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SHARP STRICHARTZ INEQUALITIES FOR FRACTIONAL AND
HIGHER ORDER SCHRODINGER EQUATIONS

GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA, AND RENE QUILODRAN

ABSTRACT. We investigate a class of sharp Fourier extension inequalities on the planar
curves s = |y|’, p > 1. We identify the mechanism responsible for the possible loss
of compactness of nonnegative extremizing sequences, and prove that extremizers exist
if 1 < p < po, for some pp > 4. In particular, this resolves the dichotomy of Jiang,
Pausader & Shao concerning the existence of extremizers for the Strichartz inequality
for the fourth order Schrodinger equation in one spatial dimension. One of our tools is
a geometric comparison principle for n-fold convolutions of certain singular measures in
R%, developed in the companion paper . We further show that any extremizer exhibits
fast L2-decay in physical space, and so its Fourier transform can be extended to an entire
function on the whole complex plane. Finally, we investigate the extent to which our
methods apply to the case of the planar curves s = y|y|"™, p > 1.
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Gaussians are known to extremize certain Strichartz estimates in low dimensions. Con-
sider, for instance, the Strichartz inequality for the homogenous Schrédinger equation in d
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spatial dimensions,

< S(A)|f] 2z, (1.1)

e—itA
™A1 e ) <

with optimal constant given by

—itA
et
S(d) := sup ’

0+ felL? £l 22 (rety

(1.2)

That S(d) < o is of course due to the original work of Strichartz [42], which in turn
had precursors in [37,[44]. If d € {1,2}, then Gaussians extremize (L.1), and therefore
S(1) = 12712 and S(2) = 27Y/2. This was originally established by Foschi [16] and
Hundertmark & Zharnitski [23], and alternative proofs were subsequently given by Bennett
et al. [2,3] and Gongalves [21]. All of these approaches ultimately rely on the fact that
the Strichartz exponent 2 + % is an even integer if d € {1, 2}, which in turn allows to recast
inequality in convolution form. This is a powerful technique that has proved very
successful in tackling a number of problems in sharp Fourier restriction theory, see the
recent survey [18] and the references therein.

In recent work of the second and third authors [31], we explored the convolution struc-
ture of a family of Strichartz inequalities for higher order Schrodinger equations in two
spatial dimensions in order to answer a question concerning the existence of extremizers
that had appeared in the previous literature. Our purpose with the present work is three-
fold. Firstly, we resolve the dichotomy from [24] concerning the existence of extremizers
for the Strichartz inequality for the fourth order Schrédinger equation in one spatial di-
mension. This is related to the Fourier extension problem on the planar curve s = y?.
Secondly, we study similar questions in the more general setting of the Fourier extension
problem on the curve s = |y|?, for arbitrary p > 1. We also consider odd curves s = y|y[P~!,
p > 1, the case p = 3 relating to the Airy—Strichartz inequality |15[20,38]. Lastly, we study
super-exponential decay and analyticity of the corresponding extremizers and their Fourier
transform via a bootstrapping procedure.

In [24], Jiang, Pausader & Shao considered the fourth order Schrédinger equation with
L? initial datum in one spatial dimension,
i0u — pou + ddu =0, (z,t) e R xR,
where v : R x R — C, and p > 0. By scaling, one may restrict attention to p € {0,1}. The
solution of the Cauchy problem (1.3]) can be written in terms of the propagator
. 1 e ed oA
by = eit@-n?) ppy L J i€ it(EMH1E2) T
. t) = M (@) = o | e fe)a,

where the spatial Fourier transform is defined a F(o) = §g € f(z)dz. The solution
disperses as |t| — o0, and consequently the following Strichartz inequality due to Kenig,

(1.3)

1The Fourier transform will occasionally be denoted by F(f) = f .
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Ponce & Vega [26, Theorem 2.1] holdsﬂ

L ed_ 02
| D™= f s ey S f 2 (1.4)

The main result of [24] is a linear profile decomposition for equation , which uses a
refinement of the Strichartz inequality in the scale of Besov spaces, together with
improved localized Fourier restriction estimates. As a consequence, the authors of [24]
establish a dichotomy result for the existence of extremizers for when p = 0, which
can be summarized as follows: Consider the sharp inequality in multiplier form

1,
IDg €Zta“”fHLgyt(R1+1) < M| fllz2w), (1.5)

with optimal constant given by

l . 4
M= sup | Dg enaIfHLg’t(RHl)
0+ feL? (RAVES:S:

Then [24, Theorem 1.8] states that either an extremizer for (1.5)) exists, or there exist a
sequence {a,} < R satisfying |a,| — o0, as n — 00, and a function f € L?, such that

(1.6)

1
ML | Dg % (e )] 1o mreny
= 11m :

n—® 112 (w)

In the latter case, one necessarily has M = S(1), where S(1) denotes the optimal constant
defined in ([1.2]). Our first main result resolves this dichotomy.

Theorem 1.1. There exists an extremizer for (1.5)).

Theorem will follow from a more general result which we now introduce. As noted in
126, §2], the operator Dé/ 3eitds ig nothing but a constant multiple of the Fourier transform

at the point (—z, —t) € R? of the singular measure
doa(y,s) = (s — y*)lyl3 dyds (L.7)

defined on the curve s = y*. As in [31], §6.4], one is naturally led to consider generic power
curves s = |y[P. The corresponding inequality is

IMy ()l ey < Myl 2a, (18)

where the multiplier operator M, is defined as

p—2

My(f)(z,t) = Dy® 1%l f ().

2Given p € {0,1} and o € R, we follow the notation from [24] and denote by Dj; the differentiation
operator

Dif(e) = 5 fR €S+ 667) 5 1(6) dé.
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Inequality ((1.8)) can be equivalently restated as a Fourier extension inequality,

1€ ()] o2y < Epl fl2m)s (1.9)
or in convolution form as
|fop % fop = fopli2@e) < Collfl 2 (1.10)
Here, the singular measure o, is defined in accordance with ((1.7)) by
—2
dO'p(y,S) = 6(8_ ’y‘p)‘yr?Tdde, (111)
and the Fourier extension operator &,(f) = F(fop)(—-) is given by
&N t) = [ ety i) dy, (112)
R

~

so that 6p1;225p( ) = 2nM,(f). If f is an extremizer for (L.9), then f is likewise an
extremizer for , and F~1(f) is an extremizer for (1.8). Thus these three existence
problems are essentially equivalent. The convolution form also shows that the search
for extremizers can be restricted to the class of nonnegative functions. An application of
Plancherel’s Theorem further reveals that the corresponding optimal constants satisfy

_p
ES = (27)°C) = (2m)°6' 2 M.
Our next result extends the dichotomy proved in |24, Theorem 1.8] to the case of arbi-

trary exponents p > 1. It states that one of two possible scenarios occurs, compactness or
concentration at a point. We make the latter notion precise.

Definition 1.2. A sequence of functions {f,} = L?(R) concentrates at a point yo € R if,
for every €, p > 0, there exists N € N such that, for every n > N,

f )P dy < 2l fulZagm)-
ly—yo|=p

We choose to phrase our second main result in terms of the convolution inequality (|1.10))
because, as we shall see, condition (|1.13]) has a very simple geometric meaning in terms of
the boundary value of the relevant 3-fold convolution measure.

Theorem 1.3. Letp > 1. If
27

Vap(p— 1)’
then any extremizing sequence of nonnegative functions in L?(R) for (1.10) is precompact,
after normalization and scaling. In this case, extremizers for ist. If instead
equality holds in then, given any yo € R, there exists an extremizing sequence for
(1.10)) which concentrates at yg.

6
Cg > (1.13)

A few remarks may help to further orient the reader. Firstly, if p = 1, then the curve
s = |y| has no curvature, and no non-trivial Fourier extension estimate can hold. Secondly,
if equality holds in , then Theorem does mot guarantee the non-existence of
extremizers. Indeed, C§ = 7/4/3, and Gaussians are known to extremize when
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p = 2. Various results of a similar flavour to that of Theorem [I.3|have appeared in the recent
literature. They are typically derived from a sophisticated application of concentration-
compactness techniques [9,39], a full profile decomposition [2412538], or the missing mass
method as in [19,20]. We introduce a new variant which follows the spirit of the celebrated
works of Lieb [427] and Lions [28}29]. It seems more elementary, and may be easier to adapt
to other manifolds. The proof of Theorem involves a variant of Lions’ concentration-
compactness lemma [2§], a variant of the corollary of the Brézis—Lieb lemma from [13],
bilinear extension estimates, and a refinement of inequality over a suitable cap space.

In a range of exponents that includes the case p = 4, we are able to resolve the dichotomy
posed by Theorem

Theorem 1.4. There exists po > 4 such that, for every p € (1,po)\{2}, the strict inequality
(1.13) holds. In particular, if p € (1,po), then there exists an extremizer for (1.10]).

Our method yields pg ~ 4.803 with 3 decimal places, and effectively computes arbitrarily
good lower bounds for the ratio of L?-norms in via expansions of suitable trial
functions in the orthogonal basis of Legendre polynomials. We remark that the value
po ~ 4.803 is suboptimal, in the sense that a natural refinement of our argument allows to
increase this value to ~ 5.485, see below.

Once the existence of extremizers has been established, their properties are typically de-
duced from the study of the associated Euler-Lagrange equation. Following this paradigm,
we show that any extremizer of decays super-exponentially fast in L2, which reflects
the analiticity of its Fourier transform. This is the content of our next result.

Theorem 1.5. Let p > 1. If f is an extremizer for (1.9), then there exists po > 0, such
that

x — el f(z) e L2(R).
In particular, its Fourier transform f can be extended to an entire function on C.

Note that the exponent pg necessarily depends on the extremizer itself, see the discussion in
[10, p. 964]. The proof relies on a bootstrapping argument that found similar applications
in [10,/12,22.|40].

To some extent, our methods are able to handle the case of the planar odd curves
s = y|y|P~!, p > 1. Define the singular measure

;2
dup(y, s) = 8(s —ylyl" ) [yl"s dyds. (1.14)
The associated Fourier extension operator S,(f) = F(fup)(—-), defined in (6.2)) below, sat-
isfies the estimate |S,(f)|zs < | f]z2. In sharp convolution form, this can be rewritten as

| frap * fup = frplreme) < Q§||f”?i2(R), (1.15)

where Q, denotes the optimal constant. Odd curves are of independent interest, in par-
ticular because a new phenomenon emerges: caps centered around points with parallel
tangents interact strongly, regardless of separation between the points. This mechanism
was discovered in [9], and further explored in [5/17,/19,20,139]. Some of these works in-
clude a symmetrization step which relies on the convolution structure of the underlying
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inequality. In the present case, we also show that the search for extremizers can be further
restricted to the class of even functions, but interestingly our symmetrization argument
does not depend on the convolution structure. This may be of independent interest since it
applies to other Fourier extension inequalities where some additional symmetry is present,
as we indicate in below.

The following versions of Theorems [1.3] and [T.4] hold for odd curves.

Theorem 1.6. Letp > 1. If
o7
Q> —— (1.16)
P V3p(p—1)
then any extremizing sequence of nonnegative, even functions in L*(R) for (1.15)) is precom-
pact, after normalization and scaling. In this case, extremizers for (1.15|) exist. If instead
equality holds in (L.16)) then, given any yo € R, there exists an extremizing sequence for

(1.15]) which concentrates at the pair {—yo,yo}-

The case p = 3 of Theorem coincides with a special case of |20, Theorem 1|, which was
obtained by different methods.

Theorem 1.7. Ifp e (1,2), then the strict inequality (1.16)) holds and, in particular, there
exists an extremizer for ((1.15)).

We believe that extremizers do not exist if p > 2, see Conjecture below.

Overview. The paper is organized as follows. §2]is devoted to the technical preliminar-
ies for the dichotomy statement concerning the existence of extremizers: bilinear estimates
and cap bounds. We then prove Theorem in §3] Existence of extremizers is the subject
of 4] where we establish Theorem Theorem addresses the regularity of extremizers
and is established in Odd curves are treated in where Theorems and are
proved. In the Appendix, we establish useful variants of Lions’ concentration-compactness
lemma (Proposition and of a corollary of the Brézis-Lieb lemma (Proposition .

Notation. If z,y are real numbers, we write z = O(y) or = < y if there exists a finite
absolute constant C' such that |z| < Cly|. If we want to make explicit the dependence of
the constant C' on some parameter «, we write x = O, (y) or x <o y. We write x 2 y if
y Sz, and ¢ ~ y if £ < y and = = y. Finally, the indicator function of a set £ < R? will
be denoted by 1, and the complement of E will at times be denoted by EC.

2. BILINEAR ESTIMATES AND CAP REFINEMENTS

In this section, we prove the bilinear extension estimates and cap refinements which
will be needed in the next section. Bilinear extension estimates are usually deep [43,45],
but in the one-dimensional case one may rely on the classical Hausdorff-Young inequality.
Throughout this section, we shall consider the dyadic regions

I :=[2F, 28 and Ip .= (=281 —2F) U [2F, 28, (ke Z).
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2.1. Bilinear estimates. Recall the definitions (1.11)) and (1.12)) of the measure o, and
the Fourier extension operator &, respectively. Our first result quantifies the principle
that distant caps interact weakly.

