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SHARP THRESHOLDS OF GRAPH PROPERTIES,
AND THE k-SAT PROBLEM

EHUD FRIEDGUT AND AN APPENDIX BY JEAN BOURGAIN

1. Introduction and definitions

Consider G(n, p) to be the probability space of random graphs on n vertices
with edge probability p. We will be considering subsets of this space defined by
monotone graph properties. A monotone graph property P is a property of graphs
such that

a) P is invariant under graph automorphisims.
b) If graph H has property P , then so does any graph G having H as a subgraph.
A monotone symmetric family of graphs is a family defined by such a property.
One of the first observations made about random graphs by Erdös and Rényi

in their seminal work on random graph theory [12] was the existence of threshold
phenomena, the fact that for many interesting properties P , the probability of P
appearing in G(n, p) exhibits a sharp increase at a certain critical value of the
parameter p. Bollobás and Thomason proved the existence of threshold functions
for all monotone set properties ([6]), and in [14] it is shown that this behavior is
quite general, and that all monotone graph properties exhibit threshold behavior,
i.e. the probability of their appearance increases from values very close to 0 to
values close to 1 in a very small interval. More precise analysis of the size of the
threshold interval is done in [7].

This threshold behavior which occurs in various settings which arise in combina-
torics and computer science is an instance of the phenomenon of phase transitions
which is the subject of much interest in statistical physics. One of the main ques-
tions that arises in studying phase transitions is: how “sharp” is the transition?
For example, one of the motivations for this paper arose from the question of the
sharpness of the phase transition for the property of satisfiability of a random k-
CNF Boolean formula. Nati Linial, who introduced me to this problem, suggested
that although much concrete analysis was being performed on this problem the best
approach would be to find general conditions for sharpness of the phase transition,
answering the question posed in [14] as to the relation between the length of the
threshold interval and the value of the critical probability.

In this paper we indeed introduce a simple condition and prove it is sufficient.
Stated roughly, in the setting of random graphs, the main theorem states that if
a property has a coarse threshold, then it can be approximated by the property of
having certain given graphs as a subgraph. This condition can be applied in a more
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1018 EHUD FRIEDGUT AND JEAN BOURGAIN

general setting such as that of the k-sat problem, where, indeed, it can be used to
demonstrate the sharpness of the threshold.

Let us now define precisely the question with which we wish to deal. Consider
An, a family of graphs on n vertices, defined by a monotone graph property Pn.
Let us define what we mean by a sharp threshold vs. a coarse one, for a series of
such properties:

Recall that G(n, p) is actually a product space of
(
n
2

)
copies of the 2 point space

endowed with the product measure, and µp(A), the measure of A, is the probability
that a random graph with edge probability p will belong to A, and is a monotone
function of p. Fix ε > 0 and for a property P , and the family A defined by it, let
p0 be such that µp0(A) = ε, and let p1 be defined by µp1(A) = 1 − ε. Define the
threshold length δ to be p1 − p0. There exists pc ∈ [p0, p1], the critical p such that
µpc(A) = 1/2. Now for a series of properties P (n) we will say that the properties
have a sharp threshold if lim δ(n)/pc(n) = 0 where pc(n) is the critical p for P (n).
If the ratio δ/pc is bounded away from zero, we will say that properties have a
coarse threshold. (Bollobás and Thomason [6] showed that this ratio is bounded
from above.) From [14] a coarse threshold for a graph property can only happen for
small enough p, i.e. p bounded from above by a negative power of n. The question
of understanding coarse thresholds for non-symmetric properties at values of p that
are bounded from 0 is also interesting; see [13].

Example. Connectivity has a sharp threshold since the critical p is approximately
log(n)/n whereas δ ∼ 1/n. On the other hand the property of having a triangle
in the graph has a coarse threshold since both the critical p and the length of the
threshold interval are of magnitude 1/n.

The first naive conjecture that one might raise is that a coarse threshold happens
only for such properties, i.e. having a certain graph as a subgraph. The following
example shows, however, that this conjecture must be slightly modified:

Consider the property “G is a graph on n vertices with a triangle as a subgraph,
and at least log(n) edges”. A moment’s reflection shows that this property is
probabilistically equivalent to the previous one, and differs from it by a set of
graphs with total probability which is negligible. What we suggest in this paper is
that the naive conjecture is correct except for such artificial examples.

Before presenting the main theorems here are a few definitions and notations:
A balanced graph is a graph with average degree no smaller than that of any of

its subgraphs. A strictly balanced graph is one where the average degree is strictly
larger than that of any proper subgraph. For example any cycle is a strictly balanced
graph, whereas two disjoint copies of a cycle make up a balanced but not strictly
balanced graph.

For a family of graphs A we will call a graph H minimal if H belongs to A but
no subgraph of H does. Let ‖A‖ denote the number of edges of the largest minimal
graph in A, when A is non-empty, and define ‖A‖ = 0 when A is the empty family.
Throughout this paper c will denote a constant, not necessarily the same one each
time it appears. When dealing with graphs, n will denote the number of vertices
and N =

(
n
2

)
, the number of edges in the complete graph. We will be interested in

p = p(n) such that p tends to zero as n tends to infinity. Let q = 1− p.
For a graph H , |H | will denote the number of edges in H , and v(H) the number

of vertices. E(H) will denote the expected number of copies of H in G(n, p),
E(H) = p|H|( n

v(H)

) v(H)!
|Aut(H)| . For graphs H, S we will denote the fact that they
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SHARP THRESHOLDS OF GRAPH PROPERTIES 1019

are isomorphic by H ∼ S. For a graph H , let Θ(H), the orbit of H , be the
set of all subgraphs of the complete graph on n vertices which are isomorphic to
H . So E(H) = |Θ(H)|p|H|. We define also another function of H which is more
convenient to work with: D(H) = nv(H)p|H|. Note that for H of bounded size
D(H) ≥ E(H) ≥ cD(H).

Obviously for a property to have a coarse threshold there must be points within
the critical interval for which the derivative of the function µp(A) with respect to
p is small. More precisely:

Remark. If {Ai} is a series of properties with a coarse threshold, i.e. δ(An)/pc(An)>
C for all n, then for each n there exists p∗ = p∗(n) such that p∗ is in the critical
interval for An and p∗ · dµ

dp |p=p∗ < 1/C.
We will attack this aspect of the problem: denoting the slope at a point p by

I (for reasons to be explained) give a condition on the family A such that p · I is
bounded from above.

We now come to our main theorem:

Theorem 1.1. There exists a function k(ε, c), such that for all c > 0, any n and
any monotone symmetric family of graphs A on n vertices, such that p · I ≤ c, for
every ε > 0 there exists a monotone symmetric family B such that ‖B‖ ≤ k(ε, c)
and µp(A4B) ≤ ε. Furthermore the minimal graphs in B are all balanced.

What the theorem essentially means is that a family with a coarse threshold can
be approximated by a family whose minimal graphs are all small. (Notice that any
monotone family is characterized by its minimal graphs.)

The following theorem seems at first sight to be slightly less informative than
the previous one; it is, however, more suitable for applications, i.e. proving certain
properties have a coarse threshold.

