 ∧ h ≥ mQ}.

The MEI-functional D : R2 → R ∪ {∞} is defined by

D(c, h) =

{
h+ h+c

dist((c,h),Ωc) , if (c, h) ∈ Ω,

∞, otherwise.

For u ∈ H1(R2) we simply write D(u) := D(M(u),H(u)). A schematic description of the domain
Ω is given by Fig. 1 below.
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M(Q)O
· c

h

Ω

·

Figure 1: The green curve represents the mapping c 7→ mc and the shadow region is the intersection
of Ω and (0,∞)2, which corresponds to the set A due to Lemma 3.8 (ii).

Remark 3.7. By modifying the arguments in [6, Lem. 5.6] and [38, Lem. 3.3] one is able to show

m0 = ∞, mQ = 0. (3.48)

Nevertheless, the precise values of m0 and mQ have no impact on the scattering result; All we
need here is the monotonicity and continuity of the curve c 7→ mc. We will therefore postpone the
proof to A. △

We end this section by establishing some useful properties of the MEI-functional D.

Lemma 3.8. Suppose that v ∈ H1(R2) and satisfies K(v) ≥ 0. Then

(i) D(v) = 0 if and only if u = 0.

(ii) 0 < D(v) <∞ if and only if v ∈ A.

(iii) If u is a solution of (1.2) with u(t0) ∈ A, then D(u(t)) = D(u(t0)) for all t ∈ Imax.

(iv) Let u1, u2 ∈ A with M(u1) ≤ M(u2) and H(u1) ≤ H(u2). Then D(u1) ≤ D(u2). If
additionally either M(u1) <M(u2) or H(u1) < H(u2), then D(u1) < D(u2).

(v) Let D0 ∈ (0,∞). Then

‖∇u‖22 ∼D0
H(u), (3.49)

‖u‖2H1 ∼D0
H(u) +M(u) ∼D0

D(u) (3.50)

uniformly for all u ∈ A with D(u) ≤ D0.

(vi) Let D0 ∈ (0,∞). Then

mM(u) −H(u) &D0
1 (3.51)

uniformly for all u ∈ A with D(u) ≤ D0.

Proof. (i) It is trivial that v = 0 implies D(v) = 0. Suppose now D(v) = 0. Since K(v) ≥ 0, we
infer from Lemma 3.2 that H(v) ≥ 0. In this case, D(v) = 0 can only happen when v = 0.

(ii) It is trivial that v ∈ A implies D(v) < ∞. By Lemma 3.2 we also know that H(v) > 0
for v ∈ A, which implies D(v) > 0 by the definition of D. Now let 0 < D(v) < ∞. Then
M(v) ∈ (0,M(Q)). By definition ofD we also know thatH(v) < mM(v). Using the definition
of mM(v) we conclude that K(v) > 0 (under the precondition K(v) ≥ 0) and therefore v ∈ A.

(iii) This follows immediately from the conservation of mass and energy of the NLS flow, the
definition of D and Lemma 3.5.

(iv) This follows from the fact that c 7→ mc is monotone decreasing on (0,M(Q)) and the defin-
ition of D.
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(v) Since u ∈ A, we know that M(u) ∈ (0,M(Q)) and using Lemma 3.2 also H(u) ∈ (0,mM(u)).
Thus

dist
(
(M(u),H(u)),Ωc

)

≤dist
(
(M(u),H(u)), (M(Q),H(u))

)
= M(Q)−M(u). (3.52)

Since H(u) ≥ 0, we have

D(u) ≥
M(u)

M(Q)−M(u)
, (3.53)

which implies

1

D(u) + 1
≤

M(Q)−M(u)

M(Q)
= 1−

M(u)

M(Q)
. (3.54)

Since K(u) > 0, we have

D(u) ≥H(u) > H(u)−
1

4
K(u)

=
1

8
(2‖∇u‖22 − ‖u‖44)

≥
1

4

(
1−

M(u)

M(Q)