Proposition 2.1. Let p > 1 and k., k' € Z. Then

p—
6

/| p=L
1€5(1)Ep(9) @) <p 2715 | fll oy 9l 2y, (2.1)

for every f,g € L*(R) satisfying supp f < I} and suppg < I}

p—2

Proof. Setting ¢ = |- [P and w = |-| 3 , we have that
(Ep(F)Ep(g)) (x,t) = J e )W) £ (y)g(y Y (y) 2w (y')? dy dy .
R2

Change variables (y,y') — (u,v) = (y + ¢/, ¥(y) + ¥(y')). Except for null sets, this is a
2-to-1 map from R? onto the region {(u,v): v = 2¢(u/2)}. Its Jacobian is given by

- /_6(%”)_ o 1 7#(3/) Y Ny
) = gl = e (1 G0) < v - v

=py |y P2 — ylylP ),

(2.2)

and satisfies |J 7 (y,y/)| = plly[P~' — |y/[P7Y|, with equality if and only if yy’ > 0. Thus

ru_i 1 1
(Ep()Ep(9)) (z,8) = 2Je”“e””f )9y ) w(y)2w(y’)?2 J (u,v) dudv, (2.3)
where the integral is taken over the region {(u,v): v = 2¢(u/2)}. Note that this implies

(fop * gop)(u,v) = 2f (1) g(y Yw(y) 2w(y') 2 J (u,v), (2.4)

for every (u,v) satisfying v > 2¢(u/2), where (y,y’) is related to (u,v) via the change of
variables described above.

By symmetry, we can and will restrict attention to |y'| < |y|. Taking the L3-norm of
(2.3]), invoking the Hausdorff-Young inequality, and then changing variables back to (y,v’),

w(y')?J (u,v)

N

1€ (F)Ep(9) | L3Ry S 1f (W)g(y ) w(y)
= | f(w)g(y")w(y)

l2fz ey

N|=

1 1
w(y/) 2 IJ(y, y/)|3 ”L3/2/(R1+1)'
Y.y

If 28 < |y < 2FF1 2K < || < 2K+ and k > K/ + 2, then

p=2 =2
|yy/| I 2(k+k;) I

pEllyle=t — Jyfp=tz T 28 (1 - 2= (K- D(p-1)

< oW -RE-Y (2.5)
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It follows that

EAGEAOIES fR 1F ()9 2w(y) Tw(y)T ]I (y,y)|? dy dy’ (2.6)
3 Iyy’l%
<f lf(w)g)|2— — dy dy’
R? pz||y|P=t — |y [Ptz

, ' roo3 3
S 20 OEE 28T ol
k—k'| 2L
=27 HfHL2HgHL2
If k e {K',k' 4+ 1}, then we can simply use the estimate [E,(f)Ep(9)|s < | fllr2llgllz. O

Corollary 2.2. Let p > 1 and k,k' € Z be such that k' < k. Then

/|\p—1
1E(F)Ep(@) o) <p 2715 | £l 2wy 92y, (2.7)
for every f,g € L*(R) satisfying supp f < {|y| = 2¥} and suppg < {|y’| < 2¥'}.
Proof. Write f =3, fj and g = 3,5 s gy, where f; := flys and gy = g]]_];/. Then:

&N En < Y, 1&EEGL S Y, 27775 f gy

=k, j' <k’ =k, <k’
1 1
i p—=1\2 2
(3 =)y Ifjlizl\gj/i2>
j=k, ' <k’ J=k, g <k’
; /
(225 ) sl 248 gl
>k

where we used the triangle inequality, Proposition the Cauchy-Schwarz inequality, L2-
orthogonality, and the fact that a geometric series is comparable to its largest term. ]

When studying concentration at points different from the origin, it will be useful to
consider dyadic decompositions of the real line with arbitrary centers. By reflexion and
scaling, it suffices to consider decompositions centered at 1. Define the dyadic regions

T ={2"<y—1<2" and 7} == (2" < |y — 1| < 2"}, (ke Z)
so that Zj, = 1 + I, and Z; = 1 + I;. The following analogue of Proposition holds.
Proposition 2.3. Letp > 1 and k, k' € Z. Let = mm{ } Then
& (NEp@ zacez) <p 271 Fl eyl 2y (2.8)

for every f,g € L*(R) satisfying supp f < I} and suppg < Z,.
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Before embarking on the proof, let us take a closer look at the factor |yy’ |% |J(y,y )\%
that appears after applying the Hausdorff-Young inequality in ([2.6)). We have already seen
that

T w0 = plylyP =2 = yly' P2 (2.9)
In (2.5) we observed that, if y,y’ are separated (say, |y'| < 3|y|), then
|5 yy |5 | ey e
TS =yl (2.10)

ylyp2 —ylyp2? vl

In order to obtain a useful bound in the case when both 3,7’ are close to 1, invoke the
Mean Value Theorem and write

[yt =1y P = (o= D)2yl — Y1),
for some s € [|y/], |y|]. Then, for 0 <y’ <y, we have that

y|y|p—2 _ y/|y/|p—2’ _ |yp—1 _ ylp—1| > |y - y/’yp727 1fp € (172]7
Ty =yl ifpe2,0).

N

It follows that the following estimate holds, for every % <y, y <

pP—2
lyy'|

<ly—y/|7z. (2.11)
‘y\ylp‘2 —yly 2’

Proof of Proposition[2.3 Without loss of generality, assume |k — k| > 2. We start by
considering the situation when 0 is an endpoint of Z;,, i.e. k' € {—1,0}. Let &' = —
so that Zp, = (0, %] v [%,2), split g = g¢ + gr, with g7 := g1y 17 and g, := gl;3 5, and
72 27
dyadically decompose
ge =Y, 95, With gj := gljy-(41) 5-57.
=1

If £ < —3, then (2.10) implies
p—2 2
3 yy'| T 5
GEIPEDS ( [ s byl dydy')
R? ly/|P~2

j>1 |[y[P=1 —
2 2
3
<Y (2 = [ Ity zdydy) <y (2 LS 4||f||L2|gJ|L2>
i1 i1
= 25| f| 12 Z 2% HQJHL2 < 26| fl2lgelze < 27 HfHL2H9HL2
j=1

If k > 1, then Corollary 2.2] applies, and directly yields

1€5(H)Ep(g0)11s < 2715 | £ 2 g 2.
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A similar analysis applies to g.. Setting (3 := min{%, p%}, we conclude that, if ¥ = —1
and |k — k'| = 2, then

1€5(1)Ep(@)Is < 27 M) £l 12 g e

The case ¥’ = 0 admits a similar treatment. If k, k' < —2 and k — k' > 2, then (2.11))
implies

222%’ _ L=k
1€ (F)Ep(9)1s < N I flc2llglze =275 [ flz2lgl L2
3
Finally, the remaining cases can be handled in a similar way by Corollary [2.2] O

Corollary 2.4. Let p > 1 and k,k' € Z be such that k' < k. Let 3 = rnin{%7 %}. Then

1&(NE(@)Lsw2y <p 27 F M f 12 @) 9l L2y (2.12)
for every f,g e L*(R) satisfying supp f < {|y — 1| = 2¥} and suppg < {|y/ — 1| < 2¥'}.

We finish this subsection by taking yet another look at the Jacobian factor (2.9). This
will be useful in below. Let p > 2. If yy’ < 0, then |J = (y, )| = p(Jy[P~ + [¢/[P71),
in which case

lyy'|"T
(b=t + ly'lo=)2

_1 _1
SUyl+ 1) 2 =ly—y1 2,

uniformly in y,%’. To handle the complementary case yy’ > 0, note that, if p > 2 and
0 <a<b, then
Wl —aP ™t~ (b—a)bP 2 (2.13)
It follows that, if p > 2 and yy’ > 0, then
[Ty ) = pllylP™ = P =~ |y — o' max{ly], |y [},
and so if additionally |y| > |¢/], then
ne2 ne2
I
lylP=t =P~z yl= ly =yl

Therefore the estimate

_1
<ly—y| 2.

3 HONGIE :

I (NE@ ey = |, TN ayay (2.14)
B2y —y/[2

holds as long as p > 2. We cannot hope for such a bound if 1 < p < 2 since (2.13)) fails in

that case. However, if |y| ~ |¢/|, then one can check in a similar way that the estimate

W)z

1€p(fi)Ep (1)1 s 2y < J PSS dy dy (2.15)
R2 |y —y ‘2

holds for any p > 1 and functions fj, g5 which are both supported on I}.
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2.2. Cap bounds. An inspection of the proof of Propositionreveals that if supp f < I,
and supp g < I}/, for some k, k' € Z satisfying k — k' > 2, then

2 2
\p—k!|P=L _1 33 _1 33
E0(D)E() | 15(rz) < 2 1F 155 (|Ik| g |f|2> (um gl |g|2)
I 1, (2.16)

k

e =1 2 20013 5
< 27 W FI AN A9 o 9] F ey

where the quantity A(f) is defined via
_1 3
A = sup Rl | 11 (2.17)
keZ I

The purpose of this subsection is to develop on this observation. Given f € L%(R), write
f =2y fr, with fi := f1re. Our first result is the following.

Proposition 2.5. Let p > 1. Then the following estimates hold, for every f € L*(R):

ng(f)”%ﬁ(RQ) <p Z ||ka?£2(R), (2.18)
keZ
4 3,k
& (1) Es(xe) Sp NI sy + AN (X Iilam)) 11y (219)
keZ keZ

Proof. By the triangle inequality,
1E(NIZs < 35 IESIEFNENfi) 2

For each triple (i, j, k) in the previous sum, we lose no generality in assuming that
j — k| = max{]i' — j'| : ¢, j" € {i, 4, k}}. (2.20)
Holder’s inequality and Proposition then imply

_li—k|P=L
1€ (F)Ep(FEW(fi) 12 < 27975 Fil 2| £ 2 fil -
By the maximality of [j — k|, we have that |j — k| > 1|i — j| + £|j — k| + 3|k — i|, and hence
i P2 s — k| P2 o [ e—g| 2=t
I&(NNgs < D) 27 27U R S 2 ) o £ o o
(i,3,k)eZ3

A final application of Holder’s inequality yields (2.18)). Estimate (2.19)) follows from similar
considerations which we now detail. Let S := {(i,, k) € Z3: max{|i—j|,|j—k|, |k—i|} < 1}
and S := Z3\S. Split the sum into diagonal and off-diagonal contributions,

&N <] Y amSEEE| L +] Y SUEUETR)

(i,3,k)eS (i,4,k)eSE

Y

L2



12 BROCCHI, OLIVEIRA E SILVA, AND QUILODRAN

and analyze the two terms separately. For the diagonal term, note that

D ICATALATALATA

(1,5,k)esS
<. BIE ()& (fe)Ep(frat)lr2 + B1Ep(Fom1)Ep(Fe)Ep (i)l 22 + 1E0(F)Ep(fr)En(Fi) 1 12)
keZ
<. BlE(flislEn(fist) s + 31 (Fr-) s Epn(Fi) 76 + 1€ (Fe)Es) < D 1Ea(Fo) 2.
keZ keZ

To handle the off-diagonal term, note that estimate (2.16)) implies

D YAV LA ATATS) IS S 1 P LA ATAT S

(i7j7k)esc ( 7]7k’,)|]_k“>2

SA(F Y 2l ”fz”LQHfJHL2kaHL27

(6,5,k): |5 —k|=>2

where the sum X/ is taken over triples (7,7, k) € S for which (j, k) satisfies the maximality
assumption ([2.20)). It follows that

| 'S aWsune] , < As 3 o ik ) £l

2

(4,5,k)eSt i3,k
1 2
4 3 \3 2 \3
HONABHONIAAN
keZ keZ
This implies (2.19)) at once, and concludes the proof of the proposition. ]

The following L? dyadic cap estimate is a direct consequence of ([2.18)).
Corollary 2.6. Let p > 1. Then, for every f € L*(R),

3 2
I ogez) S (50 1l ey ) 17 e

We now derive a cap bound similar to [24, Lemma 1.2] and [38, Lemma 1.2].

Proposition 2.7. Let p > 1. Then the following estimate holds:
2 7
3 < -1 )3 3
6o sy o (s0p smp 17E071 3. )) 1y (2.21)

for every f € L?(R), where the inner supremum is taken over all subintervals I Ip.

Proof. We start by considering the case when f = fi(= f1 rr). From (2.15), we have that

&gl < [, M PR ayay. (222
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Arguing as in as in [24}38] we obtain, for every ¢ > 1, that
1€ (fi)ls < (Sup 71270 il o I))7‘|fk|‘L2(R (2.23)

For the convenience of the reader, we prov1de the details. In light of (2.22]), we may assume
fxr = 0. Normalizing the supremum in (2.23) to equal 1, we may further assume that

J < [I|'~%, for every subinterval I < I3. (2.24)
I

Denote the collection of dyadic intervals of length 27 by D; := {2/[k,k + 1) : k € Z}, and
set D = UjeZ Dj. We perform a Whitney decomposition of R?\{(y,y) : y € R} in the
following manner, see for instance |11, Lemma 10] and [1, Proof of Theorem 1.2]. Given
distinct y, 1y’ € R, there exists a unique pair of maximal dyadic intervals I, I’ satisfying

(y,y)eIxI', |I|=1I'|, and dist(I,I") = 4|I|.
Let J denote the collection of all such pairs as y # ' ranges over R x R. Then
D LW ip(y) =1, forevery (y,) € R? with y # o/,
(I,I1Ned

and therefore

W) = D) i@ fer ), for ae. (y,9) e R?,

(I,I)eT

where fi 1 := fil7. Clearly, if (y,y) € I x I’ and (I,I') € J, then |y — y/| ~ |I|. From this
and (2.22)), we may choose a slightly larger dyadic interval containing I u I’ but of length
comparable to |I| (still denoted by I), and it suffices to show that

1 3\2
Z 1<ffk;2,1) S Jflg
iep 112
We further decompose

et = Y fran, where fiy = fil {yer=

on+1 } 5
nez

|I‘1/2 \fk( ) ‘1‘1/2
and note that it suffices to establish

2, ;,;(Jfkg,z,n)z S 2_”'Eff;3, (2.25)
1eD

for some € > 0 and every n € Z. By the Cauchy—-Schwarz inequality,

(Jatn)' < ([ 20) ([ o),

By construction of f, 1, Chebyshev’s inequality, and normalization (2.24)),

n+1 n+1 S fg 1
jfk:,l,n < |2[‘1/2|{yel fk |I|1/2}| |21|1/2 2nq‘II‘ /2 <27 [n|(g—1) |[|2, (2.26)
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for every ¢ > 1 and n = 0. If n < 0, then the following simpler estimate suffices:
" _ 1
ffk,l,n < gl =27 (2.27)
Combining (2.26|) and (2.27)), we conclude
1 30\2 3
S ([ i) =2 [ R
iep 112

1eD
for some € > 0, from which we get the desired (2.25)) by noting that

S #=3 % [ #rpen = [ (8 #@)ws |

IeD j€Z IeD; R JEL:
! ! Fro(y)~2m—3/2

This concludes the verification of (2.23)). Recalling inequality (2.19)), and specializing ([2.23))
to q = %, yields

2 7
B0 < (o WA 3,) S0+ b1, 5) 11
IEx(1)le =  sup I7e0il 2 IelZz + (sup el 1fil 5 ) 17112

keZ
1 % %
< (supsup |I]™® 3 ) 3y,
(sup sup 117815l 3., ) 141
where the last line follows from Hélder’s inequality. This concludes the proof. (|

In the next section, it will be useful to have the L' version of (2.21]) at our disposal, and
this is the content of the following result.