Theorem 1.2. Let 0 < α < 1. There exist functions B(ε, c), b1(ε, c), b2(ε, c) such
that for all c > 0, any n and any monotone symmetric family of graphs A on n
vertices such that p · I ≤ c and α < µp(A) < 1 − α, for every ε > 0 there exists a
graph G with the following properties:

• G is balanced.
• b1 < E(G) < b2.
• |G| ≤ B.
• Let Pr(A|G) denote the probability that a random graph belongs to A condi-

tioned on the appearance of Ḡ, a specific copy of G. Then

Pr(A|G) ≥ 1− ε.

Note that conditioning on the appearance of, say, a triangle in G(n, p) is not the
same as conditioning on the appearance of three specific edges (i, j), (j, k), (k, i)
that are the edges of a specific triangle.

These two theorems can also be stated analogously for hypergraphs, and also in
a slightly more general setting which is relevant in the case of the k-sat problem:

Consider a k-CNF formula on n Boolean variables, i.e. a conjunction of clauses
each of which is a disjunction of k of the variables and their negations. A random
formula with parameter c consists of cn such clauses chosen uniformly from all
2k
(
n
k

)
clauses. Let

Pk(c) = Pr(a random formula with cn clauses is satisfiable).
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1020 EHUD FRIEDGUT AND JEAN BOURGAIN

In section 5 we will prove the following, which was not known for k > 2:

Theorem 1.3. For every fixed k ≥ 2 there exists a function c(n) such that for
every ε > 0

Pk(c− ε) → 1,

Pk(c + ε) → 0.

The next theorem gives a characterization of the possible values of the critical
edge probability for graph properties with a coarse threshold:

Theorem 1.4. For any c > 0 and any 0 < τ < 1/2 there exist positive real
numbers b1, b2, L such that for any monotone graph property A, if pI < c and
τ ≤ µp(A) ≤ 1 − τ , then b1n

α ≤ p ≤ b2n
α with α rational, α = −k/l, k and l

positive integers and l ≤ L.

In other words, coarse thresholds only happen near rational powers of n. The-
orems 1.1 and 1.4 each separately imply, for example, the well-known fact that
connectivity has a sharp threshold. Theorem 1.4 shows this since the critical prob-
ability for connectivity is p = log(n)/n. Theorem 1.1 implies this since it is possible
to show that at the critical probability it is not possible to approximate connectivity
by the property of having a subgraph from a list of graphs of bounded size.

We conjecture that our characterization of coarse thresholds holds in a more
general setting, where symmetry plays no role: for any monotone set A ⊂ {0, 1}n

define

‖A‖ = max
{∑

εi | ε is a minimal element in A
}

.

Conjecture 1.5. There exists a function k(ε, c) such that for all c > 0, for any A
that is a monotone subset of the probability space {0, 1}n endowed with the product
measure µp, if p·I ≤ c, then for every ε > 0 there exists a monotone set B ⊂ {0, 1}n

such that ‖B‖ ≤ k and µp(A4B) ≤ ε.

This conjecture seems to be related to Conjecture 2.4, which will be presented
in the following section, although we are not able to show that one of them implies
the other.

2. Fourier analysis and sketch of the proof

We will now define an orthonormal basis, with respect to µ, for the space of
real functions on G(n, p). The use of these functions and their nice properties in a
similar setting is introduced by Talagrand in [28]. These functions will be indexed
by all subgraphs of the complete graph on n vertices. Let E denote the set of all
edges of the complete graph. Define U∅ to be identically equal to 1. For any edge
e ∈ E let Ue be defined as follows:

Ue(H) =
{ −√q/p if e ∈ H,√

p/q if e 6∈ H.

For any other graph R define

UR =
∏
e∈R

Ue.
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SHARP THRESHOLDS OF GRAPH PROPERTIES 1021

It is not hard to check that these functions indeed are orthonormal with respect to
the inner product defined by µ. For any real function f on G(n, p) define f̂(H) as
〈f, UH〉. This gives us the Fourier expansion of f :

f =
∑
H

f̂(H)UH .

For p = 1/2 this is the usual Fourier-Walsh expansion of a real function on ZN
2 . For

any value of p we define as usual the L2 norm of f , and Parseval’s identity holds:

‖f‖2
2 =

∑
f̂2.

A crucial property of f̂ that we will use is that if f is symmetric, then so is f̂ , i.e.
if f(H) depends only on the isomorphism type of H , the same is true of f̂ .

For a given edge e define Ie(f), the influence of e on f , to be the measure of the
set of graphs H such that f(H) 6= f(H⊕e) where H⊕e is the graph obtained from
H by deleting e if e is an edge of H , or adding it if it is not. Put I =

∑
e∈E Ie. Let

A be monotone, and f = χ(A).
The following three lemmas connect I with f̂ and with dµ(A)/dp.

Lemma 2.1 (Russo, Margulis). dµ(A)/dp = 1/p
∫
A

h(a)dµp where h(a) is |{a′|a′ 6∈
A, dist(a, a′) = 1}|. (Here dist(a, a′) is the Hamming distance.)

For proofs of this lemma see [23], [25]. An equivalent statement in different
notation is:

Lemma 2.2. dµ(A)/dp = I.

(Notice that I is a function of p.)

Remark. These two lemmas imply an easy converse of Theorem 1.1: if ‖A‖ is small,
then so is the quantity p · I.

Lemma 2.3. q · p · Ie =
∑

H|e∈H f̂2(H). Consequently q · p · I =
∑

H f̂2(H)|H |.
One consequence of this last lemma, that we shall use, is as follows:∑

H:|H|>L

f̂2(H) ≤ qpI/L.

For a proof of this lemma see [28].
These lemmas seem to suggest that it may be useful to attack our problem via

studying the Fourier transform of the characteristic function of a family of graphs.
To further gain faith in this approach let us take a look at the Fourier transform of
a given family defined by a property that has, as we have seen, a coarse threshold:

Let f be the characteristic function of A, the family of all graphs having a copy
of C3 (a triangle) as a subgraph. Choose p such that the expected number of
triangles in G(n, p) is E = E(C3) = log(2). Standard computations show that
µp(A) → 1/2. It is a nice exercise in basic random graph theory to show that f̂
exhibits the following asymptotic behavior as n tends to infinity:

f̂2(∅) =
1
4
,

∑
S∼C3

f̂2(S) → 1
4
E,
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1022 EHUD FRIEDGUT AND JEAN BOURGAIN∑
S∼2·C3

f̂2(S) → 1
4
E2/2!,

.

.