)
‖∇u‖22

≥
‖∇u‖22

4(D(u) + 1)
, (3.55)

therefore ‖∇u‖22 .D0
H(u). Combining with (3.9) and (iii) we have

‖∇u‖22 ∼D0
H(u), (3.56)

‖u‖2H1 ∼D0
H(u) +M(u). (3.57)

It remains to show H(u) +M(u) ∼D0
D(u). Using (3.53) and (3.55) we infer that

H(u) +M(u) ∼D0
‖u‖2H1 .D0

D(u). (3.58)

To show D(u) .D0
H(u)+M(u) we discuss the following different cases: If M(u) ≥ 1

2M(Q),
then using the fact that H(u) ≥ 0 we have

dist
(
(M(u),H(u)),Ωc

)
≥

M(u)

D0
≥

M(Q)

2D0
, (3.59)

which implies

D(u) ≤
2D0

M(Q)

(
M(u) +H(u)

)
+H(u). (3.60)

If M(u) ≤ 1
2M(Q) and H(u) ≥ 1

2m 1
2
M(Q), then analogously we obtain

D(u) ≤
2D0

m 1
2
M(Q)

(
M(u) +H(u)

)
+H(u). (3.61)

If M(u) ≤ 1
2M(Q) and H(u) ≤ 1

2m 1
2
M(Q), then using the monotonicity of c 7→ mc we have

dist
(
(M(u),H(u)),Ωc

)
≥ dist

((1
2
M(Q),

1

2
m 1

2
M(Q)

)
,Ωc

)
=: α0 > 0. (3.62)

Therefore

D(u) ≤
1

α0

(
M(u) +H(u)

)
+H(u), (3.63)

which completes the proof of (v).
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(vi) If this were not the case, then we could find a sequence (un)n ⊂ A such that

mM(un) −H(un) = on(1), (3.64)

which implies

dist
((

M(un),H(un)
)
,Ωc

)
≤ dist

((
M(un),H(un)

)
,
(
M(un),mM(un)

))

=mM(un) −H(un) = on(1). (3.65)

If M(un) & 1, then

D(un) &
1

on(1)
, (3.66)

contradicting D(un) ≤ D0. If M(un) = on(1), then by the monotonicity of c 7→ mc and
(3.64) we know that H(un) & 1 and similarly we may again derive the contradiction (3.66).

4 Existence of the minimal blow-up solution

We define

τ(D0) := sup
{
‖〈∇〉

1
2ψ‖L4

t,x(Imax) :

ψ is solution of (1.2), ψ(0) ∈ A,D(ψ(0)) ≤ D0

}
(4.1)

and

D∗ := sup{D0 > 0 : τ(D0) <∞}. (4.2)

By Lemma 2.1, Remark 2.2 and Lemma 3.8 (v) we know that τ(D0) <∞ for sufficiently small D0.
We therefore assume that D∗ < ∞ and aim to derive a contradiction, which will imply D∗ = ∞
and the desired proof is complete in view of Lemma 3.8 (ii). By the inductive hypothesis we may
find a sequence (ψn)n with (ψn(0))n ⊂ A which are solutions of (1.2) with maximal lifespan (In)n
such that

lim
n→∞

‖〈∇〉
1
2ψn‖L4

t,x(In)
= ∞, (4.3)

lim
n→∞

D(ψn(0)) = D∗. (4.4)

Up to a subsequence we may also assume that

(M(ψn(0)),H(ψn(0))) → (M0,H0) as n→ ∞. (4.5)

By continuity of D and finiteness of D∗ we know that

D∗ = D(M0,H0), (4.6)

M0 ∈ (0,M(Q)), (4.7)

H0 ∈ [0,mM0
). (4.8)