Proposition 2.8. Let p > 1. Then there exist vy € (0,1) such that

_1 _
1) Lo w2y Spor (sup sup 11172 Flpn) "I | 2Ry (2.28)
keZ I}

for every f € L?>(R), where the inner supremum is taken over all subintervals I Ip.

2
45>

Proof of Proposition[2.8. Set & := ||E,(f)| s f] 2. From (2:2I)) we have that

1 9
sup sup |I|” 8 =02 .
wp sup 114113, % 0815

The proof below yields v = and is inspired by |9, Proposition 2.9].

Then there exist k£ € Z and an interval I < I}, such that

3 27 1 2
| 1 = s i

for a universal constant ¢ (independent of f,d). Given R > 1, define the set F := {y €
I:|f(y)] < R}. Set g:= flg and h := f —g. Then g and h have disjoint supports, and
lg|ze < R. Since |h(y)| = R for almost every y € I for which h(y) # 0, we have

3 _1 _1
Lrhrz <R QL\hRR 12
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_1
Choose R satisfying Rz = %Od%ﬁﬁ\\fHLf(R). Then

3 3 3 Cg.27,.,1 3
[ 1alt = [ 171 = | bl = D11y
I I I 2
Since g is supported on I, Holder’s inequality implies
1 9
lgllez = [H[75lgl 3 = 102 f] L2, (2.29)
where ¢; is universal. Since |g|r < R, we have (by definition of R) that

lg(y)| < 625_%\1 _%HfHLQ(R)]].](y), for almost every y € R,
where ¢y is universal. Together with (2.29)), this implies the lower bound

gl R -1 4 lHQH%z 45 1
9l = | 19l ——=— =cy 02 |I]2 > 302 112 f L2
I I ed 2 I 2| 2 |f] 2

where c3 is universal. Since |g| < |f], it follows that

45 1
362 12| fllp2my < gl < Ifllpry-

Recalling the definition of §, we obtain (2.28|) with v = %. This completes the proof. [

3. EXISTENCE VERSUS CONCENTRATION

This section is devoted to the proof of Theorem Start by observing the scale invari-
ance of (1.10), or equivalently that of (1.9). Indeed, if fa(y) := f(A\y), then | fa|r2®) =
)\*1/2HfHL2(R). On the other hand, &,(f\)(z,t) = A=P+D/0E,(£)(x/A,t/AP), and so

_ptd ptl _1
IE(F Loy = A7 5 76 [E(Flzsrey = A2 1Ep(F) Lo r)-
In particular, given any sequence {a,} = R\{0}, if {f,} is an L?normalized extremizing

sequence for (L1.9)), then so is {|a, |2 fn(an-)}.

We come to the first main result of this section.

Proposition 3.1. Let {f,} = L?>(R) be an L?-normalized extremizing sequence of nonneg-
ative functions for . Then there exists a subsequence {fp,}, and a sequence {a;} <
R\{0}, such that the rescaled sequence {gi}, g := |ar|"/? fn, (ar-), satisfies one of the fol-
lowing conditions:

(i) There exists g € L*(R) such that g — g in L*(R), as k — o0, or

(ii) {gx} concentrates at yo = 1.

Theorem follows at once from Proposition [3.1 and the following result.

Lemma 3.2. Let p > 1. Given yo € R\{0}, let {f,} = L?(R) be a sequence concentrating
at yo. Then
. anap*fnap*fnapniz(ﬂgz) o
lim sup

< .
n—00 an”?ﬁ(]g) \/gp(p_ 1)

(3.1)
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If we set fr(y) = e*"(|y\p*|yo\”*pyolyolp‘Q(yfyo))’y\%, then the sequence {ananZzl} concen-
trates at yo, and equality holds in (3.1)).

Convolution of singular measures is treated in much greater generality in the companion
paper [32]. Lemma is almost contained in [31,32], and we just indicate the necessary
changes.

Proof sketch of Lemma[3.3. Once the boundary value for | - |%ap w | - \%ap w0 | - ‘%Up
given in (4.3) below is known to equal the right-hand side of (3.1)), the proof for p > 2
follows the exact same lines as that of [31, Lemmata 4.1 and 4.2]. We omit the details.

If 1 < p < 2, then the function ||% fails to be continuous at the origin, and an additional
argument is needed. We show how to reduce matters to the analysis of projection measure.
Let {f.}  L?*(R) concentrate at yo # 0. Then

2 2
Op * JnOp * JnO, Up % Fo Uy % o1
lim sup an D In p6 In pHL2 _ |y0|p_2limsup an D fn p6 fn pHLQ7
n—a an”L2 n—00 Hf”HL2

(3.2)

where v, denotes the projection measure dv, = 5(5 - |y|p) dyds. To verify (3.2]), consider
the interval J := [y0/2, 3yo/2]. Then

| frop * fnop * fnUpH%2 | frlyop * falyop * fn]lJUpH%2

= lim su

lim sup

" Ifnlze e 1%,
= |yo/P~%lim sup | frvp * frvp anpH%Q
o [ fnllZ2

Here, to justify the first equality, invoke the continuity of the operator &,, and the fact
that the sequence {f,} concentrates at yy. For the second equality, additionally note that

p—2 p—2
Ifnlsl-[75 = falslyol & |lz2
an]lJHL2
From [32}, Proposition 2.1}, the measure v, * v, * 1/, defines a continuous function in the in-

terior of its support, with continuous extension to the boundary except at (0,0). Moreover,
for any yg # 0,

— 0, asn— 0.

2
(p—1)lyolr—2

The result now follows as in [31, Lemmata 4.1 and 4.2]. O

(vp * vp * 1) (3yo, 3lyol?) =
p p p \/gp

The proof of Proposition [3.1] relies on the bilinear extension estimates and cap bounds
from §2| together with a suitable variant of Lions’ concentration-compactness lemma, which
is formulated in the appendix as Proposition This has two important consequences
for the present context, the first of which is the following.
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Proposition 3.3. Let {f,} = L*(R) be an L?-normalized extremizing sequence for (1.9).
Let {r,} be a sequence of nonnegative numbers, satisfying r, — 0, as n — o0, and

1+7‘n
it [ I Py > 0.
neN 1_7”71
Then the sequence {f,} concentrates at yo = 1.

Proof. Consider the intervals J, := [1 — r,, 1 4+ r,], n € N, and define the pseudometric
o: R\{1} x R\{1} - [0,%0),  o(x,y) := |k — ¥, (3.3)

where k, k' are such that |z — 1| € [2¥,2541) and |y — 1] € [2¥,2¥'+1). Let R be an integer.
Then the ball centered at x # 1 of radius R defined by g is given by

B(l’,R) = {y € R\{l} Qk_R < |y _ 1| < 2/€+R+1}'

Let {f.} be as in the statement of the proposition. Apply Proposition to the sequence
{|fa]?} with X = R equipped with Lebesgue measure, z = 1, the function ¢ defined as in
(3-3), and A = 1. Passing to a subsequence, also denoted by {|f,|?}, one of three cases
arises.

Case 1. The sequence {|f,|?} satisfies compactness. In this case, there exists {z,} <
R\{1} with the property that for any € > 0, there exists R < oo such that, for every n > 1,

f fal? = 1—e. (3.4)
B(zn,R)

Suppose that limsup,,_,,, |z, — 1| > 0. Then, possibly after extraction of a subsequence,
{z,} is eventually far from 1, i.e. there exist Ny € N, ¢* € Z such that |z, — 1| > 2
for every n = Ny. Let € := %infn anH%Q(Jn) > 0, and choose an integer R such that
holds. Now,
B(zn, R) = {y e R\{1}: 2k~ F < |y — 1| < 2kntRF1Y

where k,, is such that |z, — 1| € [2¥,2%F1) and hence B(z,,R) < {y # 1: |y — 1| >
25**R}. Let N1 = Ny be such that r, < 25**R, for every n = Nj. In this case, we have
Jn 0 B(xy, R) = ¢, which is impossible because our choice of ¢ would then force

1=f |fn|2>j |fn|2+f ful? > 1.
R In B(zn,R)

It follows that x, — 1, as n — o0, and consequently the sequence {f,} concentrates at
yo = 1. Indeed, given € > 0, choose an integer R such that holds. Then B(x,, R) <
[1 — 2kt R+ 1 4 oka+ RN\ (1) where |2, — 1| € [2F7, 252 1) and k,, — —c0, as n — o0, s0
that 2F»+tF+1 0, as n — oo. This forces

1+2kn+R+1

j Faly)Pdy =1,

1—2kn+R+1

for every n > 1, which implies concentration of the sequence {f,} at yo = 1.
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Case 2. The sequence {|f,|?} satisfies dichotomy. Let a € (0,1) be as in the di-
chotomy condition. Given & > 0, consider the corresponding data R, ko, pn,j = | fn’j\Q, JE
{1,2},{x,} <« R\{1},{R,,} = [0,0). In particular,

supp(fn,1) © B(@n, R), and supp(fnz2) < B(wn, Rn)".
Since R, — R — o0, as n — o0, by Corollary [2.4] we obtain
1Ep(fr)Ep(fr2) s < Cullfuilrzll fr2] L2, (3.5)

where C,, = Cp(e) < 27PFEn=R) for some 8 > 0. In particular, given £ > 0, we have that
C, — 0, as n — o0. Aiming at a contradiction, consider that

1Ep(fr = fra — fr2)lle < Eplfa — (faax + fa2)lre < Epfév (3.6)

The latter inequality requires a short justification which boils down to the pointwise esti-
mate

(1fal = (Ul + 1 fa2)? < Wfal? = (frl + 1 F22D?1 = 11fal® = (fanl® + [fa2®). - (3.7)
This, in turn, follows from the disjointness of the supports of f,, 1 and f, 2, together with
the trivial estimate ||fn| — (|fa1] + |fa2l)| < [ful + (| fna] + | fn2])- In this way, (3.7) and

Proposition imply
[ fal = (fatl + [fa2D) 2l < 1fal® = (fad P+ a2l < e

Coming back to (3.6]), we have as an immediate consequence that

1€ (FadlLe < Bpe® + [Ep(far + Fn2)| -

Expanding the binomial, using | fn 1] 12, || fn,2]z2 < 1, and Hélder’s inequality together with
(3.5)), we find that there exists ¢ independent of n such that, for sufficiently large n,

[€p(fu1 + Fa2)lzs < 1E€p(Fan)lTs + [€p(Fa2)lZs + cCn
< Ep(Ifnalze + [ fn2l2) + cCn (3-8)
< Eg((a +e)p¥+ (1 —a+e)?) +cCh.

This implies, for every sufficiently large n,

1 1

1Ep(fr)lpe < Epe2 + (Ef)((oz +eP+(1—a+¢e)d) +cCp)s.

Taking n — 00, and recalling that {f,} is an L?-normalized extremizing sequence for (1.9)),
we find that

1 1

E, <Ejc2 +E,((a+¢)* + (1 —a+¢)?)s,

for every e > 0. Taking ¢ — 0 yields 1 < o+ (1 — )3, which is impossible since a € (0, 1).

Hence dichotomy does not arise.
Case 3. The sequence {|f,|?} satisfies vanishing. In this case,

lim sup |fn(y)|2 dy =0,

n—0 L7 LkR<|y_1|<2k+R+1
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for every integer R < oo. In particular, for fixed k£ € N, we have

lim |fa(y)]* dy = 0. (3.9)

N0 Jo-kgly—1|<2k

Set fn1 = falp_o-k142-+) and fno := frlgy_1)s08}- Since |fo — fo1 — fo2lr2 — 0, as
n — 0, it follows that {f, 1+ fn2}n is also an extremizing sequence for ([L.9), for each k € N.
This new sequence splits the mass into two separated regions, and so we expect to reach a
contradiction if limsup,, ., || fn2[z2 > 0, just as in Case 2. Set aj := limsup,,_, | fn2|
(recall that f, 2 depends on k), and note that {oy} is a constant sequence. Indeed,

f Lh@Wdy=J mewdy+j f@lPdy  (3.10)
ly—1[=2" ly—1]=28+1

2k y—1[<2k+!