.∑
S∼k·C3

f̂2(S) → 1
4
Ek/k!

where k ·C3 is the graph consisting of k disjoint triangles. Recalling that Parseval’s
identity gives ∑

f̂2(S) = 1/2

and summing these figures gives that asymptotically all the L2 weight of f̂ is con-
centrated on these graphs. The Fourier transform is “announcing”:

“f is a function that deals with triangles!”
We now give a short sketch of the proof of the theorem: Given a family A, and

its characteristic function f such that p · I is small, we will look at approximations
of f : g1, g2, g3. First we will truncate f̂ , i.e. set ĝ1(S) = 0 for |S| large and
ĝ1(S) = f̂(S) otherwise. Since pI is small Lemma 2.3 implies that this will still
leave us with a close L2 approximation of f . Next we will show, and this will
take the most effort, that most of the L2 norm of f , i.e. most of the weight of
f̂2, is concentrated on a small number of nicely behaved graphs: balanced graphs
such that the expected number of copies of them in a random graph with edge
probability p is bounded. So now we define ĝ2 to be the same as ĝ1 but leave
its support only on such “nice” graphs. Next we show that such a function as g2

“Counts” appearances of these nice graphs, in the sense that its value on a graph
H can, with a high probability, be approximated very closely just by knowing the
number of subgraphs of H isomorphic to each of our nice graphs. Finally, g2 is not
necessarily Boolean, but the fact that it is close to the original f in the L2 norm
shows that f can also be approximated by a Boolean function g3 that “Counts”
appearances of the nice graphs, e.g. g3 might be of the form: g3(H) = 1 iff H has
as a subgraph a triangle or at least two copies of C4.

Recalling Conjecture 1.5 perhaps this is the place to raise the following conjecture
about the Fourier coefficients of any monotone Boolean function on the discrete
cube. Consider the probability space {0, 1}n endowed with the product measure
µp. It is trivial to generalize the definitions of this section to this setting and to
define f̂ for any f : {0, 1}n → R.

Conjecture 2.4. Let f : {0, 1}n → {0, 1} be the characteristic function of A, a
monotone subset of {0, 1}n. Let p = pc(A). For τ > 0 let

Ωτ = {S|f̂2(S) < τp|S|}.
Let pc → 0, τ → 0 and n →∞. Then, if pc · dµ(A)/dp|p=pc < c,∑

S∈Ωτ

f̂2(S) = o(1).

This conjecture is proven in the appendix.
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SHARP THRESHOLDS OF GRAPH PROPERTIES 1023

3. Some lemmas on random graphs

In this section we wish mainly to study certain functions on the probability space
G(n, p). These functions play a key role in our proof, since we will expand f , the
characteristic function of the family of graphs we consider, as a linear combination
of these functions. For any graph S we define

V = VS =
∑

H∈Θ(S)

UH .

We wish to give an expression that approximates the value of VS in simple terms.
For a given graph R let XR be the random variable counting the number of copies
of R in a random graph. Let X∅ be defined to be identically 1. Although, given a
certain R, some copies of R appear as subcopies of other subgraphs of S, the value
of VS on a graph is determined by the value of XR for all R that are subgraphs of
S. The following lemma gives a convenient expression for V in terms of the XR’s.

Lemma 3.1. For any fixed graph S

VS = (
√

1/qp)|S|E(S)

∑
R⊆S

(−1)|R|
XR

E(R)

 .

Proof. Let H be a fixed copy of S, and for every H ′ ⊆ H let YH′ be an indicator
random variable taking the value 1 iff all edges of H ′ appear in the random graph.
UH is determined by the maximal H ′ such that YH′ = 1,

UH = (−
√

q/p)|H|(−p/q)(|H|−|H′|).

This can be expressed as follows:

UH = (−
√

q/p)|H|

 ∑
H′⊆H

(−p/q)(|H|−|H′|) ∑
H′⊆H′′⊆H

(−1)(|H
′′|−|H′|)YH′′

 .(1)

In calculating VS we sum (1) on all H ∈ Θ(S). Using XH =
∑

YH , we get:

VS = (
√

q/p)|H| ∑
H′′⊆H

(−1)|H
′′| ∑

H′⊆H′′
(p/q)|H|−|H′| |Θ(H)|/|Θ(H ′′)|XH′′ .

Using |H | − |H ′| = (|H | − |H ′′|) + (|H ′′| − |H ′|) this gives

VS = (
√

q/p)|S|

∑
R⊆S

XR(−(1 + p/q))|R|
|Θ(S)|
|Θ(R)| (p/q)|S|−|R|

 .

Remark. The interested reader may take a look once again at the family of graphs
having a triangle as a subgraph. The values of the Fourier coefficients as given in
section 2 together with Lemma 3.1 give a good understanding of the exact structure
of the Fourier transform of the characteristic function of the family.

We now take a closer look at the sum defining VS : Let e be an edge of the
complete graph on n vertices. For any graph H we define

V = VH,e =
∑

R∈Θ(H),e∈R

UR.
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1024 EHUD FRIEDGUT AND JEAN BOURGAIN

Note that

VS = 1/|S|
∑

e

VS,e.

We wish to study the behavior of such functions, in particular to give a bound B
such that for V = VH,e, Pr(|V | > λB) decays like 1/λ4. Note that the expected
value of V is 0, since it is orthogonal to the identity.

Let H̃ be a non-empty subgraph of H such that D(H̃) is minimal, i.e.

∀R ⊆ H, D(H̃) ≤ D(R).

Note that H̃ must be an induced subgraph.

Lemma 3.2. Prob
(
|V | ≥ λ

√|Θ(H)|/(D(H̃)1/4)
)
≤ cλ−4/n2.

Proof. The lemma will follow from a bound on the 4th moment of V :

E(V 4) = E


 ∑

R∈Θ(H),e∈R

UR

4
 ≤ cE

(∑
S

|Θ(S)|n−2
∑
L

∏
R∈L

|UR|
)

,(2)

where on the right hand side the first sum is over all isomorphism types of graphs S
such that S is a union of 4 copies of H having an edge e in their intersection. The
second sum is on L’s that are quadruples of copies of H with an edge e common to
all 4 of them, such that their union is S.

Let us compute the contribution of a given S to the sum. Assume S is the union
of 4 copies of H . Let ce be the number of times an edge e of S is covered by these
copies.

E(
∏

UR) = E(
∏

U ce
e ) =

∏
E(U ce

e ) =
∏(

p(−
√

q/p)ce + q(
√

p/q)ce

)
.

We have used the fact that for different edges e 6= e′ the values of Ue and Ue′ are
independent random variables. Now if ce = 1 for some edge e, then E(

∏
UR) = 0.

Otherwise the dominant summand corresponding to e is p(−√q/p)ce and

E(
∏

UR) ∼ p|S|/
√

p
(4|H|)

.(3)

Note that the number of summands in the double sum
∑

S

∑
L is no more than

some constant depending on H . Substituting E(S) = |Θ(S)|p|S| and (3) in (2) we
have

E(V 4) ≤ c · p−2|H|maxSE(S)/n2(4)

where the maximum is only taken over graphs S that can be covered by 4 copies
of H with an edge in common, each edge being covered at least twice. Recall that
E(G) ≤ D(G). Therefore we can replace E by D in (4) and have

E(V 4) ≤ c · p−2|H|maxSD(S)/n2.(5)

Claim: The S for which D(S) is maximal among the graphs in question consists
of the union of 2 copies of H , whose intersection is exactly H̃ . Using this S in (5)
will give

E(V 4) ≤ c · n2v(H)−2/D(H̃).