By Lemma 3.8 (v) we deduce that (ψn(0))n is a bounded sequence inH1(R2). Using Lemma 2.4 ap-
plied to (ψn(0))n we infer that there exist some number K∗ ∈ N∪{∞}, a sequence of nonzero linear
profiles (φj)1≤j≤K∗ ⊂ L2(R2), a sequence of symmetry parameters (λjn, t

j
n, x

j
n, ξ

j
n)n∈N,1≤j≤K∗ ⊂

(0,∞)×R×R
2×R

2 with supn∈N |ξjn| .j 1 and a sequence of remainders (wkn)n∈N,1≤k≤K∗ ⊂ H1(R2)
such that
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(i) The parameters (λjn, t
j
n, x

j
n, ξ

j
n)n,j satisfy

lim
n→∞

{∣∣∣ log λ
j
n

λln

∣∣∣+ |tjn − tln|

(λjn)2

+ λjn|ξ
j
n − ξln|+

|xjn − xln + 2tjn(ξ
j
n − ξln)|

λjn

}
= ∞ (4.9)

for all finite 1 ≤ j, l ≤ K∗ with j 6= l. Moreover,

lim
n→∞

λjn = λj∞ ∈ {1,∞}, (4.10)

λjn ≡ 1 if λj∞ = 1. (4.11)

(ii) There exists some θ ∈ (0, 1) such that for any finite 1 ≤ k ≤ K∗ we have the decomposition

ψn(0) =

k∑

j=1

T jnP
j
nφ

j + wkn, (4.12)

where

T jnu(x) := eix·ξ
j
ne−t

j
n∆(λjn)

−1u
(
(λjn)

−1(· − xjn)
)
(x) (4.13)

and

P jnφ
j =

{
φj , if λj∞ = 1,
P≤(λj

n)θ
φj , if λj∞ = ∞.

(4.14)

Moreover, if λj∞ = 1, then ξjn ≡ 0 and φj ∈ H1(R2).

(iii) The remainders (wkn)n,k satisfy

lim
k→K∗

lim
n→∞

‖〈∇〉
1
2 eit∆wkn‖L4

t,x(R)
= 0. (4.15)

(iv) The following orthogonal properties are satisfied: for s ∈ {0, 1} and finite 1 ≤ J ≤ K∗ we
have

‖|∇|sψn‖
2
2 =

J∑

j=1

‖|∇|sT jnP
j
nφ

j‖22 + ‖|∇|swJn‖
2
2 + on(1), (4.16)

H(ψn) =
J∑

j=1

H(T jnP
j
nφ

j) +H(wJn) + on(1), (4.17)

I(ψn) =

J∑

j=1

I(T jnP
j
nφ

j) + I(wJn) + on(1), (4.18)

K(ψn) =

J∑

j=1

K(T jnP
j
nφ

j) +K(wJn) + on(1). (4.19)

Lemma 4.1. There exists a global solution uc of (1.2) such that

(D(uc),M(uc),H(uc)) = (D∗,M0,H0) (4.20)

and

‖〈∇〉
1
2 uc‖L4

t,x(R)
= ∞. (4.21)
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Proof. We first show that for a given nonzero linear profile φj we have

H(T jnP
j
nφ

j) > 0, (4.22)

K(T jnP
j
nφ

j) > 0 (4.23)

for all sufficiently large n = n(j) ∈ N. Since φj 6= 0 we know that T jnP
j
nφ

j 6= 0 for sufficiently
large n. Suppose now that (4.23) does not hold. Up to a subsequence we may assume that
K(T jnP

j
nφ

j) ≤ 0 for all sufficiently large n. By the non-negativity of I, (4.18) and (3.51) we know
that there exists some sufficiently small δ > 0 depending on D∗ and some sufficiently large N1 such
that for all n > N1 we have

m̃M(T j
nP

j
nφj) ≤ I(T jnP

j
nφ

j) ≤ I(ψn(0)) + δ

≤ H(ψn(0)) + δ ≤ mM(ψn(0)) − 2δ, (4.24)

where m̃ is the quantity defined by Lemma 3.6. By continuity of c 7→ mc we also know that for
sufficiently large n we have

mM(ψn(0)) − 2δ ≤ mM0
− δ. (4.25)