2
2

and from (3.9) with k£ + 1 instead of k£ we have

lim | fa(y)|* dy = 0.

O Jokgly—1]<2k+1
Taking limsup,,_,,, in (3.10) yields a1 = oy, for every k € N. An argument analogous
to that of Case 2 (starting from (3.8])) shows that there exist § > 0 and a sequence {C}},
0<Cr <2 P 50, as k — o, such that

1<} 4+ (1—ag)®+Cy, for every keN.
Since ap = « is constant, we may take K — o0 in the previous inequality and obtain
1 <o+ (1 —a)d Since a € [0,1], necessarily a € {0,1}. We claim that a = 0. For any
k > 1, the support of f, 2 is disjoint from the interval J,, if n large enough. Thus

Inalie < 1= | 1fP <1=nt | 1£P

and therefore
a < 1—infj |ful? < 1.
neN Jn

We conclude that o = 0, as claimed. Finally, we show that vanishing implies concentration
at y = 1. Since

L= falFe = [ fanlZz + a2l

we find that, for every k e N,

%2 +on(1) = an,1|

%2 +o,(1) = an]l[1—2*k,1+2*k]H%2 + 0n (1),

1+27Fk
lim Faly)Pdy = 1.
n—0 J1—o-k
This implies that the sequence {f,} concentrates at yg = 1.
To sum up, we proved that any sequence {f,,} as in the statement of the proposition does
not satisfy dichotomy; and that if it satisfies compactness or vanishing, then it concentrates
at yo = 1. Thus the proof is complete. O



20 BROCCHI, OLIVEIRA E SILVA, AND QUILODRAN

As a second application of Proposition we prove dyadic localization of extremizing
sequences, after rescaling. We take X = R, Z = 0, and use the dyadic pseudometric
o: R\{0} x R\{0} — [0,00), o(x,y):= |k — K, (3.11)
where this time |z| € [2%,25%1) and |y| € [2¥,2¥+1). In this case, if R is an integer, then
B, R) = {y € R\{0}: 207 < Jy| < 284741},
Proposition 3.4. Let {f,} = L?(R) be an L%-normalized extremizing sequence for (1.9).
Then there exist a subsequence { fy, }, a sequence {ar} < R\{0}, and a function © : [1,00) —
(0,0), O(R) — 0, as R — o0, such that the rescaled sequence {gi}, gr := |ag|"/? fn, (ar"),

satisfies
|9kl L2 (= r,R)) < O(R), for every k =1 and R > 1. (3.12)

This proposition will provide the input for the suitable application of the Brézis—Lieb
lemma, which is formulated in the appendix as Proposition

Proof of Proposition[3.4 Let {f,} be as in the statement of the proposition. In view of
Corollary there exists £, € Z such that | fn|r2(s; ) Zp 1, if 1 is large enough. Setting

Gn = 20072 £, (2%.), we then have that
lgnl213) 2o 1, (3.13)

for every sufficiently large n. Using Proposition with the pseudometric (3.11]), we
obtain a subsequence {|gy,,|?} that satisfies one of three possibilities. Because of (3.13)),

vanishing does not occur. The argument given in Case 2 of the proof of Proposition [3.3]
can be used in conjunction with Corollary to show that the sequence {|gn,|*} does
not satisfy dichotomy either. Therefore it must satisfy compactness. Thus, there exists a
sequence {N} < Z such that, for every k > 1 and € > 0, there exists an integer r = r(¢)
for which

f lgr(y)?dy = 1 —e.
2Nk7r<|y|$2Nk+r+1

Because of (3.13), the sequence {Ny} is bounded, sup;~ |Ni| =: o < c0. By redefining r
as r + rg + 1, it follows that

f lge(y)|*dy =1 —¢, for every k > 1. (3.14)
2-r|y|<2r

Defining the function
0(R) := supf
k=1 J{R~1<|y|<R}¢

then R — 6(R) is a non-increasing function of R which is bounded by 1 and, in view of
(3.14)), satisfies #(R) — 0, as R — c0. By construction,

lge(y)]* dy,

LR o B S OCR), fox every k21, B> 1,
<y

which implies (3.12)) at once by taking © := 92. This concludes the proof. O
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We are finally ready to prove Proposition [3.1

Proof of Proposition[3.1 Let {f,} be as in the statement of the proposition. Apply Propo-
sition to {fn}, and denote the resulting rescaled subsequence by {g,}. From the L'
cap estimate we know that, for each sufficiently large n, there exists an interval
Jn = [Sn — T, Sn + 7], contained in a dyadic interva]ﬂ [2Fn 2kn*1] such that

1
| lgal= el
JIn
for some ¢ > 0 which is independent of n. By the Cauchy—Schwarz inequality,

HgnHLQ(Jn) = C, (315)

and so estimate implies the existence of C' > 0 independent of n, such that C~! <
|sn| < C. Rescaling again, we may assume s, = 1, for every n.

If 7* := liminf, o |J,| > 0, then passing to the relevant subsequence that realizes the
limit inferior we have

1+2r% 1+2r%
f gn(y) dy = f lgn(y)| dy = f lgn] 2 V¥,
1—27r% 1—-2r%* Jn
provided n is large enough to ensure J,, < [1 — 2r*, 1 + 2r*]. Therefore any L2-weak limit
of the sequence {g,} is nonzero. Here we used the nonnegativity of the sequence {g,}. By
Proposition we conclude that there exists 0 # g € L%(R), such that possibly after a
further extraction, g, — g in L?(R), as n — 00. In other words, (i) holds.

It remains to consider the case when |J,,| — 0, as n — oo. In view of , Proposition
applies, and the sequence {g,} concentrates at yo = 1, i.e. (ii) holds. This finishes the
proof of Proposition (and therefore of Theorem [1.3)). O

4. EXISTENCE OF EXTREMIZERS

In this section, we prove Theorem The basic strategy is to choose an appropriate
trial function f for which the ratio from (1.10J),

B | fop * fop * fUpH%2(R2)

(bp(f) =

: 4.1
T b
can be estimated via a simple lower bound. We will give different arguments depending
on whether 1 < p < 2 or p > 2, which rely on distinct choices of trial functions. This can
be explained by the different qualitative nature of the 3-fold convolutions wuv, * wy), * wy,
in the two regimes of p, see Figures [1| and [2| below. Here, and throughout this section,
dvp, = (s — |y[P) dy ds denotes projection measure on the curve s = |y[P, and the weight
is given by w = | - |®?=2/3, Note that do, = v/w dv,.
The following analogue of [31, Proposition 6.4] holds for 3-fold convolutions in R2.

Proposition 4.1. Given p > 1, the following assertions hold for wvy, * wy), * wyy:

30r its negative, but in that case we replace f, by its reflection around the origin.
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(a) It is absolutely continuous with respect to Lebesque measure on R2.
(b) Its support, denoted Ey, is given by

E,={(&7)eR?: 7> 317P|¢g|P). (4.2)
(c) If p = 2, then its Radon—Nikodym derivative, also denoted by wv, * wyy * wy,
defines a bounded, continuous function in the interior of the set E,. If 1 <p < 2,
then wyy, * wyy, * wy, defines a continuous function on the set
By = {(&,7) e R2: 317PIlP < 7 < 217P|gJP),
(d) It is even in &,
(wrp # wrp * wrp) (=&, 7) = (wrp * wrp * wip)(§, 7),
for every £ e R, 7 > 0, and homogeneous of degree zero in the sense that
(wrp * wrp * wrp) (A, NT) = (Wi * wiy, * wiy) (€, 7), for every X > 0.

(e) It extends continuously to the boundary of E,, except at the point (§,7) = (0,0),
with values given by

2T
V3p(p—1)

Proof. For p > 2, the result follows from [32, Proposition 2.1] and [32, Remark 2.3]. If
1 < p < 2, then the weight w is singular at the origin, and an additional argument is
required in order to establish parts (c) and (e) (as the others follow from [32]). Note that
part (e) also follows from [32] after we verify (c), and so it suffices to show the latter.

Let ¢ = | - |P. From [32, Remark 2.3], the following formula holds on Ep,

(wry * wry » wry) (€, 3" PJE[P) = L ifE 0. (4.3)

(wrp * wrp * wrp) (&, T)

—2
(15 + a(wr + w2)[|§ — awr]]§ — aws) 5

by w2)
Ll (wy, YU rowr vowa) VyEB—own)y |, VU(EB o taw) Vi E/ow]y S (2> |
44

provided that the function W defined by
—2
W (€ w1,wn) = (1€/3+ alwn +w2)[[/3 — awn|E/3 — awa) 5 (4.5)

is continuous in the domain of integration. Here wj + w3 = 1, arc length measure on the
unit circle S! is denoted by g, and the function o = (&, 7, wq,ws) is implicitly defined by

§/3 + a(wi + w2) |+ [€/3 — awr | + [€/3 — aws|P = 7,
see [32] for details. It follows that
1€/3 + awr + w2) P + [€/3 — awr [P + [€/3 — aws|P < 2'7P[¢PP,
provided (§,7) € Ep. On the other hand, if {/3 — aw; = 0, then convexity of ¢ implies
12¢/3 + aws|P + [€/3 — aws|P = 2 7PIEPP,
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and similarly if {/3 — aws = 0, while if £/3 + a(w1 + w2) = 0, then
1€/3 — awi P +1¢/3 — awnl? = 2'7P)26/3 — awr + wo) [P = 21 7P[¢]P.

It follows that none of these three terms can vanish in a neighborhood of any point (§,7) €
E,, and therefore W is continuous there. Thus identity (4.4]) holds, and this concludes the
verification of part (c). O

The boundedness of wv,, * wv), * wy), provides an alternative way towards estimate
via the usual application of the Cauchy—Schwarz inequality, at least in the restricted range
p = 2. Moreover, identity and the argument in Lemma together imply that the
corresponding optimal constant C,, satisfies

C? >

6 7
" V3pp - 1)
which should be compared to ((1.13).

4.1. Effective lower bounds for C,. We start by examining a simple lower bound, which
is the analogue of [31, Lemma 6.1] for 3-fold convolutions in R?,

Lemma 4.2. Given a strictly conver function ¥ : R — R and a nonnegative function
w: R — [0,00), consider the measures dv(y,s) = 8(s —¥(y))dyds and do = \Jwdv.
Let E denote the support of the convolution measure v v = v. Given A > 0,a € R, let

Paly) = G_A(‘Ij(y”ay)«/w(y). Then

Hf)\,ag * f)\,a,a * f)\,a,O-H%Q(RQ) < Hf)\,a |%2(R) (46)
”f/\,a %2(11&) SE e—2A(T+ag) dé¢ ar’
for every fra € L*(R) such that f .0 * fra0 * fra0 € L*(R?).
The proof is entirely parallel to that of [31, Lemma 6.1]. Note that (4.6)) implies
sup ||f0' % fo f0”%2(]1g2) sup ”f/\,a %Q(R) (4 7)
0#feL2(R) HfH(Zz(R) T As0,acR §p e PO dgdr .

Specializing Lemma to the case of the measure o, with the natural choice of trail
function f(y) = e ¥"|y|P=2)/6 a quick computation yields

AT ()

I R (4.8)
3 ep(3)

This lower bound is good enough to establish the strict inequality in a range of p

that includes the cubic case p = 3 but not the quartic case p = 4, so we have to refine it.

For the above choice of trial function, the corresponding ratio can be expanded as an

infinite series with nonnegative terms, whose coeflicients are given in terms of the Gamma

function and whose first term equals the expression on the right-hand side of .
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Proposition 4.3. Let p > 1 and f(y) = e 1¥I"|y|P=2)/6 ¢ L2(R). Then

1
31751011l & 2 on\ (n+k— 2
4n—1
)= p“p:” 2, n1)2 <k2 <2k>< 2n >I2k( )> -
n=0 —0

where the coefficients {Iox(p)}k=0 are given by expression (4.15]) below.

The proof will make use of the classical Legendre polynomials, denoted {P,},>0, which
constitute a family of orthogonal polynomials with respect to the L?-norm on the interval
[—1,1]. Explicitly, they are given byﬁ

N n n n+k—1
Py(t)=2" )] <k> < 721 )tk, —1<t<1, (4.10)
k=0

from where one checks that (P, P,)r2 = TQH 6(n = m), see [41, Corollary 2.16, Chap-
ter 4]. See also [6,9,(17,[21,30] for earlier appearances of Legendre and other families of
orthogonal polynomials in sharp Fourier restriction theory.