Recall that |Θ(H)| ≈ cnv(H), and the desired result follows from Markov’s inequal-
ity.
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Proof of claim: In searching for the best S we are trying to optimize the function
D = nv(S)p|S| on S that is double-covered by 4 copies of H with a non-empty
intersection. Instead let us optimize a function D̃ which allows edges and vertices
to be covered only once and is identical with D when S is double covered. Given
a graph R and a covering of it by copies of H having an edge in common define,
for any edge or vertex x, Φ(x) to be 1 if x is covered by more than one copy of H ,
and 1/2 if x is covered only once. Now let ẽ(R) =

∑
Φ(e), ṽ(R) =

∑
Φ(v), and

D̃(R) = nṽ(r)pẽ(R). It is obvious that the maximum of D̃ is at least as large as the
maximum of D, and that if this maximum is equal to the value obtained by D on
the S defined above we are done. Let us build a graph F which is a union of 4
copies of H with a specific edge e belonging to their intersection. Adding the copies
of H one by one and keeping track of how much each additional copy contributes
to the value of D̃ we have that the first 2 copies contribute

√
D(H) and the next

2 no more than
√

D(H)/D(H̃). The conclusion is D(S) ≥ D̃(F ), as desired.

Corollary 3.3. Let

χ = χ
{
|Ve,H | >

√
|Θ(H)|/D(H̃)1/4

}
.

Then ∫
|Ve,H | · χ ≤ c(

√
|Θ(H)|/D(H̃)1/4)/n2.

Before proceeding to the proof of the main theorem there is one more simple
lemma we will need about the number of appearances of a given graph as a subgraph
of a random graph.

Lemma 3.4. Let R be a fixed graph, and let XR be a random variable equal to
the number of copies (not necessarily induced copies) of R that appear in a random
graph G(n, p). Assume p = o(1). Then

Var(XR) � E(R)2
∑

H⊆R

1/E(H)

where the sum is over all non-empty subgraphs of R.

Proof. Var(XR) is given by the formula∑
E(XY )− E(X)E(Y )

where the sum is over all pairs (X, Y ) that are indicator random variables indicat-
ing whether a specific copy of R appeared in the random graph. If X and Y are
independent the corresponding summand is 0, otherwise E(X)E(Y ) = o(E(XY )).
Partitioning the sum

∑
E(XY ) according to the isomorphism type of the intersec-

tion of the two copies of R indicated by X and Y gives the desired result.

4. The proof

4.1. Proof of the main theorems. In this subsection we present the proofs of
Theorems 1.1 and 1.4 using some lemmas whose proofs we put off to the following
subsection. As usual let A be a monotone symmetric family of graphs, and let f be
its characteristic function. We now wish to extract information on f by analyzing
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1026 EHUD FRIEDGUT AND JEAN BOURGAIN

f̂ . Let H be a graph. Choosing certain bounds L, c1, c2 call a graph H modest if
1) |H | ≤ L.
2) c1 ≤ E(H) ≤ c2.
3) H is balanced.

Remark 4.1. Note that once given the parameters L, c1, c2 that define modesty, for
sufficiently large n and small p this determines the average degree of the modest
graphs (if any indeed exist). Let this degree be δ. This enables us to define modesty
by new parameters L, c′1 and c′2 such that all balanced graphs with no more than
L edges and average degree δ are also modest. Furthermore c′1 and c′2 are simple
functions of c1, c2 and L. It will be convenient to always assume such a choice, so
we may assume later that if H is modest all subgraphs of H of the same average
degree are also modest.

Moreover, note that for all subgraphs R ⊂ H , E(R) is bounded from below.
(Graphs with small expectation have large average degree.)

Note also that the average degree of a finite union of modest graphs must have
average degree larger or equal to that of the modest graphs.

Lemma 4.2. Let A be a monotone symmetric family of graphs on n vertices, and
let f be its characteristic function. Assume pI ≤ c. Then for every ε > 0 there
exist constants L, c1, c2 such that for sufficiently large n∑

S is not modest

f̂2(S) ≤ ε.

This lemma immediately implies Theorem 1.4:

Proof. Let f be such that pI < c, and let Ω be the set of graphs S with |S| ≤ L
and with c1 ≤ E(S) ≤ c2. Lemma 4.2 implies that∑

S 6∈Ω

f̂2(S)

is small. If
∑

f̂2 = τ (i.e. Pr(f = 1) = τ), we may conclude that Ω is non-empty,
i.e. there exist graphs S with less than L edges with c1 ≤ E(S) ≤ c2 which implies
that p must be in the range asserted by the theorem. (Note that since Pr(f = 1) is
bounded away from 1 we cannot approximate f by the function that is identically
equal to 1, corresponding to the case where Ω has only the empty graph as a member
in it.)

We now present the proof of Theorems 1.1 and 1.2:

Proof. Let S1, S2, . . . , Sl be a list of all the modest graphs. For any graph S let
CS be the set of all graphs T on n vertices such that the union of all copies of
the Si’s that appear as a subgraph of T is isomorphic to S. We will subdivide the
space of subgraphs of the complete graph on n vertices into these disjoint sets and
approximate f separately on each. While doing this we will define certain parts of
our space in which rare events occur:

1) C1 is the union of CS for S which are large.
2) C2 is the union of CS for which µ(CS) is small.
3) C3 is the union of CS for which Pr(f = 1) is not close to 0 or 1.
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Let C4 be the union of the remaining sets. We will now define a sequence of
approximations of f , according to small constants ε1, ε2, . . . , ε5. Our final approx-
imation of f will be equal to 1 on a graph R iff R has a subgraph S such that
CS ⊂ C4 and f is equal to 1 on most of CR.

1) Let g1 =
∑

f̂(S)VS where the sum is only on modest graphs S, and VS =∑
G∈Θ(S) UG. By Lemma 4.2 we can choose our bounds so that ‖f − g1‖2 ≤ ε1.

2) Let C1 be the union of all CS such that XSi(S) ≥ lE(Si)/ε2, for some i, i.e.
the number of copies of Si appearing is much more than the expected. The measure
of C1 is no more than ε2. Define g2 to be equal identically to 1 on C1, and equal to
g1 otherwise. So ‖f − g2‖2 ≤ ε1 +

√
ε2.

3) Recalling that E(Si) is bounded we have that the number of graphs in

{S|CS 6= ∅, CS 6⊂ C1}
is bounded, i.e. we have a bound on the number of subsets CS on which g2 is not
identically 1. Say we have M such sets. Let C2 be the union of all CS not in C1

such that µ(CS) < ε3/M . So µ(C2) ≤ ε3.

Remark. The reason we treat this part of our space separately is because we need
a lower bound on the measure of CG in the proof of Lemma 4.14 below.

Let C be the union of all remaining sets CS , those not in C1 ∪ C2.

Remark 4.3. Note that if S is such that CS ⊂ C, then S must be balanced and
with average degree the same as all the modest graphs. Furthermore the size of S
is bounded from above, and E(S) is bounded from above and below.