Using (4.16) we deduce that for any ε > 0 there exists some large N2 such that for all n > N2 we
have

M(T jnP
j
nφ

j) ≤ M0 + ε. (4.26)

From the continuity and monotonicity of c 7→ mc and Lemma 3.6, we may choose some sufficiently
small ε to see that

m̃M(T j
nP

j
nφj) = mM(T j

nP
j
nφj) ≥ mM0+ε ≥ mM0

−
δ

2
. (4.27)

Now (4.24), (4.25) and (4.27) yield a contradiction. Thus (4.23) holds, which combining with
Lemma 3.2 also yields (4.22). Similarly, for each j ∈ N we have

H(wjn) ≥ 0, (4.28)

K(wjn) ≥ 0 (4.29)

for sufficiently large n. Now using (4.5) we have for any k ∈ N

M0 =
k∑

j=1

M(T jnP
j
nφ

j) +M(wkn) + on(1), (4.30)

H0 =

k∑

j=1

H(T jnP
j
nφ

j) +H(wkn) + on(1). (4.31)

From (4.30) and (4.31) we infer that two different scenarios will potentially take place: either

sup
j∈N

lim
n→∞

M(T jnP
j
nφ

j) = M0 and

sup
j∈N

lim
n→∞

H(T jnP
j
nφ

j) = H0, (4.32)

or there exists some δ > 0 such that

sup
j∈N

lim
n→∞

M(T jnP
j
nφ

j) ≤ M0 − δ or

sup
j∈N

lim
n→∞

H(T jnP
j
nφ

j) ≤ H0 − δ. (4.33)

We show that starting from (4.32) one is able to derive a minimal blow-up solution uc which
satisfies (4.20) and (4.21), while from (4.33) we get a contradiction. We begin firstly with (4.32).
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In this case, since the summands in (4.30) and (4.31) are non-negative for fixed j and sufficiently
large n, it is necessary that there exists exactly one non-trivial linear profile φj = φ1 and

ψn(0) = T 1
nP

1
nφ

1 + w1
n. (4.34)

Particularly, from (4.30) and (4.31) it follows

lim
n→∞

M(T 1
nP

1
nφ

1) = M0, (4.35)

lim
n→∞

H(T 1
nP

1
nφ

1) = H0, (4.36)

lim
n→∞

‖w1
n‖2 = 0, (4.37)

lim
n→∞

H(w1
n) = 0. (4.38)

Combining with Lemma 3.8 (v), (4.38) also implies

lim
n→∞

‖∇w1
n‖2 = 0, (4.39)

thus together with (4.37) we deduce that

lim
n→∞

‖w1
n‖H1 = 0. (4.40)

Using (4.16) we see that

lim sup
n→∞

‖T 1
nP

1
nφ

1‖H1 <∞. (4.41)

From (4.40) we infer that

lim sup
n→∞

‖〈∇〉
1
2 (ψn(0)− T 1

nP
1
nφ

1)‖2 . lim
n→∞

‖w1
n‖H1 = 0. (4.42)

Since M0 <M(Q), we obtain from (4.30) that

M(T 1
nP

1
nφ

1) ≤
M0 +M(Q)

2
<M(Q) (4.43)

for sufficiently large n, hence Lemma 2.5 is applicable. If λ1∞ = ∞, then using Lemma 2.5 we know
that for sufficiently large n, there exists a global and scattering solution vn of (1.2) with

vn(0) = T 1
nP

1
nφ

1. (4.44)

Finally, using Strichartz and (4.40) we see that

lim
n→∞

‖〈∇〉
1
2 eit∆(ψn(0)− T 1

nP
1
nφ

1)‖L4
t,x(R)

. lim
n→∞

‖w1
n‖H1 = 0. (4.45)