Proof of Proposition[f.3. Start by noting that the function f(y) = e~ ¥/"|y|*=2)/ coincides
with e™74/w(§) on the support of o,. Using this together with parts (b) and (d) of
Proposition we obtain

| fop = fop foplte = e (wrp * wrp + wip)| 72
0 r3 5 )
= f J‘3111?7-117 e T (wyp * wyp * wip)“ (&, 7)dEdT
1
o 3 P 1 1
= J f o 7'56727-(11}1/]; * Wy * wup)Q(TE)\, 7)dAdr

11

o 3 p
- (J Tre T dT) J oy (wp = wip = wrp)? (A, 1) dA
-3 P

0

1-1 1

3 (=
- HEPJ f (wrp * wyy, * wyp)2(31*%t, 1)dt. (4.11)

p2-Tp -1
On the other hand,
- © - 2373 1
i = [ ay =2 [emryay = 20D G
R 0 D 3p

4Recall that the binomial coefficient (&) := M is also defined when « ¢ Z.
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1
Given t € [—1, 1], define g,(t) := (wyp * wr)p * wrp) (31_5t, 1). Expanding g, in the basis of
Legendre polynomials,

2 .- 1 ! 2
- t)P,(t)dt
o a0 = 5 T (]| w®P0 @)

n=0 L2
oe n 1 1 2
2n\ (n+ k— 5
_ 4n—1 2 2k
7;()(4n i <k2—0 <2k> < 2n > Jl 9(E)t dt) ’

where the last identity follows from (4.10)), the normalization | P, |3, = 52+ +1, and the fact
that gp is an even function of . We proceed to find an explicit expression for the moments

I,(p) := S L 9p(t)t" dt. Given b e R, we compute:
JRZ e~ (708 (wrp * wryp * wrp) (€, 7)dEdT

o r3° P 1 1
= f f_gl % TEe—Tepr)\(wVp * Wlp * wyp)()\’ 1) dAdr
7%)(2n+1)b2n

- 3( 0 2n+1 1 L1
= 7;0 T <f e Tt P dT) Jl th(wVp *WVp * wyp)(g pt’ 1) dt
)

0

- i 31732 gan oy, 4 lr(2n +1

TR ) T, (4.13)

This Laplace transform can be alternatively computed as follows:
P p=2 3
fRz ™ T (wyprwy, x wiy) (€, 7) dE dr = (fRe—y' Myl dy)

0 2n 00 3 0 on 3
_ Z 2b J e_ypy%_;'_gn dy _ Z 2b F(p +1+ 6n) .
@n)! Jy Zipn) U 3p

n=0
(4.14)

Equating coefficients of the same degree, we obtain that

Lon(p) = 2° (2n)! i ”2 (p+1+6k)1"(p+13;6m)F(p+1+6(37;—k—m))
2n\P 3(1—%)(2n+1) 2(2n + 1) (2n+1 == N2m) 2 — k —m))!

(4.15)
Identity (4.9) follows at once, and the proof is complete. ]
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0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 1. Plot of the functions g, y(t), appropriately normalized so that
they are close to 1 at t = 1, for p € {3,4,5,10,11,12}. We used N = 10 for
p € {3,4,5}, and N = 15 for p € {10,11,12}.

©
1
w i N w

©
1

._i__‘*- — . )}
] 0:2 04 0.6 0:8 1.0

FIGURE 2. Plot of the functions g, y(t), appropriately normalized so that
they are close to 1 at t = 1, for p € {%, %, g} We used N = 10.



SHARP STRICHARTZ INEQUALITIES 27

Remark 4.4. From the preceding proof, we have the following approximating sequence
{gp.n}N=0 for gp:

GoN i4n+122”1 Zn] 2n (n+ k= [k() Pon(t), —1<t<1
PN P =\ 2k 2 2 S

This was used to construct Figures (1] and They correspond to approximate graphs
of wyy * wyy, * wy, on the region {(£,1): 0 < & < 31-1/p}, for different values of p. By
homogeneity, the full picture on R? can be obtained from these graphs. Figure [I|indicates
that, for large p, the function g,(¢) becomes small as t — 0. The function (wv), * wyy, *
wrp) (€, 7) should then be small near the 7-axis, unlike the case of small values of p. This
suggests that extremizing sequences may concentrate at the boundary if p is large enough.

4.2. Proof of Theorem We consider the case p > 2 first. From Theorem and
Proposition it suffices to show that there exists N € N, such that

31 g 2F 20\ (n+k— 2 27
+124"1< ( )( >I ) >——— (4.16
23F P+1 3 Z k;) 2k 2n 2 (P) V3p(p —1) ( )

where the coefficients I (p) are given by . The range of validity of can be
estimated by performing an accurate numerical calculation. Taking N = 15, one checks
that inequality holds for every p € (2,pp), where pg € [4,5] and can be numerically
estimated by pg &~ 4.803, with 3 decimal places. Increasing the value of N does not seem
to substantially increase py.

If 1 < p < 2, then inequality fails (for every N € N). Incidentally, note that if
p = 2, then the left- and right-hand sides of are equal (for every N € N) since the
3-fold convolution of projection measure on the parabola is constant inside its support, see
[16, Lemma 4.1]. We are thus led to a different trial function. For n € N, define

Faly) = e~ 5007 =P |y = 75" (4.17)

In light of Lemma the sequence {f,|fnll LQ} concentrates at yp = 1. Passing to a
continuous parameter A > 0, Lemma yields the lower bound

HfAH%2(R)
d > = A),
p(f)\) SEP 67)\(77;05) d€ dr ¢P( )
which we proceed to analyze. Since
aBage) = [ ey a,

J e AP qedr = foo Apﬁ f e~ AT dT) d¢ = 1 JOO e MBITIE—PE) ¢
B, - 1-pelp Ao
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we have that
(572, ety =" ay)’
¢p()‘) =A So_oOO e—A(31=P[€[P—pE) d¢
In view of , we have that Cg > ¢p(N), for every A > 0. Therefore it suffices to show

that ¢,(\) > %, provided A is large enough. This is the content of the following

lemma, which we choose to formulate in terms of the function ¢,()) := ¢,(A71).

Lemma 4.5. Let pe (1,2). Then

2T
/\11%1+ Pp(A) = my (4.18)
) (2 p)(2p— 1)

In particular, if X > 0 is small enough, then cpp()\) > \/gp(pfl)'

Note that (4.18) follows from Lemma but we choose to present a unified approach that
establishes both (4.18) and (4.19)).

Proof of Lemma[4.5. Rewrite ¢, in the equivalent form

_ 3
. (5%, e~ =10y =35 )
Pp(A) = 2, e3P (ylP—3v—p3r1 (y=3)) dy

Define real-valued functions y — «a(y) and y — ((y V13E|

o =130 -1) = () (s~ * +aly - 1), (1.20)

o =3 = -3 = 972(5) (-3 + 5y - 3).

By the binomial series expansion, if |y| < 1, then

p—2 p—2)(p—3
a(y) = L2y @D e (121)
3 12
p—23 (@—2)(p—3) 4
= — —_— e 4.22
By =Z3zv+ . ¥ T (4.22)
One easily checks that |a(y)| — o, |5(y)| — o0, as |y| — oo, and
lim Aa(A"2y) = lim AB(A\"2y) = 0, (4.23)
A—0 A—0

for each y € R. We also have that
[ exp (= AESIZHOD 5 gy = x| ertee 0Ty x5 ay,
R (2) R

®Note that a(y) = 3728(3y).
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J exp ( _ Aglfp(ly\P_sp;p:%pfl(y—3))) dy = 3;)\_;J e_y26_%13((§)%y) dy,
: ® .

2

and consequently

3
(S e e 20 B |1 4 Ahy =5 dy)

O 2) = ——
PRp(p—1) \/gp(p - 1) SR efy2€—§f6’((j)jy) dy

For bookkeeping purposes, set
1
Ap(N) = <J e Ve e\ 2y) 14+ A\~ 2y\ = dy) , and Bp(\) ::J eV e=38(3)7) dy.
R R
We now analyze each expression. Recalling (4.22), the numerator A,()) is seen to satisfy

Ay(\) = 73 (1 - @—21)4(425—1) + O(A*%))g, as A — o0. (4.24)

Since binomial series expansions are only valid inside the unit ball, this step requires some
care which we now briefly describe. Split the integral defining A, () into three regions,

1 —72 "3 o _1 _
Az = (| | ] e e T iy Sy = 1 I,
S

and estimate each of them separately. The main contribution comes from the integral
IT = II(\). Appealing to (4.21]) and to the binomial series expansion, we have that
exp(—Aa(\"2y)) = 1 — Ex2xay8 — =208y d L 0223106 4 0 (3 3),
14+ A 2y 5 =1+ E2xay 4 E2@5 312 1 0 (\~3),

uniformly in y € [-v/A/2,+/A/2]. From this one easily checks that

—2)(2p—1
MOy = rb 4 3 822D 0 -4y
144
Matters are thus reduced to verifying that the contributions from I and III become negli—
gible, as A — c0. On the region of integration of I = I(\), the factor ]1 + A" 1/2y\ * has

an integrable singularity at y = —\'/2. Recalling the definition of the functlon Q,
and changing variables A~Y/2y v 2, we have that
1

I(A) = Az J “e “peen (el 17m)|1 + :1:|_2%p dz.

—00

Invoking the elementary inequality |1 + z|P — 1 — px =, |z|P, which is valid for every
r < —% and 1 < p < 2, we may use Holder’s inequality together with the local integrability

2
of 2+ |1l + /=73 in order to bound

I(\) = Op(A2 exp(—CpA),
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for some Cp, > 0. The contribution of III()) is easier to handle because no singularity occurs
on the corresponding region of integration. This concludes the verification of (4.24]), which
can then be differentiated term by term because there is sufficient decay. Therefore

3
3(p—2)(2p — )2
_ 2 Al _
)\lgroloA (A\) =72, and )\lgrolo —AAL(N) = 14 .

On the other hand, using the binomial series expansion (4 we obtain
1 _1 _ _92)2 . _ _3
exp (= 3A((3)2y)) = 1 - B2A 2y’ — RN 4+%A Y+ 0,(072),

3
2

uniformly in y € [—%(%)%, %(%) ], so that an argument similar to that for A,(X) gives

oy =22 L

_3
144\ +O(2),

Bp()\) =

1

m m 2)(2p— 1)m2

li B ()\) = 7'(% and h )\QB/ ()\) (p )( ¥4 )7‘(’2
o 144

We conclude

lim ¢p(A) = lim ¢,(\) = lim ¢p< (pzi 1)) _ \/>p27r

A0+ A—00 A—00 3 (p — 1) )

To address (4.19), note that

/ =247 y—1 _ T \2 4
©p(A) = =A""¢, (A7), and so )\hr& ©p(A) )\h_I)IOlo A (A)-

Therefore

5 o) = v (e )

m(2—p)(2p—1)

18V3pp—1)
which readily implies (4.19). This completes the proof of the lemma (and therefore of
Theorem [1.4]). O

4.3. Improving pg. In view of the results from the last subsection, it is natural to let the

functional @, defined on act on trial functions f(y) = e~ W |y|P=2/6+a for different

choices of aﬁ By doing so, the value pg &~ 4.803 can be improved. We turn to the details.
Set  := | - |P=2)/3%4 and note that

(Kvp % kv * K1) (A6, APT) = N3 (K, * Ky + K1) (€, 7), for every A > 0.

Reasoning as in (4.11)) and (4.12), one checks that

31—1F(1+6a) 1 .
1-1
| fop = fop = fUpH%%R?) - W(l + 6a) J 1(“”19 * Ky Rvp) (37 Pt 1) dt,
» _

6Note that L>- integrability forces a > —E2t= +1
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2_1+6a
23 3p 11<p+ 1 +6a>
3p ’

1172y =

Given t € [—1,1], define h,(t) := (kvp * Kvp * ﬁyp)(317%t, 1). Expanding h,, in the basis of
Legendre polynomials,

< 5 2n (n+ k-4 ! 2
|22 4n+124”1< < >< 2>J h tt%dt).
|l 321, Z k_ZO o o )

We proceed to find explicit expressions for the moments I,(p,a) := Sl_l hy(t)t™ dt. Given

be R, we compute as in (4.13]) and (4.14):

JW e_(T_bg)(/-wp * KUp * KUp) (€, 7)dEdT

0 3(1—%)(2n+1)b2n 2n+1+3a_/2n+1+ 3a
( )IQn(pa CL)

_ r
= (2n)! P

202" p+1+46n+3ay\)°
- (nz_:[)p(Qn)!F< 3p )) '

Equating coefficients as before, we find that the moment I, (p, a) equals

37(17%)(2n+1)23(2n)! Zn: nZk; T (p+1—g(;k+3a ) T (p+1+§;n+3a ) T (p+1+6(n§;€—m)+3a)

p2(2n + 1 + 3a)0 (204 1150) (2k)!(2m)!(2(n — k — m))!

This implies

31 pp2r(1+6a)

O,(f) = 23F(P+;;65) (1 + 6a) i (4n + 1)2%n~ 1(; @Z) <” +2kn_ >ng(p, ))2,

and consequently the following lower bound holds, for every N = 0:

31 prF(1+6a) N e " on n+k— 2
D,(f) = i (£t (1 + 6a) ; (4n +1)2* 1<};0 <2k>< on >Izk(p, )) :

7
15>
for every p € (2,p1), where p; ~ 5.485

By numerically evaluating this sum with N = 15 and a = one can establish a lower

bound that beats the critical threshold \/§p2(7;_ 0
with 3 decimal places. Ome further observes that the lower bound for small values of

a > 0 is larger than that for a = 0, strongly suggesting that the original trial function
Yy — e"y‘p|y|(”_2)/6 might not be an extremizer in that range of exponents.