For any CS ⊂ C and for any graph H ∈ CS define

g3(H) = E(g2|CS),

i.e. we replace g2 by its conditional expectation in CS . Define g3 to be equal to 1
on all graphs not in C. We will show that for any CS ⊂ C, g3 is close to g2 because
g2 is almost constant on CS in the sense that for any constant δ,

({|g2(T )− E(g2|Cs)| > δ}|T ∈ CS) → 0.(6)

This will be proven in Lemma 4.14 in the following subsection. Recalling there are
only M sets CS in C we get that by choosing δ small enough by proper choice of
ε1, ε2, ε3 we have

‖g3 − f‖2
2 ≤ ε4/2.

We now replace g3 by g4 which is defined as follows:
4) For any S let g4 on the graphs in CS be identically 0 or 1 according to which

approximates f better.
We now wish to compare two approximations of f : g3 which is constant on each

CS , and g4 which is the best approximation that is both constant on each CS and
Boolean. Let h be the best possible L2 approximation of f that is constant on CS .
A simple calculation shows that

h|CS = Pr(f(R) = 1|R ∈ CS).

The following inequality follows by summing over each CS separately:

‖f − g4‖2
2 ≤ 2‖f − h‖2

2 ≤ 2‖f − g3‖2
2 = ε4.(7)
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g4 is the characteristic function of a family B that is a candidate to be the family
guaranteed by the theorem. Yet we do not know that B is monotone and that ‖B‖
is small.

5) We now define g5, a monotone Boolean function which is constant on each
CS . We will define it such that if R ⊂ S, then g5|CR ≤ g5|CS . Call a graph S
decisive if

Pr(f(T ) = 1|T ∈ CS) 6∈ (
√

ε4, 1−√
ε4).

Let C3 be the union of all sets CS for S which is not decisive. From (7) we have
that µ(C3) ≤ √

ε4. Let C4 be C \ C3. For any S define g5 on CS to be equal to 1 iff
S has a subgraph R such that CR ⊂ C4, with g4 equal to 1 on CR. Since the union
C1 ∪ C2 ∪ C3 is of small measure, the alterations on CS that belong to these parts
of our space do not affect our approximation much. We will show in Lemma 4.8
below that if R ⊂ S, and CR and CS belong to C4, then

E(f |CR) ≥ 1−√
ε4 ⇒ E(f |CS) ≥ 1− 2

√
ε4

and hence on the sets CS ⊂ C4 we do not alter our approximation at all. Therefore
choosing sufficiently small ε4 we have

‖g5 − f‖2
2 ≤ ε.

g5 is the characteristic function of a symmetric monotone family B with minimal
graphs which are balanced and of bounded size, and

µ(B4A) ≤ ε.

This completes the proof of the main theorem. Furthermore by repeating this
process, possibly with a different choice of εi, i = 1, . . . , 4, we can define C4 such
that, for CR ⊂ C4, E(f |CR) > 1 − ε. Since we have a bound on E(R) and |R| for
all such graphs R, any one of them is a candidate to be the graph guaranteed by
Theorem 1.2. Let r be a specific copy of such a graph R, and let Br be the space
of all graphs having r as a subgraph. Let Cr = Br ∩ CR. From symmetry

E(f |Cr) = E(f |CR)

and from positive correlation of increasing events

E(f |Br) ≥ E(f |Cr).

In other words, conditioning on the appearance of r the expectation of f is at least
1− ε. This concludes the proof of Theorem 1.2.

4.2. Proof of the main lemmas. We will need the following observation during
the proof:

Remark. If there exists a graph H of bounded size such that E(H) is a constant,
then there exists a constant c such that for any other graph G of bounded size and
any fixed m, if n is large enough, then

E(G) < log(n)m ⇒ E(G) < c.

This is true since the fact that E(H) is constant implies that p = cn−v(H)/|H|.
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We now proceed to prove Lemma 4.2:

Proof. Recalling the remark following Lemma 2.3 we know that most of the weight
of f̂2 is concentrated on graphs H with no more than a certain constant number of
edges. We now wish to further characterize the graphs H such that

∑
S∼H f̂2(S)

is significant. A simple calculation shows that for any Boolean function f and any
graph S

f̂2(S) ≤ (4p)|S|.(8)

Summing this on the orbit of S we get∑
S∼H

f̂2(S) ≤ cE(H).(9)

So if H has small expectation, then its orbit does not contribute much to the weight
of f̂2. The following lemma shows this is true even if H has a subgraph of small
expectation, i.e. if a graph H is such that one does not expect to see a copy of it
in G(n, p), then the weight of f̂2 on its orbit is negligible.

Lemma 4.4. Let H be a graph. Then for every subgraph H ′∑
S∈Θ(H)

f̂2(S) ≤ c · max
R⊂H′

{E(H ′)/E(R)}

(where the expectation of the empty graph is taken to be 1).

This lemma is of course interesting to us in the case where E(H ′) is small. If H
has a subgraph with small expectation, it has one that is minimal with respect to
inclusion, and we can use the lemma with respect to that subgraph.

Proof. Let R be a specific copy of H ′. Consider the probability space {0, 1}E\R,
where E \ R is the set of edges of the complete graph not in R. We view this as
the space of random graphs on n vertices where one copy of H ′ is fixed (chosen
with probability 1), and all other edges are chosen with usual probability p. We
define the set of functions {US} as before, and have a Fourier expansion for any
real function on this space.

Define a function g on this space by g(G) = f(G∪R). Note that g is symmetric
in the sense that it is invariant under automorphisms of the complete graph that
keep R fixed. Using induction on |R| we will show that

ĝ(G) =
∑

R′⊆R

f̂(R′ ∪G)UR′(R).(10)

For any G in this new space define Θ̃(G) to be the new orbit of G , under the action
of the automorphisms of the complete graph that keep R fixed. Since g is Boolean

|ĝ(G)| ≤ 1/

√
|Θ̃(G)|.

Using (10) we have for any graph G such that its edge set is disjoint from R :∣∣∣f̂(R ∪G)/
√

p
|R|
∣∣∣ ≤ c

(
1/

√
|Θ̃(G)|+

∑
R′⊂R

∣∣∣f̂(R′ ∪G)/
√

p
|R′|
∣∣∣)(11)

≤ c

(
1/

√
|Θ̃(G)| +

∑
R′⊂R

(√
p
|R′|√|Θ(R′ ∪G)|

)−1
)

.(12)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1030 EHUD FRIEDGUT AND JEAN BOURGAIN

Note that for R′ ⊆ R,

|Θ(R′ ∪G)| ≥ c|Θ(R′)| · |Θ̃(G)|.(13)

The value of c in the preceding inequality may depend on the graphs involved,
however in our case we will be using this inequality for a finite number of graphs,
hence it holds with a fixed c. Observe that when v(R′) ∩ v(G) = v(R) ∩ v(G), the
two sides of (13) are comparable, i.e.

|Θ(R′ ∪G)| ≤ c′|Θ(R′)| · |Θ̃(G)|.
Let G be such that G ∪ R = H . Multiplying both sides of (12) by

√
|Θ(H)|p|R|

and using (13) gives√ ∑
S∈Θ(H)

f̂2(S) ≤ c

(√
E(R) +

∑
R′⊂R

√
E(R)/E(R′)

)
which gives the desired result.