Therefore, the conditions (2.8) to (2.11) of Lemma 2.3 are satisfied and by setting the error term
e = 0 we infer that

lim sup
n→∞

‖〈∇〉
1
2ψn‖L4

t,x(R)
<∞, (4.46)

which contradicts (4.3). Hence λ1∞ = 1 and T 1
nP

1
nφ

1 = T 1
nφ

1. Suppose that limn→∞ t1n = t1∞. We
then define uc as the solution of the integral equation

uc(t) = eit∆φ1 + i

ˆ t

−t1
∞

(|uc|
2uc + |uc|

4uc)(s) ds, (4.47)

whose local existence near −t1∞ is guaranteed by Lemma 2.1. (4.20) follows already from (4.30),
(4.31) and the continuity of D. If (4.21) does not hold, then by Lemma 2.1 we know that uc must
be a global solution. We can therefore define

ṽn := uc(t− t1n, x− x1n). (4.48)
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By time and space translation invariance we infer that ṽn is a solution of (1.2) and

‖〈∇〉
1
2 ṽn‖L4

t,x(R)
= ‖〈∇〉

1
2 uc‖L4

t,x(R)
. (4.49)

By the construction of uc we also know that

lim
n→∞

‖v̂n(0)− T 1
nφ

1‖H1 = 0. (4.50)

Now as argued previously, we arrive at the contradiction (4.46) again. Finally, we can mimic the
proof of [2, Prop. 6.11], words by words, to show that uc is global. We omit the details here. The
proof for the first scenario is done.

We now consider the second scenario (4.33). In this case, for each j ∈ N we must have

M(T jnP
j
nφ

j) ≤ M0 −
δ

2
or

H(T jnP
j
nφ

j) ≤ H0 −
δ

2
(4.51)

for sufficiently large n. Define

D1 := D(M0 −
δ

2
,H0 + ε1(δ)),

D2 := D(M0 + ε2(δ),H0 −
δ

2
)

(4.52)

for some ε1(δ), ε2(δ) > 0 such that D1,D2 < D∗. This is possible due to Lemma 3.8 (iv) and the
continuity of D. Thus by the inductive hypothesis (4.2) we infer that there exist nonlinear profiles
vjn which are global solutions of (1.2) with vjn(0) = T jnP

j
nφ

j and

‖〈∇〉
1
2 vjn‖L4

t,x(R)
≤ max{τ(D1), τ(D2)} (4.53)

for each j ∈ N and all sufficiently n, where τ is the quantity defined by (4.1). Having defined the
nonlinear profiles vjn, we now define the proxy ΨKn by

ΨKn :=
K∑

j=1

vjn + eit∆wKn , (4.54)

with some sufficiently largeK and n = n(K) to be chosen later. Since the error analysis is available
for all models regardless of the signs of the nonlinearities, we are able to invoke the error analysis
given in the proof of [15, Prop. 5.2] to see that (2.8) to (2.12) are satisfied for some sufficiently
large K and n = n(K), where we also replace [15, Lem. 2.3] by Lemma 3.8 (v). Using Lemma 2.3
we conclude the contradiction (4.46) again. This completes the desired proof.

5 Extinction of the minimal blow-up solution

We close in this section the proof of Theorem 1.2 by showing the contradiction that the minimal
blow-up solution uc given by Lemma 4.1 must be zero. To proceed, we still need the following
lemma which can be proved as in [20, 27] verbatim, so we omit the details of the proof here.

Lemma 5.1 ([20, 27]). Let uc be the minimal blow-up solution given by Lemma 4.1. Then

(i) For each ε > 0, there exists R = R(ε) > 0 so that

ˆ

|x+x(t)|≥R

|∇uc(t)|
2 + |uc(t)|

2 + |uc|
4 + |uc|

6 dx ≤ ε ∀ t ∈ [0,∞). (5.1)

(ii) The center function x(t) obeys the decay condition x(t) = o(t) as t→ ∞.
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Proof of Theorem 1.2 We will show the contradiction that the minimal blow-up solution uc
given by Lemma 4.1 is equal to zero, which will finally imply Theorem 1.2. Let χ be a smooth
radial cut-off function satisfying

χ(x) =

{
|x|2, if |x| ≤ 1,
0, if |x| ≥ 2.