32 BROCCHI, OLIVEIRA E SILVA, AND QUILODRAN

5. SUPEREXPONENTIAL L?-DECAY

This section is devoted to the proof of Theorem |1.5, We follow the outhne of [12,22],
and shall sometimes be brief. The Euler—Lagrange equatlon associated to is

& (&N CDIEN ) = AT, (5.1)

see [8, Proposition 2.4] for the variational derivation in a related context. The following
6-linear form will play a prominent role in the analysis:

3
Qv fo i o f5u£0) 1= | TT &) @ 08 T va) D) dact,
j=1

An immediate consequence of (|1.9) is the following basic estimate:

6
QUf1, for f3. fa f. fo)l < [ [ 1 il aqwy- (5.2)
j=1
The form @ can be rewritten as follows:

3
Qf1, f2, f3, f1, f5, fo) = fu@ [ [yl Fivslyia)lyjsl® 8(aly)) 6(8(y)) dy,
j=1

where y = (y1,...,56) € R%, a(y) := |nl” + [g2l’ + |ys[” — [pal’ — |ys[” — [ys|’, and
B(y) :==y1+ Y2 +ys — ya — Y5 — ys. We will also consider the associated form

K (f1, f2, f3, fa, f5, f6) := QUUfl | fals [ f3]5 [ fal, | f5], | fel),

which is sublinear in each entry. Clearly,

|Q(f1, f2, f3, fa, f5, f6)| < K (f1, f2, f3, fa, [5, f6), (5.3)
6
K(f1, f2, f3, fa, f5, f6) < H £l L2 () (5.4)

Let us now introduce a parameter s > 1, which Wlll typically be large. If there exist j # k
such that f; is supported on [—s, s] and fr is supported outside of [—C's, C's], for some
C > 1, then estimate (5.4)) can be improved to

K(f1, fos f3, fas f5. f6) < O H | £l 2y, (5.5)

in accordance to the bilinear estimates of Corollary . Introducing the weighted variant
6

6 , p=2
Ka(f1. fa: I3 fa. f, Jo) 1= fR6 =22 S [T 1£5(uy) 5|5 8 (a(y)) 6(B(y))
j=1
one checks at once that

K(erla e_Gf27 e_Gf37 e_Gf4a e_Gf57 e_Gfﬁ) = KG(fh f2a f37 f47 f57 fﬁ) (56)
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Given u, e = 0, define the function

plylP
G = 5.7
el = A 65.1)
The same proof as |22, Proposition 4.5] yields
KGus(f17f27f37f47f57f6) < K(f17f27f37f47f57f6) (58)
see [22, Remark 4.6]. Split f = f< + f> with fo 1= f1;_, oy, and define
If HySE T HeG“’Ef>HL2-

Definition 5.1. A function f € L?(R) is said to be a weak solution of (5.1]) if there exists
A > 0, such that

Q(gaf7 f7 f7 fa f) = )‘<ga f>L2a for every g € L2(R) (59)

Note that if f extemizes (1.9), then f satisfies (5.9) with A\ = ES||f]7.. The following key
step shows that for some positive i, the quantity | f],,s, is bounded in e > 0.

Proposition 5.2. Given p > 1, let f be a weak solution of the Fuler—Lagrange equation
(5.1) with |[f|2 = 1. If s = 1 is sufficiently large, then there exists C' < oo such that

5
)‘Hst*QP,s,e < 01(1)“f“s*2p,5,6 +C Z Hf”ﬁ*%,s@ + 02(1)7 (510)
=2

where for j € {1,2} the quantity 0;(1) — 0, as s — o0, uniformly in €. Moreover the
constant C is independent of s and €.

Proof. We start by introducing some notation. Let G := G/, . be as in (5.7)). Let h := e“f,
hs := €%f- and he := h — h~. Further split f< = f<< + fv and ho = hg + ho, where
fei= fl[_s4) and he := €% fe. Since f satisfies (5.9), we have that
Me®folze = Me* fo, fodre = Xe*O fo, frre = QP fo £ f f £ )
= Q(Chs fofo fo fo f) = Q(e“ha e Ch,e™Ch e Chy e h, e h) =: Q.
It follows from (5.3)), (5.6)) and (5.8)) that |Qg| < K (h~,h, h,h,h,h). Writing h = h- + h~,
the sublinearity of K implies

"
|QG| < K(h>,h<,h<,h<,h<,h< (Z +Z ) h>7h]27h]37h]47h]o,h )

where the first sum, denoted By, is taken over indices ja, .. ., jg € {>, <} with exactly one of
the ji equal to >, and the second sum, denoted Ba, is taken over indices ja, ..., js € {>, <}
with two or more of the j; equal to >. We estimate the three terms separately. For the
first one,

A = K(h’>7h<7h<7h<)h<7h<) < K(h>7h<<7h<7h<)h<7h<) + K(h’>7h~7h<7h<7h<7h<)

_p=1
S sl (5775 Ihelzz + [hellz2) [h<]7e,
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where we made use of the support separation of h~ and h via (5.5). Since |f|z2 = 1, the
following estimates hold

Ihellzz < €™, hellze < €, and |he|2 < ™| <]z,

and therefore )
_p—1 _ g2 2
A< hs2 (5778 e =) | o] p2) e

The terms By, By can be estimated in a similar way. One obtains:

5
1
By < | 32 (7% €77 o] )€™, and By S s fpa (D I [f2 ).
(=2
The result follows by choosing 1 = 5727 and noting that | f-|;2 — 0, as s — o0. O

We are finally ready to prove that extremizers decay super-exponentially fast.

Proof of Theorem[1.3. Let f € L? be an extremizer of (1.9), normalized so that | f]z2 = 1.
Then f satisfies (5.9) with A = ES. Note that the function (s, ) — | f]s-2s . is continuous
in (s,¢) € (0,00)? and, for each fixed £ > 0,
G _
||f|‘572p,s,5 = ”6 s 2pv£f]l[752782]c||L2 — 0, as s — 0. (5.11)
Let C be the constant promised by Proposition [5.2] and consider the function
A
H(v) := 3V C(v? + v + vt +0°),

In (5.10) choose s sufficiently large so that o1(1) < %, for every ¢ > 0. This is possible
since 01(1) — 0, as s — 00, uniformly in £ > 0. Consequently,

H(||f]s-205.) < 02(1), for every € > 0.

In view of (5.11)), and the facts that H(0) = 0, H'(0) > 0, and H is concave on [0, ), we
may choose s sufficiently large so that sup..qo02(1) < H(vo) and | f|s-2p 51 < vo, where
0 < vg < v1 are the two unique positive solutions of the equation

H(vj) = %maX{H(v) cv =0}

By continuity, | f|ls-2» s < vo, for every e > 0. The Monotone Convergence Theorem then
implies || f]s-2» 50 < vo < %0, which translates into
es "I f e L2(R).

Letting po := s 2P, where s is large enough so that all of the above steps hold, we have
thus proved the first part. For the second part, note that, for every p € R, the function

eulfvlf(x) — ehll=polzl” euolz\pf(x)

belongs to L?(R), since the first factor is bounded (here we use p > 1) and the second factor
is, as we have just seen, square integrable. The result then follows from the Paley—Wiener
theorem as in |36, Theorem IX.13]. O
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We finish with two concluding remarks. Firstly, the argument can be adapted to the case
of extremizers for odd curves treated in the next section. Secondly, an interesting problem
is whether extremizers are smooth (and not only their Fourier transforms). This question
has been addressed in the context of the Fourier extension operator on low dimensional
spheres in [1040], but we have not investigated the extent to which their analysis can be
adapted to the present case.

6. THE CASE OF ODD CURVES

In this section we discuss the necessary modifications to establish analogues of Theorems
[[.3]and [I.4] for odd curves. In general terms, the analysis is similar, but the existence of par-
allel tangents requires an extra symmetrization step. Estimate (|1.15)) can be rewritten as

ISp(F)Lorz) < OpllflL2(r), (6.1)
where the Fourier extension operator on the curve s = y|y[P~! is given by
Sp)at) = [ ey 5 ) (62)
R

Given a real-valued function f € L?(R), denote the reflexion of f with respect to the origin
by f:= f(—-). One easily checks that

Sp(f)(x,t) = Sp(f) (=, —t) = Sp(f)(x,1),

where the bar denotes complex conjugation. In particular,

H8p<f)8p(9)HL3 = HSp(f)Sp(g)HL?’y

and so functions f, g supported on intervals I and —I, respectively, are seen to interact in
the same way as if they were both supported on I, unlike the case of even curves. In this
way, one is led to symmetrize with respect to reflexion. This has already been observed
in the case of the spheres S! [39] and S? [9]. Symmetrization on S? has been efficiently
handled via é—calculus in [17]. The same method can be applied to the present case, but we
choose to present a different argument which does not rely on the underlying convolution
structure.

Lemma 6.1. Let p > 1 and f € L?>(R). Then
Sy o IS0

HfHL2(R) b 0#geL?(R) HQHLQ(R)
g even

If equality holds in (6.3), then f is necessarily an even function.

(6.3)

Proof. Given f € L*(R), f # 0, decompose f = f. + f,, where f. is an even function,
fe = fe ae. in R, and f, is odd, f, = —f, a.e. in R. Then HfH%Q = erH%Q + HfoH%Q, and
Sp(fe) is real-valued while Sp(f,) is purely imaginary. Thus

[Sp(F) (@, )7 = [Sp(fe) (@, O)* +|Sp(fo) (x,1)|?,  for almost every (z,t) e R?,  (6.4)
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and so, by the triangle inequality for the L?-norm, |S,(f)]5s < [Sp(fe)[36 + |Sp(fo)[F6- It
follows that

1So(HZs 1002 + 10 (Fo) |26 X{rw@)niﬁ sp<fo>ri6}
B~ et ol U8 1R J

where we set either ratio on the right-hand side of this chain of inequalities to zero whenever
the corresponding function f. or f, happens to vanish identically. Therefore we may restrict
attention to functions which are either even or odd. On the other hand, the equivalent
convolution form of the inequality implies [S,(9)| s < |Sp(lg])| e, with equality if
and only if g = |g| a.e. in R. Thus

ISy DB _ { IS, IS1LDI3s

1£172

|Sp(9) o

Ifeliz 7 IfolZa }\o;@ey lgllze
g even

(6.5)

where we used that both f. and |f,| are even functions. In order for equality to hold in
, both inequalities in must be equalities. Inspection of the chain of inequalities
leading to shows that, if there is equality in the first inequality, then necessarily one
of the following alternatives must hold:

e | folzz =0, in which case f = f,, and so f is even; or
o |fellrz =0 and f, = |f,| a.e. in R, which implies that f, =0, and so f = 0 which
does not hold by assumption; or

o [felz2lfoll 2 # 0 and [Sp(fe)llpslfelzz = 1Sp(f)lzsl follzz = 1Sp(Ifollzel fol 2
which again forces f, = |f,| a.e. in R, so that f, = 0 which is absurd.

Therefore equality in (6.3) forces f to be an even function, as desired. O

For the remainder of this section, we restrict attention to nonnegative, even functions f.
To prove the analogue of Proposition [3.1], we need bilinear estimates as in Propositions
and and an L' cap bound as in Proposition These can be obtained in exactly the
same way as for the case of even curves, since the Jacobian factor corresponding to is
now equal to pl|y’|P~! — |y|P~!|, which amounts to the bound we used before. We also need
an analogue of Proposition with two points removed, i.e. consider Xz 5 := X\{Z,y}
equipped with a pseudometric ¢ : Xz 5 x Xz 5 — [0,00). The statement is analogous and
we omit the obvious writing. Next, defining the dyadic pseudometric centered at zero as in

[3.11)) and invoking the appropriate bilinear estimates, we obtain an analogue of Proposition
3.4t the statement again being identical (omitted). The analogue of Propositionrequires
the pseudometric

0: R\{_lv 1} X R\{_lv 1} - [0,00), g(:t:,y) = ‘k - k/‘,

where k, k' € Z are such that ||z| — 1| € [2F,251) and ||y| — 1] € [2¥,2¥'+1). Tt handles
concentration at a pair of opposite points, which we now define.
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Definition 6.2. Let yo € R. A sequence of even functions {f,} = L?(R) concentrates at
the pair {—yo,yo} if, for every e, p > 0, there exists N € N such that, for every n > N,

ﬁy+yo|>p, |fn(y)|2 dy < 5‘|an%2(R).
ly—yo|=p

The following analogue of Proposition [3.3| holds for odd curves.
Proposition 6.3. Let {f,} = L?*(R) be an L*-normalized extremizing sequence of even

functions for (6.1)). Let {r,} be a sequence of nonnegative numbers, satisfying r, — 0, as
n — o, and

1+7"n
it | Ifaln) Py > 0.

neN I—Tn

Then the sequence {f,} concentrates at the pair {—1,1}.
As in the case of even curves, this can be used to prove the analogue of Proposition 3.1

Proposition 6.4. Let {f,} = L?>(R) be an L%-normalized extremizing sequence of non-
negative, even functions for . Then there exists a subsequence {fn,}, and a sequence
{ar} = R\{0}, such that the rescaled sequence {gr}, gr := |ar|"?fn, (ax-), satisfies one of
the following conditions:

(i) There exists g € L*(R) such that g — g in L*(R), as k — o0, or
(ii) {gx} concentrates at the pair {—1,1}.

Let {f,} = L?(R) be an L?-normalized sequence of nonnegative, even functions con-
centrating at the pair {—1,1}. Write f,, = gn + gn, where gn := fyuljg ). In particular,
|lgn|z2 = 272, and the sequence {g,} concentrates at yo = 1. The left-hand side of
can be expanded into

| frtip * frpip * fnﬂpH%? = ||gntp * gntp * gnﬂpH%? + |Gnttp * Gnprp * gnﬂp”?ﬂ (6.6)

+ 9] gnptp * gy * ?]nﬂpH%Q + 9[gnttp * Gnpp * gnﬂp’&?