What is left to show is the validity of formula (10):
Assume first that R = e, R is a single edge. In this case

ĝ(G) =
∑
e6∈T

f(T ∪ e)UG(T )p|T |qN−1−|T |.

The right hand side of (10) is

f̂(G) −
√

q/pf̂(G ∪ e) =
∑
M

f(M)
(
UG(M)−

√
q/pUG∪e(M)

)
p|M|qN−|M|.

Now, for M such that e 6∈ M the corresponding summand is zero. Setting M = T∪e
and using the fact that UG∪e(M) = −(

√
q/p)UG(M \ e) gives the desired result.

For |R| > 1 pick e ∈ R and define g(G) = h(G ∪ e), where h is a function on
{0, 1}E\(R\e). We already know that

ĝ(G) = ĥ(G)− (
√

q/p)ĥ(G ∪ e)

and the result follows by using the induction hypothesis on h.

Assume that H is such that W =
∑

R∈Θ(H) f̂2(R) is bounded away from zero by
some constant. We already know that H is of bounded size, and with expectation
bounded from 0. We will further characterize H , by examining a few cases, and
thus prove the following claim:

Claim 4.5. Under the above conditions H must be balanced, and of bounded ex-
pectation.

Proof. First we define a set of functions {fe} such as those defined by Talagrand in
[28], which are a generalization of similar functions defined in [18]. The idea behind
these functions is that they measure Ie, the influence of the edge e on f :

For every edge e let fe be the function defined by:

fe(H) =
{

q(f(H)− f(H ⊕ e)) if f(H) = 1,
p(f(H)− f(H ⊕ e)) if f(H) = 0.

It is not hard to verify that

f̂e(H) =
{

f̂(H) if e ∈ H,
0 if e 6∈ H.
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By Lemma 2.3 qpI =
∑ ‖fe‖2

2. A simple calculation gives

‖fe‖2
2 = 1/2‖fe‖1

and hence

qpI ≥ c
∑

e

∫
|fe|.(14)

Recall that H̃ was defined as a non-empty subgraph of H on which the function D

was minimal, and also W =
∑

R∈Θ(H) f̂2(R). Let Θ = Θ(H).

For any R ∈ Θ, f̂(R) =
√

W
|Θ| . We will now proceed to analyze f̂ by looking at

the following expansion of f :

f =
∑
H

f̂(H)VH =
∑
H

1/|H |
∑

e

f̂(H)Ve,H .

Using the orthogonality of the functions UH we have that for any two functions f, g∫
f · g =

∑
f̂ · ĝ,

and in particular using symmetry and the definition of fe∫
fe · f̂(H)Ve,H =

∑
R∈Θ,e∈R

f̂2(H);

so,

W = (1/|H |)
∑

e

∫
fef̂(H)Ve,H = (1/|H |)

√
W

|Θ|
∑

e

∫
feVe,H .(15)

(This technique of calculating the Fourier coefficients is similar to that used in [7].)
Let

χ = χ
{
Ve,H >

√
|Θ(H)|/D(H̃)1/4

}
.

Then (15) is equal to

(1/|H |)
√

W

|Θ|
∑

e

(∫
feVe,Hχ +

∫
feVe,H (1− χ)

)
.

Using Corollary 3.3 and the fact that |fe| ≤ 1, we get that this is bounded by

c1(1/|H |)
√

W

|Θ|
(
(c2 + pI)

√
|Θ(H)|/D(H̃)1/4

)
= cpI

√
W/D(H̃)1/4.(16)

So

D(H̃) ≤ c(pI)4/W 2.(17)

We now assume that for a given H , W =
∑

f̂2 > τ > 0 for some constant τ and
wish to prove that H is balanced and E(H) is bounded. We will divide this into 3
cases:

Case 1) H̃ consists of a single edge.
In this case (17) implies that p = c/n2. For such values of p, G(n, p) is almost

surely a disjoint union of edges, and both the lemma and the main theorems hold.
The graph property in question may be approximated by the property of having at
least k edges for some k ≈ (pI)2, and the only graphs H of bounded size for which
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E(H) is not o(1) are graphs that are a matching, so that E(H) is also bounded
from above.

Case 2) H̃ = H.
In this case (17) shows that E(H) is bounded by a constant, and Lemma 4.4

shows H must be balanced since it has no subgraphs of small expectation.
Case 3) H̃ is properly contained in H but is not a single edge.
As before H̃ must be balanced and of expectation that is approximately constant.

We will assume also that H̃ is strictly balanced. If it is only balanced but not strictly
balanced, replace H̃ by a strictly balanced subgraph of it. (Since this subgraph has
the same average degree its expectation is a power of the expectation of H̃ , and
hence also bounded from above and below.)

Choose a specific copy of H̃ , call it S, and define a function g on Z
(N\|S|)
2 :

g(R) = f(R ∪ S);

in other words g is the same as f , but its domain is all graphs with set of edges
disjoint from that of S. By analyzing g we will show that H \ H̃ is balanced, and
hence H is balanced.

Remark 4.6. In order to prove that H \ H̃ is balanced and conclude that H is
balanced, we must interpret correctly the meaning of average degree of a graph,
orbit of a graph, expectation, etc. for a graph in our new space. For any graph
in our new space the edge set is well defined, we define the vertex set to be only
those vertices not in v(S), and the new orbit is defined by all automorphisms of the
complete graph leaving S fixed.

As we have seen in (10)

ĝ(R) =
∑

S′⊆S

f̂(R ∪ S′)US′(S).(18)

Since the weight of f̂2 on any orbit of size |Θ(G)| is no more than a constant
(‖f‖2 ≤ 1) we have that |f̂(G)| ≤ c/

√|Θ| (and in the case of H we have equality).
Recalling that E(S′) = |Θ(S′)|p|S′| and US′(S) = (−√q/p)|S

′| this gives

|f̂(R ∪ S′)US′(S)| ≤ c/
√

E(S′).

The fact that S is strictly balanced and of expectation bounded by a constant
means that E(S′) >> E(S) for all proper subgraphs S′ of S.

So putting R = H \ S in (18) we have that the dominant summand is the one
corresponding to S′ = S, thus

|ĝ(H \ S)| ∼ |f̂(H)|/(
√

p)|S|.(19)

Let W =
∑

G∈Θ̃ ĝ2(G) where Θ̃ is the orbit of H \S in our new space. Note that

|Θ̃(H \ H̃)||Θ(H̃)| = c′|Θ(H)|.
(19) now gives

W = c′|Θ̃(H \ H̃)|f̂2(H)/p|S| = c/(|Θ(H̃)|(p|S|)) = c/E(H̃),

i.e. W is approximately constant.
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The following computation shows that qpI(g) is no more than polylogarithmic:
We will now use Russo’s lemma via the interpretation that pI is the expected

number of “pivotal” edges, to lend a term from percolation theory:
For a given monotone family of graphs A and a given graph G ∈ A (which is a

subgraph of the complete graph on n vertices) a pivotal edge is an edge e ∈ G such
that G \ e does not belong to A. If G is a random graph, the number of pivotal
edges is a random variable C, and E(C) = pI. Let XH̃ be a random variable that
counts the number of copies of H̃ in G(n, p). By abuse of notation let S also be
the event “S appears in G(n, p)”. (Recall S is a specific copy of H̃.) We have

E(C|S) =
∑

E(C|XH̃ = i) Pr(XH̃ = i|S)

=
∑

E(C|XH̃ = i) Pr(XH̃ = i) Pr(S|XH̃ = i)/ Pr(S)

=
∑

E(C|XH̃ = i) Pr(XH̃ = i) · i/E(H̃).