(5.2)

Define also the local virial action

zR(t) :=

ˆ

R2χ
( x
R

)
|uc(t, x)|

2 dx. (5.3)

Direct calculation yields

∂tzR(t) = 2 Im

ˆ

R∇χ
( x
R

)
· ∇uc(t)ūc(t) dx, (5.4)

∂ttzR(t) = 4

ˆ

∂2jkχ
( x
R

)
∂juc∂kūc −

1

R2

ˆ

∆2χ
( x
R

)
|uc|

2

−

ˆ

∆χ
( x
R

)
|uc|

4 dx−
4

3

ˆ

∆χ
( x
R

)
|uc|

6 dx. (5.5)

Here we used the Einstein summation for the repeated indices. We then obtain that

∂ttzR(t) = 8K(uc) +AR(uc(t)), (5.6)

where

AR(uc(t)) = 4

ˆ (
∂2jχ

( x
R

)
− 2

)
|∂juc|

2 + 4
∑

j 6=k

ˆ

R≤|x|≤2R

∂2jkχ
( x
R

)
∂juc∂kūc

−
1

R2

ˆ

∆2χ
( x
R

)
|uc|

2 −

ˆ (
∆χ

( x
R

)
− 4

)
|uc|

4 dx

−
4

3

ˆ (
∆χ

( x
R

)
− 4

)
|uc|

6 dx. (5.7)

We can roughly estimate AR(uc(t)) by

|AR(uc(t))| ≤ C1

ˆ

|x|≥R

|∇uc(t)|
2 +

1

R2
|uc(t)|

2 + |uc|
4 + |uc|

6 (5.8)

for some C1 > 0. Since M(uc) = M0 < M(Q), we may assume that M(uc) = (1 − δ)M(Q) for
some δ ∈ (0, 1). Using (3.26) we obtain that

K(uc(t)) ≥ min
{
δH(uc(0)),

((2
δ

) 1
2

− 1
)−1(

mM(uc(0)) −H(uc(0))
)}

=: 4−1η1 (5.9)

for all t ∈ R. Using Lemma 5.1 (i) we know that there exists some R0 ≥ 1 such that

ˆ

|x+x(t)|≥R0

|∇uc|
2 + |uc|

2 + |uc|
4 + |uc|

6 dx ≤
η

C1
. (5.10)

Thus for any R ≥ R0+supt∈[t0,t1] |x(t)| with some to be determined t0, t1 ∈ [0,∞), we obtain that

∂ttzR(t) ≥ η1 (5.11)

for all t ∈ [t0, t1]. By Lemma 5.1 (ii), for some to be determined small η2 we can choose sufficiently
large t0 such that |x(t)| ≤ η2t for all t ≥ t0. Now set R = R0 + η2t1. Integrating (5.11) over [t0, t1]
yields

∂tzR(t1)− ∂tzR(t0) ≥ η1(t1 − t0). (5.12)
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Using (5.4), Cauchy-Schwarz and Lemma 3.8 (v) we have

|∂tzR(t)| ≤ C2D
∗R = C2D

∗(R0 + η2t1) (5.13)

for some C2 = C2(D
∗) > 0. (5.12) and (5.13) give us

2C2D
∗(R0 + η2t1) ≥ η1(t1 − t0). (5.14)

Setting η2 = (4C2D
∗)−1 and then sending t1 to infinity we obtain a contradiction unless η1 = 0,

which implies H0 = H(uc) = 0. From Lemma 3.8 (v) we conclude that ∇uc = 0, which implies
uc = 0. This completes the proof. �

6 A solely mass-determining scattering threshold for the

problem (1.7)

In this section we continue our discussion on the NLS (1.7). Our aim is to impose a solely mass-
determining scattering threshold for (1.7) which is similar to the one given in Theorem 1.2. Our
starting point is the following result given in [35, 38]:

Theorem 6.1 ([35, 38]). Let d ≥ 3. Then

(i) Existence of ground state: For any c ∈ (0,∞) the variational problem (1.5) corresponding

to (1.7) has a minimizer Sc with H(Sc) = mc ∈ (0, d−1S
d
2 ). Moreover, Sc is a solution of

(1.4) with some ω > 0. In addition, Sc can be chosen to be positive and radially symmetric.