+ 6<gnﬂp *Gntp * Gnlp 5 Gnlp * Gnfp * gnﬂp>L2

+ 6<gnﬂp * Jnblp * Gnilp 5 Gnlbp * Gnflp * gnﬂp>L2

+ 18<gn,up * Jnblp * Gnilp 5 Gnlbp * Gnfbp * gnﬂp>L2

+ 6<gnﬂp * Gnblp * Gnilp 5 Gnlp * Gnflp * gnﬂp>L2

+ 6<gnﬂp * Gnilp * Gnilp 5 Gnlbp * Gnflp * gnﬂp>L2

+ 2{Gnttp * Gullp * Gntlp » Gnblp * Gnllp * Gnfip)r2-

The last three summands vanish since the corresponding supports intersect on a Lebesgue
null set. The symmetry of the inner products then implies

”fnﬂp * fnﬂp * anpH%2
_ 2
= QOHQan * gnp * gnﬂpHm + 30<gnﬂp * gnip * nip * Gnilp 5 Gnlp * gn,up>L2'
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Note that p, = 0, on the support of g,, where o, was defined in ((1.11)). It follows that

| frbip * frpip * anpH%z
[ £nlZ2

_ § HgnUp * gnOp * gnUpHiz I E@ngp * nOp * gnOp * nOp , GnOp * 9n0p>L2 (6.7)
gn L2 gTL L2
2 TNE 4 g9

Since the sequence {g,} concentrates at yo = 1, we have that
nh—{rolo<gn‘7p * GnOp * gnOp * GnOp » GnOp * gnop)r2 = 0.

Heuristically, gnop * gnop is supported near the point (2,2), while (gnap)*(4) is supported

near the point (4,4), and so in the limit there is no contribution of the inner product. More
precisely, given € > 0, write g, = hn + Kk, where hy, = g, 11 14.] and |knl72 — 0, as
n — o0. If € is small enough, then support considerations force

(hnop # hpop * hyop % hnop , hnop * hpopyr2 = 0, for every n,
whereas the cross terms involve k,,, whose L?-norm tends to zero, as n — c0. We conclude

2 2
lim sup | frbsp * frtip * fappl 7o _ 9 Jim sup 1gnop * gnop * gnop| 72

n—w [ £nl32 2 now gl

: (6.8)

and similarly for the limit inferior. Lemma applied to the sequence {g,,} implies

. anNp # frplp * anp”%2(R2) 51
lim sup 5 < .
n—n 1fnl 2 V3p(p—1)

Moreover, equality holds if we take f, = gn + Jn, with g, := 27V ththHZzl, and

—2
ha(y) = e PPy 56 g0 o4 (y).
Theorem |1.6|is now proved.

Remark 6.5. The invariant form of condition (1.16|) in Theorem is

where C§ = 7/4/3 is the best constant for the parabola in convolution form. In the case
p = 3, a similar condition appears in previous work of Shao [38] on the Airy—Strichartz
inequality which translates into (8—2’)6 > % This is of course incompatible with but,
as was recently pointed out in [20, Remark 2.7], there is a problem in [38, Lemma 6.1] in
the passage from Eq. (89) to Eq. (90), as the argument presented there disregards the
effect of symmetrization. On the other hand, the case p = 3 of agrees with [20, Case
p = q = 6 of Theorem 1], once the proper normalization is considered.
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We now come to the question of whether extremizers for ([1.15) actually exist, and

discuss the case 1 < p < 2 first. Just as in (4.17)), set g,(y) := e_%(|y|p—Py)|y]_2_Tp. Its even
extension, 3
. gn]l[o,oo) + gnﬂ(foo,()]

In: 1 )
22 HQnHLZ(o,oo)

can be used to establish the strict inequality in . One simply uses together

with the fact that the sequence {g,/|| gn|\z21} s>0 concentrates at yp = 1, so that an argument

similar to Lemma can be applied to the present case. Therefore, extremizers for

exist if 1 < p < 2, and Theorem [I.7] is now proved.

The case p > 2 seems harder. In view of , it is natural to use the methods of
in order to find the series expansion for the trial functions f = 27V 2(g + §), where
gly) = e_|y|p\y|(p_2)/6+“ﬂ[o7oo) (y), for different choices of a. By doing so, we find that we
cannot reach the critical threshold %
varying the value of a. We are led to the following conjecture.

6
<Qp> __5
Cs pp—1)
Moreover, extremizers for (1.15)) do not exist.

6.1. On symmetric complex- and real-valued extremizers. The proof of Lemma (6.1
merits some further remarks which we attempt to insert within a broader context.

First of all, identity holds thanks to the symmetry with respect to the origin of both
the curve s = yly[P~! and the measure du, = (¢t —yly[P~1)|y|*~2/6dyds. In fact, the
proof of Lemma immediately generalizes to the Fourier extension operator associated
to any antipodally symmetric pair (X, ). By this we mean a set ¥ € R? (usually a smooth
submanifold) together with a Borel measure p supported on ¥, both symmetric with respect
to the origin in the sense that T'(X) = ¥ and T™*u = p, where T' denotes the antipodal map
T(y) = —y and T*u denotes the pushforward measure.

Secondly, the Lebesgue exponent 6 can be replaced with any finite exponent r > 2. More
precisely, in the general context of an antipodally symmetric pair (3, ), if an estimate

Lf el o ey S 122z ) (6.10)

does hold for some r € [2,00), then necessarilyﬂ

, but that we can approach it from below by

Conjecture 6.6. For every p = 2,

HfMHLT(Rd) _ H@HLT(Rd)

0#feL?(Z,p) Hf“L2(E,}L) 0#geL2(Z,u) HQHLQ(Z,;L) .
f R-valued g R-valued, g even or g odd

Thirdly, the discussion extends to the more general situation of complex-valued func-
tions. For concreteness, let us specialize to the case of the unit sphere ¥ = S~ < R,

THere, a real-valued function g : ¥ — R is naturally defined to be even (resp. odd) if g(y) = g(—y) (resp.
9(y) = —g(—y)), for p-almost every point y € X.
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d = 2, equipped with its natural surface measure pu. Given an exponent p = pg := 2((f_+11),
the Tomas—Stein inequality states that
[ (up)]| o (ray Spa [l p2(sa-ry, (6.11)

for every complex-valued function u € L?(S*1). It is known [13,[19] that complex-valued
extremizers for exist in the full range p > pg, the endpoint existence in dimensions
d = 4 being conditional on a celebrated conjecture concerning . Moreover, if p = py is
an even integer, then real-valued, even, nonnegative extremizers for exist, by virtue
of the equivalent convolution form, see [9,17,39]. Finally, if p = oo, then one easily checks
that the unique extremizers for are the constant functions. For general p = pg,
p # 00, we argue that the search for extremizers of can be restricted to the class
of complex-valued, symmetric functions. Indeed, write u = f + ig, with f = Ru, g = Su.
By reorganizing the summands, we may write u = F + iG, where F' = f. + ig, and
G = ge — if,. The functions F,G are complex-valued and symmetric, in the sense that
F(y) = F(—y) and G(y) = G(—y), for every y € S%~!. Moreover, one easily checks that
F(y) = 3(uy) + u(-y)), Gy) = 5 (uly) — u(-y)), [uli2 = |F|72 + |G7. and that, in
view of the antipodal symmetry of the pair (S¢~!, i), the functions Fiu, Gy are real-valued.
Following the proof of Lemma [6.1] we are thus led to the following result.

Proposition 6.7. Let d = 2 and 2€;l_+11) < p < 0. Then for every complex-valued u €

L2(S%1), w # 0, the following inequality holds:

[Cure)ll oy _ | Epl o ey

HUHLQ(S’i—l) 0#£FeL?

sym

PP ®RS 6.12
sa-1y 1] L2 sa-1y (6.12)

where Lgym(Sd_l) = {FeL?S%): F(y) = F(—y), for p-a.c. ye S 1}. Moreover, if u

realizes equality in (6.12]), then there exist F' € Lgym(Sd_l) and a constant k € C such that
u=kF, u-a.e.

Proof. In light of the previous discussion, we can assume p < o0, and only the last statement
merits further justification. Suppose that u realizes equality in . In particular,
u is a complex-valued extremizer for (6.11)). Decompose u = F + iG as before, with
F(y) = 2(u(y) +u(—y)), G = £ (u(y) —u(—y)), so that F,G € L2, (S?71). If either F =0
or G = 0, then there is nothing to prove, and so in what follows we assume F,G not to
be identically zero. Following the proof of Lemma we note that equality occurs in
the application of the triangle inequality with respect to the LP/2 (R%)-norm (recall that

p/2 > 1 is finite) only if there exists A > 0, such thatﬂ

[Fr()| = AlGu()|, for every € e RY. (6.13)

8As Fourier transforms of compactly supported distributions, both sides of (6.13]) coincide with the
absolute value of real-valued, smooth functions, so that the pointwise equality occurs at every point, and
not just almost everywhere.
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Subsequent cases of equality further imply

1)l poesy 1 Fnlpo@e  1Galpoe)

lullzaga-1y — [F g2 Sd—l) - HGHLZ(Sd—l)’
and so the functions F, G are also extremizers for . It suffices to show that F' = kG,
where k € {—A, A}. Recall that Fu, G are real—valued functions, since F,G € Lgym(Sd_l).
Let & € R? be such that |Fu(£0)| # 0. We lose no generality in assuming that Fu(ﬁo) >0

and @(&)) > 0, for otherwise we could replace F' by —F, or G by —G. By continuity,
there exists rg > 0, such that

Fu(€ + &) = AGu(€ + &), for every |¢| < ro. (6.14)

On the other hand, f‘ﬁ({ + &) = (e7¥ 50F,LL)A(£) and @(5 + &) = (e7WoGuY(€). The
functions e F and e~ %G belong to L2, (S%!), and may be expanded in the basis
of spherical harmonics,

w v(dn oo v(dn)
efiy'fo Z Z O, LY k> and e” W &) = Z Z bn,kYn,k' (615)
n=0 k=1 n=0 k=1

sym (

Here, {Y, k}v (41) Jenotes a basis for the space of spherical harmonics of degree n in the
sphere S, Wthh has dimension 7(d,n) := (d+271) (d+"23) see |41}, Chapter IV] The
coefficients a,, 1, by, 1, are complex numbers. Applying the Fourier transform to (| , we
find that

Fu(é + &) = %Z €T (€D ”k(|£|)

(6.16)

Gu(& + &) = %2 b €17 Ty (1€ nk(m)

Using (/6.14]) and (6.16)) together with the orthogonality of the functions {Y;, .} in L%(S%71),
we obtain

d
An )T~ 5+ Jd yn(T) = /\bn,krfﬁﬂt]giun(r), for every r € (0,ro).
In particular, a, j = Aby, ;. This and (6.15) together imply F' = AG. ]

A similar result to Proposition [6.7] holds for a broader class of antipodally symmetric
pairs (X, u). Indeed, let r € [2,00) be such that the extension estimate ) holds. Then

U r Fulgr
H( o1 RY) _ sup [ MHL (Rd)’ (6.17)

ozuer2(my) o2y orererz, s 1FlL2s0)

sym

with the obvious definition of Lgym(E,,u). Moreover, if p is compactly supported and
finite, then any complex extremizer u for (6.10]) necessarily coincides with a multiple of a

symmetric extremizer F' e Lsym( u). Regarding the second part of Proposition the
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previous proof used the particular geometry of the sphere, but it can be modified to handle
this more general situation. The crux of the matter is the fact that the Fourier transform of
a compactly supported finite measure is real analytic. Indeed, if i is a positive, compactly
supported finite measure, and F € L?(X, 1), then, for every & € R?,

Fpu(€) = J e SV (y )du(y)=J26"(“°)'yeZEO'yF (y) dpaly)
0 (6.18)
) y) e VR (y) du(y),

where the convergence is 1ocally uniform. To see this, note the following tail estimate,

> O (6~ v @vr ) anty
B

k=K

< u(X) HFHL2 (=) Z
L2 () Py

which holds for every compact subset 2 < Rd and every K € N. Here, 5 = supgeq yex [§ —
§0|]y| < o0. Therefore, the analogue of ( 111 this settmg leads to the corresponding
, which by analyticity of | 1mphes F w= )\G,u, and therefore F' = A\G.

These observations can be of mterest when combined with the main result of [13], which
states that complex-valued extremizers exist in the non-endpoint setting, provided p is
a positive, compactly supported finite measure. Important cases of antipodally symmet-
ric pairs (X, 1) which have attracted recent attention include the aforementioned case of
spheres, together with ellipsoids equipped with surface measure, and the double cone, the
one- and the two-sheeted hyperboloids equipped with their natural Lorentz invariant mea-
sures, see |18] and the references therein.

We end this section with a final remark on the multiplier form of inequality (6.1]).
Consider the Cauchy problem

Oru — 0[P 0,u =0, (x,t) e R x R,

whose solution can be written in terms of the propagator

(6.19)

~

u@ﬂ—ﬁw%ﬂm—if”WWPWO@ (6.20)
R

In view of (6.1)), and more generally of |26, Theorem 2.1], this satisfies the mixed norm
estimate ,
p—2 ~15,
[1D1" e o0 £ 1y s o) S 122y

whenever the Lebesgue exponents 7, s are such that % + % = %

In this context, as noted in [20,38] for the case p = 3, it makes sense to distinguish
between real-valued and general complex-valued L? initial data. This is because the evo-
lution etl%=l"""0x preserves real-valuedness. In other words, if f is real valued, then so is

etl%=""% £ for every t € R. In fact, if f is real-valued, then f(—g) = f(ﬁ), and so taking the
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complex conjugate of reveals that u(x,t) = u(x,t). The operator ]D\#e”az‘p_lﬁf is
seen to preserve real-valuedness in a similar way:.

It is then natural to consider the following family of sharp inequalities, for real- and
complex-valued initial data and admissible Lebesgue exponents r, s:

p—2 -1

D[+ ello=l” aCEU”L;L;(RHl) < My s(O)fu] 2wy, (6.21)
p—2 -1

[[DI5 e %l F s i1y < My s(R) fl L2, (6.22)

where u : R — C is complex-valued and f : R — R is real-valued. The study of extremizers
for f in the Airy—Strichartz case p = 3 has been considered in [15,20422}38]. It
would be interesting to determine whether the methods developed in the present paper can
be adapted to the study of extremizers for f in the mixed norm case r # s, so as
to obtain an alternative approach to profile decomposition or the missing mass method. We
do not pursue these matters here. However, we would still like to point out two interesting
features of this problem which are easily derived from our previous analysis, and are the
content of the following result.