This expression cannot differ by more than a polylogarithmic factor from the ex-
pression for the unconditioned expectation of C because of the following lemma.

Lemma 4.7. Let H be a strictly balanced graph, and let p be such that E(H) < C.
Then for every k the probability of having more than log(n) copies of H in G(n, p)
is asymptotically less than n−k.

Proof. Let B be a large integer to be determined, and divide the event of having
log(n) copies of H into two subevents:

1) The number of copies of H that intersect other copies is at most B.
2) More than B copies intersect other copies.
Denoting log(n) −B = R, the probability of 1) is bounded by a constant times

CR/R!, asymptotically less than n−k/2 for any fixed B. This follows from the usual
way of computing the moments of the random variable XH ; see for example [5].

The event 2) can be described by the existence of a subgraph from a list of
subgraphs whose length is a function of B, l(B). Any graph in this list can be
described by a union of at least B but no more than 2B copies of H . It follows
from the fact that H is strictly balanced that for sufficiently large B the expected
number of copies of any graph in this list is smaller than n−(k+1), for all n large
enough. So for sufficiently large B the probability of 2) is asymptotically less than
n−k/2.

We now can proceed to analyze H \ H̃ in the same manner we analyzed H :
The weight of ĝ2 on the orbit of H \ H̃ is a constant and qpI(g) is no more than
a power of log(n), so we once again can divide into three cases, as before. Even
though pI is now logarithmic rather than constant our analysis is the same because
of the remark that opens this section: once we know that E(H̃) is constant any
graph with expectation bounded by a power of log(n) must also have bounded
expectation. So we once again divide into 3 cases. In cases 1 or 2 we are done,
and in case 3 we iterate the computation again. Since the size of H was bounded
a priori, this process will terminate after a finite number of steps. This shows that
H can be built by taking H̃ , adding a graph which is the minimal strictly balanced
subgraph of H \ H̃ , and so on. This must result with a balanced graph, since in
each step we add a balanced graph from our new spaces. We also saw that E(H)
is bounded. This completes the proof of Claim 4.5.
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To summarize, if
∑

R∼H f̂2(R) is not too small, H must be modest:
1) |H | is bounded by Lemma 2.3.
2) E(H) is bounded from below by (9).
3) H is balanced and with expectation bounded from above by Claim 4.5.
Hence we have completed the proof of Lemma 4.2.

The following lemma deals with the approximation of the monotone function
f in the proof of the main theorems. It implies that the approximation itself is
“approximately monotone”.

Lemma 4.8. Let R ⊂ T be graphs, and let CR, CT , C4 be defined as in the proof of
the main theorems. Suppose CR ⊂ C4 and CT ⊂ C4. Then

E(f |CT ) > E(f |CR)− o(1).

Proof. Recall that all the four quantities E(R), E(T ), µ(CR), µ(CT ) were, by
definition of C4 and by Remark 4.3, bounded from above and from below by some
constants (that depended on ε) and that R and T must be balanced, with a bounded
size and average degree δ equal to that of the modest graphs. Let r ⊂ t be specific
copies of R and T . (Perhaps this is not the most successful notation, but as opposed
to, say, R̄ and T̄ it is one that can be noticed by the optically challenged who might
not be able to distinguish CT̄ from CT .) Define Br to be the space of all graphs that
have r as a subgraph. We will consider all subspaces with the induced conditional
probability. Let

Cr = Br ∩ CR,

and define Ct analogously. Note that CR is the disjoint union of Θ(R) sets isomor-
phic to Cr. By symmetry we have:

E(f |CR) = E(f |Cr)

and

E(f |CT ) = E(f |Ct).

We will define a mapping σ : Ct → Cr such that σ is 1:1 and measure preserving
with respect to the conditional measure on Ct and its image. More precisely, if
µ1, µ2 are respectively the conditional measures on Ct and σ(Ct), then, for any
G ∈ Ct, µ1(G) = µ2(σ(G)). Furthermore σ will be such that

f(σ(G)) = 1 ⇒ f(G) = 1

and hence

E(f |Ct) ≥ E(f |σ(Ct)).

Therefore it will suffice to show that

E(f |σ(Ct)) ≥ E(f |Cr)− o(1).(20)

The definition of σ is very simple: For G ∈ Ct define σ(G) to be the graph obtained
from G by deleting the edges in t \ r. Obviously σ(G) ∈ Cr. The question is which
graphs in Cr are not in the image of σ. Let W1 = σ(Ct) and W2 = Cr \W1. The
graphs in W2 can be classified into two types:

1) Graphs that have an edge in t \ r. (It can be shown that the conditional
measure of the set of such graphs is negligible.)

2) Graphs G such that G ∪ t 6∈ Ct.
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Roughly, the reason for a graph G to belong to W2 is that there exist a subgraph
s in G such that s ∪ t is a union of modest graphs, whereas s ∪ r is not.

Example 4.9. Take r to be a complete graph on 4 vertices, x1, . . . , x4, and t
the graph obtained from r by adding on a path x3, x5, x6, x4. Both r and t are
balanced. Now, if a graph in Cr has a path x5, x7, x8, x6 it will belong to W2.
Another possibility would be a graph with a path x6, x7, x8, x4. It may be useful
to keep these examples in mind for understanding the notion of an extension, to be
defined shortly.

For a graph G ∈ Cr define

α(G) = Pr(π(G) ∈ W2)(21)

where π is a permutation of the vertices leaving the vertices of r fixed, chosen
uniformly at random from such permutations. Let

a =
µ(W2)
µ(Cr)

.

Let µr be the conditional measure on Cr . So

a =
∫

Cr

α dµr.

On the other hand,

1− a = µ(σ(Ct))/µ(Cr) = µ(Ct)/(p|T |−|R|µ(Cr))

=
µ(CT )
|Θ(T )|

|Θ(R)|
µ(CR)

pR

pT
=

µ(CT )E(R)
µ(CR)E(T )

.

Recalling the properties of R and T this shows a is bounded away from 1. Using
this and the fact that f is constant on isomorphism classes we have

E(f |W1) =

∫
Cr

f · (1− α) dµr

(1− a)
.

But Lemma 4.10 below shows that α is essentially constant (= a) on Cr, and (20)
follows.

Lemma 4.10. Let α = α(G) be as defined in (21), where G is chosen at random
from Cr by the measure µr. Then

Var(α) = o(1).