(ii) Blow-up criterion: Assume that u0 ∈ H1(Rd) satisfies the conditions H(u0) < mM(u0) and

K(u0) < 0. Assume also that |x|u0 ∈ L2(Rd). Then the solution u of (1.7) with u(0) = u0
blows-up in finite time.

The scattering result can now be formulated as follows:

Theorem 6.2. Define the set

B := {u ∈ H1(Rd) : H(u) < mM(u),K(u) > 0} (6.1)

and assume that u0 ∈ B. Additionally we assume that u0 is radially symmetric in the case d = 3.
Then the solution u of (1.7) with u(0) = u0 is global and scatters in time.

The proof is a straightforward modification and combination of the variational arguments given
in Section 3 and the nonlinear estimates in [2], we therefore omit the details here.
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A Precise values of m0 and mQ

Proposition A.1. We have m0 = ∞ and mQ = 0.

Proof. From Theorem 1.1 we know that for any c ∈ (0,M(Q)), mc has a minimizer Sc. Therefore

H(Sc) = mc, K(Sc) = 0, M(Sc) = c. (A.1)

Using K(Sc) = 0 and Gagliardo-Nirenberg we infer that

‖∇Sc‖
2
2 =

1

2
‖Sc‖

4
4 +

2

3
‖Sc‖

6
6 ≤ cM(Q)−1‖∇Sc‖

2
2 +

2c Ĉ−1
GN

3
‖∇Sc‖

4
2, (A.2)
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which implies

‖∇Sc‖
2
2 ≥

3ĈGN

2

(1
c
−

1

M(Q)

)
. (A.3)

Therefore ‖∇Sc‖
2
2 → ∞ as c→ 0. Now we obtain

H(Sc) = H(Sc)−
1

4
K(Sc)

=
1

4
(‖∇Sc‖

2
2 −

1

2
‖Sc‖

4
4)

≥
1

4
(1− cM(Q)−1)‖∇Sc‖

2
2 → ∞ (A.4)

as c→ 0, which implies m0 = ∞. Next we show mQ = 0. Let (un)n be a minimizing sequence for
(1.12). By rescaling we may assume that M(un) = δ2M(Q) for δ ∈ (1/2, 1) which will be sended
to one later, and ‖un‖4 ≡ 1. Then combining with (1.13) we obtain that ‖∇un‖

2
2 = (2δ2)−1+on(1).

We then conclude that

K(Tλun) =
λ2

2

( 1

δ2
− 1 + on(1)

)
−

2λ4

3
‖un‖

6
6. (A.5)

By setting

λn,δ =
( 3

4‖un‖66

( 1

δ2
− 1 + on(1)

)) 1
2

(A.6)

we see that K(Tλn,δ
un) = 0. By Hölder we obtain that

‖un‖
6
6 ≥ M(un)

−1‖un‖
8
4 = δ−2M(Q)−1. (A.7)

We now choose N = N(δ) ∈ N such that |on(1)| ≤ δ−2 − 1 for all n > N . Summing up and using
the definition of mc we finally conclude that

mδ2M(Q) ≤ sup
n>N

H(Tλn,δ
un) = sup

n>N

(
H(Tλn,δ

un)−
1

2
K(Tλn,δ

un)
)

= sup
n>N

1

6
‖Tλn,δ

un‖
6
6 = sup

n>N

λ4n,δ
6

‖un‖
6
6

≤
9

24
M(Q)δ−2(1− δ2)2 → 0 (A.8)

as δ → 1. This proves mQ = 0.
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