Proposition 6.8. Let p > 1, and r,s € (2,00) be such that M, (C) and M, s(R)
are finite. Then M, , (C) = My, s(R). Moreover, if a complez-valued extremizer u for
M, s(C) exists, then there exist k € C and a real-valued extremizer f for My, s(R), such
that u = Kf.

The problem of the relationship between arbitrary complex-valued extremizers and real-
valued extremizers has been considered in the literature, see e.g. [10] for the case of the
Tomas-Stein inequality on the sphere S?2. Note the duality with the second statement of
Proposition [6.7] above.

Proof of Proposition[6.8 The equality M, s(C) = M,,, s(R) follows the same lines of the
proof of Lemma To see why this is the case, let u € L?(R) and write u = f +ig, where
f and g are the real and imaginary parts of u, and hence real-valued. Therefore

lul?z = | £172 + lgl72: (6.23)
p—2 -1 p—2 -1 =2 45 |p—1
|D|7 el (@) 2 = || D5 0% ()P 4 || DI N g ()P, (6.24)

for every (x,t) € R%. If r,s > 2, then we can use the triangle inequality for the Lfg/ > and
the L:/ % norms applied to (6.24)), and obtain

p—

—2 — 2 —_ —2 —
0l oy 3 < ID) T R, 4 [|D T g3, (6.25)

[1D]

Without loss of generality, assume that f,g are not identically zero. Reasoning as in the
proof of Lemma [6.1] yields

p=2 -1
[1D] ol a3, 1

p=2 -1 p=2 -1
|DIER et 2. || DI et %ﬂﬁ@}
b

< max{
b 112, ’ l9]2,

(6.26)
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and therefore M,,, s(C) < M, ;. s(R). The reverse inequality is immediate. We gratefully
acknowledge recent personal communication with R. Frank and J. Sabin, who indepen-
dently arrived at a similar conclusion in the context of |20].

We proceed to show that an arbitrary complex-valued extremizer for My, (C) neces-
sarily coincides with a constant multiple of a real-valued extremizer for M, , s(R). Let
r,s € (2,00), and suppose that u is a complex-valued extremizer for My, , s(C), which we
express as the sum of its real and imaginary parts, v = f 4+ ig. An inspection of the chain
of inequalities leading to shows that one of the following alternatives must hold:

e g =0and u = f is a real-valued extremizer, or
e =0, u=1g, and g is a real-valued extremizer, or
e f, g are both not identically zero, and
p=2 -1 p=2 -1
[[DI" et I3, D] et g,
1£172 g7

so that f, g are real-valued extremizers.

= M,,..(R), (6.27)

It suffices to analyze the latter case. An inspection of the chain of inequalities leading to
(6.25)) shows that equality must hold in both applications of the triangle inequality. Since
r, s € (2,00), this implies the existence of A > 0, such that

1|57 et ™12 £ ()| = M| DI el "% g(2)], for almost every (z,t) e R2.  (6.28)
Equality in (6.27) then implies |f]z2 = A|g|z2. By squaring (6.28), and applying the
Fourier transform, the equality of the resulting convolutions can be recast as follows:

JRQ Flun) Fy) 8(t — v(w1) — (y2)) 8(x — y1 — y2) lyrge] = dyn dys

= )\2 fRz 9(y1)9(y2) 5(15 —(y1) — 1/1(y2)) 5(1@ —y1 — yg) ]ylyg\L:z dy1 dya, (6.29)

where (z,t) € R? and (y) := y|y[P~!. Considering points (z,t) in the interior of the
support of the convolution measure g, * up,, ie. satisfying ¢t > 2i(5) for z > 0, and
t < 2¢(3) for x < 0, we see that there exists a unique positive solution o = a(x,t) > 0 of

t=9(5 —alz,t) + (5 + afz, b)), (6.30)
and hence that the system of equations ¢ = ¥(y1) + ¥ (y2), * = y1 + y2 has unique solutions
(1,92) € {(5 — o, 1), 5 + alx,1), (5 + a2, ), 5 — alz, 1)}

From (6.29) and a similar reasoning to that of |32, Proposition 2.1 and Remark 2.3], it
then follows that

F(& = al@, ) F (& + ale, 1) = N2G(E — ale,0))§(E + ol 1)),

for almost every (x,t) € supp(up * ). Alternatively, the latter identity follows by con-
sidering the analogue of formula ([2.4) obtained in the case of even curves, which by the
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previous discussion applies to the present scenario as well. This yields
f@)fa') = Ng(2)d("), (6.31)

for almost every (z,2') € R%. As f , g belong to L?(R), we may integrate over any compact
subset I < R in both variables z, 2’, and obtain

~ 2 2
( f Fla)az)’ = 22 (J () dr)” (6.32)
I I
Choose a compact subset JJ < R for which §;g(z) dz # 0. From (6.32), we have that

L Fle)dz = A L §(z) da, or L Fla)dz = - L () da (6.33)

Integrating both sides of (6.31]) over 2’ € J, one infers from (6.33)) that either ]? = \g or
f = —\g, and therefore that either f = A\g or f = —Ag. The conclusion is that there exists

A > 0 such that either u = (A +1i)g or u = (—\ +4)g, and so u is a constant multiple of a
real-valued extremizer, as desired. ]
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APPENDIX A. CONCENTRATION-COMPACTNESS

This appendix consists of a useful observation regarding Lions’ concentration-compactness
lemma [2§]. Let us start with some general considerations. Let (X, B, ) be a measure space
with a distinguished point T € X, such that {Z} € B and u({Z}) = 0. Set Xz := X\{Z}. Let
0: Xz x Xz — [0,00) be a pseudometric on Xz, i.e. a measurable function on Xz x Xz sat-
isfying o(x,z) = 0, o(x,y) = o(y, ), and o(z,y) < o(z, 2) + o(2,y), for every z,y,z € Xz.
Define the ball of center x € Xz and radius r > 0, B(x,r) := {y € Xz: o(x,y) < r},
and its complement B(z,r)" := X\B(xz,r). It is clear that Xz = Uy=o B(z,7), for every
x # Z. We have the following concentration-compactness result, which should be compared
to |28, Lemma I.1].

Proposition A.1. Let (X,B,u),z € X,0: Xz x Xz — [0,00) be as above. Let {p,} be a
sequence in LY(X, ) satisfying:

pu >0 in X, f pudi = A,
X

where X\ > 0 is fized. Then there exists a subsequence {py,} satisfying one of the following
three possibilities:

(i) (Compactness) There exists {x} < Xz such that py, (- + zi) is tight i.e.:

V5>O,3R<OO:J Py At = X — €
B($k7R)
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(ii) (Vanishing) lim sup j Pn, dpe =0, for all R < oo;
B(y,R

k—0o0 -

yeXz

(iii) (Dichotomy) There exists o € (0, ) with the following property. For every e > 0,
there exist R € [0,00), ko = 1, and nonnegative functions py1, pr2 € L*(X, ) such
that, for every k = ko,

lpn, — (Pra + pr2)llrx) < e, UX P dp — 04) <s, UX pr2dp — (A —a)| <e,

supp(pr,1)  B(zk, R), and supp(pr2) < Blag, Ri)",
for certain sequences {zxy} < Xz, {Ri} < [0,00) with Ry — o, as k — o0.

The proof of Proposition parallels that of |28, Lemma I.1], and proceeds via analysis
of the sequence of concentration functions

Qn:[0,0) > R, Qu(t) := sup f P d .
z€Xz JB(z,t)
The sequence {@,} consists of nondecreasing, nonnegative, uniformly bounded functions
on [0, ), which satisfy Q,(t) — A, as t — oo, since u({Z}) = 0. Very briefly, the argument
goes as follows. By the Helly Selection Principle, there exists a subsequence {n;} < N
and a nondecreasing, nonnegative function @: [0,00) — R, such that @, (t) — Q(t), as
k — oo, for every t = 0. Set a := limy_,o, Q(t) € [0, A], and note that:

e If @ =0, then Q = 0. This translates into the vanishing condition at once.
e If @ = A, then compactness occurs.
e If 0 < a < A, then dichotomy occurs. In this case, the functions py, 1, pr 2 are given
by pr,1 = Pr 1Bz, R) A Pk2 = Py LBy, Ry
We omit further details and refer the interested reader to [28].

When applying Proposition to the study of extremizing sequences for , the
desirable outcome (with a view towards obtaining concentration at a point under the
hypotheses of Proposition is compactness or vanishing. Therefore the possibility of
dichotomy needs to be discarded. To this end, Lions proposes the strict superadditivity
condition [28, Section I1.2], which in the present setting can be recast as follows. Define

I = sup{1E, (N oz 1132 m) = M- (A1)

The quantity I is said to satisfy the strict superadditivity condition if, for every A > 0,
Iy > 1, + Ix_,, forevery ae (0,)). (A.2)

In our case, &, is a linear operator, and so I = NI = /\3Eg. Thus translates
into the elementary numerical inequality A3 > a3 + (A — )3, which holds for every A > 0
and a € (0,\). As seen in the proof of Proposition it is condition (applied with
A = 1) which ensures that dichotomy does not occur. A similar condition in a more general
context is used by Lieb |27, Lemma 2.7].
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APPENDIX B. REVISITING BREZIS-LIEB

In this appendix, we prove a useful variant of |13, Proposition 1.1], which in turn relies
on the Brézis—Lieb lemma [4]. [13, Proposition 1.1] states that, in the compact setting, the
only obstruction to the strong convergence of an extremizing sequence is weak convergence
to zero. In the non-compact setting, it is in general non-trivial to verify condition (iv)
of [13, Proposition 1.1]. To overcome this difficulty, various arguments using Sobolev
embeddings and the Rellich-Kondrachov compactness theorem have been employed in
[7,14134L35]. In our case, it is not clear how such an argument would go. Instead we take
a different route, and argue that condition (iv) from [13| Proposition 1.1] can be replaced
by uniform decay of the L?-norm, in a sense compactifying the space in question. The
following is a precise formulation of this idea.

Proposition B.1. Given p > 1, consider the Fourier extension operator &,: L*(R) —
L5(R?) defined in ([1.12). Let {f,} = L*(R), and let © : [1,0) — (0,0) with O(R) — 0,
as R — oo, be such that:

(i) |falr2m) =1, for every n e N;

(i) limp oo |Ep(fn)l Lo (r2) = Ep;

(iii) fn—f#0, asn — oo;

(iv) [fall2(=r.rp) < O(R), for everyneN and R > 1.
Then fn, — f in L*(R), as n — oo. In particular, |f| 2@y = 1 and [E,(f)|Lsme) = Ep,
and so f is an extremizer of ((1.9).

This variant was already observed in (33, Proposition 2.31] for the case of the cone, and
the proof follows similar lines to that of |13, Proposition 1.1]. Note that the function
© may depend on the sequence {f,}, but not on n. The following proof is inspired by
[19, Proposition 2.2].

Proof of Proposition[B.1 Denote r, := f, — f. Then r, — 0, as n — o0, and thus
m = limy o0 ||rp)|7 . exists and satisfies 1 = | f[|7, + m. Given R > 0, decompose
rn = rnl[_R R+ Tnl[_R R =1 Tn,1 + Tn2.

Since the support of 7y, 1 is compact and 7,1 — 0, as n — 00, then &,(ry,,1) — 0 pointwise
a.e. in R?, as n — o0. On the other hand, from condition (iv) we have that

1€p(rn2)lLs < Ep(O(R) + [ flL2(-r,R1))s (B.1)
for every R > 1. This upper bound is independent of n, and tends to 0 as R — o0. We
have &, (fn —n,2) = Ep(f) +Ep(rn1), and [Ep(fn—rn2)|Ls < Ep(1+O(R) + | flL2((=r, R)))
is uniformly bounded in n. Since &y(fn, — rn2) — &Ep(f) pointwise a.e. in R?, as n — oo,
we can invoke the Brézis-Lieb lemma [4] and obtain

[€p(fo = mn2) 76 = 1€p(F)I 76 + |€p(rn1)lze + 0(1), as n — oo.

It follows that p := limsup, o [Ep(rn1)]%s and A := limsup,, ., [Ep(fn — mn2)|$s satisfy

A= 1E(N5s + n.
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Since €y (rn,1) %6 < ES|rp1]Ss < ES|ra[%,, we have p < ESm?. Therefore

A= 1E(N5s + 1 < 1E(Hs + Ep(L = |£]72)°.
Thus, replacing the definition of A, we have proved

lim sup 1€, (fn — rn2) 2o < 1€ (N)IZe + Ep(l = [ £172)°, (B.2)

for every R > 1. Now, [E,(fn — mn2)|rs = |Ep(fa)lrs = [€p(rn2)|rs and [[Ep(rn2)|Ls is
bounded above as quantified by (B.1]). Thus

limsup [&(fo = 7n.2) 26 = Ep = Ep(O(R) + |2, R1r)):
n—
for every R > 1. Using this together with (B.2)), and letting R — oo, yields
E) <& (N2s + Ep(L = fl72)°
By the elementary inequality (1 —¢)® < 1 — ¢3, valid for every t € [0,1], we then have
Ep < |&(H2s +Ep(L [ f]72).
Since the reverse inequality holds by definition, we conclude that f is an extremizer. More-

over, since f # 0 and the elementary inequality is strict unless ¢ € {0, 1}, we conclude that
|flz2 = 1. This completes the proof of the proposition. O
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