Proof. First, we would like to shift to working in Br, a space with a convenient
product measure, and to this end we will extend the definition of α(G) to all graphs
G ∈ Br. Note that a graph in Br almost surely has no edges in t \ r, and we will
disregard the exceptions to this rule in our calculations. For any graph G let V (G)
denote the set of vertices of G. Let k = |V (t)| − |V (r)|. Order the vertices in
V (t) \ V (r), v1, . . . , vk. For any ordered set x = {x1, . . . , xk} outside of V (r), let
πx be a permutation of the vertices of the complete graph leaving V (r) fixed such
that π(xi) = vi for i = 1, . . . , k. For a given graph G ∈ Cr define a set of vertices
x to be problematic if

πx(G) ∈ W2.

This does not depend on the choice of π.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1036 EHUD FRIEDGUT AND JEAN BOURGAIN

Returning to Example 4.9, in that case a set of two vertices is problematic if
they have a path of length 3 between them, or one of them has a path of length 3
connecting it to r. Note that α(G) is exactly the proportion of problematic k-sets.
For any problematic set x we can find a set of edges and vertices y in G \ (r ∪ x)
that “are a reason” for x being problematic. More precisely πx(y) ∪ t is a union of
modest graphs. (In our example these are the paths of length 3 added between two
vertices in t.) Call such a set an extension of x. We now want to define extensions
and problematic sets for any graph in Br. For x, a set of k vertices disjoint from
V (r) in any graph in Br and a set of vertices and edges y which is disjoint from r
and x, we say that y is an extension of x if

(πx(y ∪ x) ∪ r) ∈ Cr,

but

(πx(y ∪ x) ∪ t) 6∈ Ct.

Remark 4.11. Note that we view y as a set of edges and vertices and not as a graph,
indeed some edges in y may be such that their end vertices are not in y. We do
require, however, that y ∪ x be a graph.

Now extend the definition of a problematic set of vertices in a graph in Br to
include any set of vertices that has an extension. For any graph G ∈ Br define
α(G) to be the proportion of the problematic sets among all sets of size k. This
definition of α coincides with the previous one on Cr.

Now, before shifting to work on Br note that

µ(Cr)/µ(Br) = µ(CR)/(p|R||Θ(R)|) = µ(CR)/E(R).

From the definition of C4, and the fact that Cr ⊂ C4, µ(CR) is bounded from below
and E(R) is bounded from above (by bounds that depend on ε), and hence the
relative measure of Cr in Br is non-negligible, so

Var(α|Br) = o(1) ⇒ Var(α|Cr) = o(1).

Lemma 4.12 asserts that Var(α|Br) = o(1), hence our result follows.

Lemma 4.12.

Var(α|Br) = o(1).

Proof. Define X = nkα, where nk = n!/(n−k)!. X(G) is the number of problematic
k-sets in G. Let x1, . . . , xnk

be the indicator random variables of the event of the
corresponding sets being problematic. So X =

∑
xi.

If E(X) = o(nk), then E(α) = o(1) and, since 0 ≤ α ≤ 1, Var(α) = o(1). Hence
we may assume that E(X) = Ω(nk) and strive to prove that Var(X) = o(n2k). We
have

Var(X) =
∑

i

∑
j

(E(xixj)− E(xi)E(xj)) .

For i 6= j let xi ◦ xj be the random variable indicating the event that there exist
edge disjoint extensions of the corresponding sets. The BK inequality ([4]) implies

E(xi ◦ xj) ≤ E(xi)E(xj).

(See also [24] for a more general inequality.)
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Let xi � xj = xixj − xi ◦ xj . We have

var(X) ≤
∑

Var(xi) +
∑
i6=j

E(xi � xj) =
∑
i6=j

E(xi � xj) + o(n2k).(22)

We now need some notation regarding graphs in the space Br. Define two graphs
G and G′ to be of the same isomorphism type if there exists a permutation of the
vertices not in V (r) that takes G to G′. Define Ẽ(G) as the expected number of
copies isomorphic to G in a random graph in Br.

Let the average degree of the modest graphs be δ. For any set of edges and
vertices define the average degree to be the ratio between the number of edges in
the set and the number of vertices. So, for an extension y of a set x the average
degree is the ratio between the number of edges in y and the number of vertices of
y (those not in x and not in V (r)). (Recall that y is not necessarily a proper graph
in the sense that not all edges in y are between vertices that belong to y.) Recall
that t∪ πx(y) is the union of modest graphs, and hence has average degree at least
δ. Hence the average degree of y must also be at least δ.

We will say an extension y is nice if
1) It is a minimal extension.
2) Its average degree is δ.
3) For any z ⊂ y such that z ∪ t is a graph the average degree of z is no larger

than δ.
The reason for defining this notion is that our calculations are much simpler when

considering such extensions. Whenever xi � xj = 1 there are minimal extensions
causing this. Furthermore, for a given set x, the probability of having a minimal
extension with average degree of it, or any subextension larger than δ, is o(1).
Hence we may concentrate on the events caused by nice extensions: Let xi ? xj be
the indicator random variable of the event indicated by xi �xj, but only in the case
where there exist nice extensions causing this event. We have∑

E(xi � xj − xi ? xj) = o(n2k),

and hence it suffices to show

E
(∑

xi ? xj

)
= o(n2k).(23)

For an extension y let Cl(y) denote the graph whose edges are the edges in y.
We will need the following property of nice extensions:

Claim 4.13. Let x be a set of vertices and y a nice extension. Any subgraph of
Cl(y) \ r has average degree smaller than δ.

(Note that the claim deals with actual graphs and not extensions, i.e. all edges
come with their end vertices.)

Proof. Let y be a nice extension of x, and assume for simplicity of notation that
x = V (t) \ V (r). Note that from minimality of y there exists a modest graph S
such that Cl(y) ⊆ S ⊆ y ∪ t. This S is the disjoint union of three sets:

a) S ∩ r.
b) S ∩ (t \ r).
c) All the rest, namely y \ t.
Note that parts b) and c) are not necessarily proper graphs, i.e. they may have

edges with only one vertex belonging to them.
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Part c) does not have average degree larger than δ, because y is nice. Part b)
cannot have average degree larger than δ, or else its union with r would also have
large average degree, but this union is a subgraph of t which has no such subgraphs.
Hence part a) cannot have average degree smaller than δ. As a subgraph of r it
cannot have large average degree either, and hence has average degree exactly δ.
Now, if z ⊂ (Cl(y) \ r) has average degree δ, then z ∪ (S ∩ r) is modest (it is a
subgraph of S which is modest, and has the correct average degree). Hence r∪ z is
a union of modest graphs, which is a contradiction: since y is an extension, there
exists a graph in Cr with z as a subgraph, but in Cr the union of all modest graphs
is r.

Let y be a nice extension of a set x. The graph in Br consisting of the vertices
of x and the edges and vertices of y can take on a finite number of isomorphism
types G1, . . . , Gd. For all these graphs we have

Ẽ(Gi) = O(nk).(24)

This follows from the fact that there is a copy of Gi, say g, whose union with t is
a union of modest graphs. We have E(g ∪ t) < c. (A finite union of modest graphs
has bounded expectation.) But

E(g ∪ t) ≥ cE(t)Ẽ(g)/nk

and E(t) is bounded from below.
We now can prove (23):
When summing E(

∑
xi ? xj) we use the fact that if an extension of type Ri

intersects an extension of type Rj and their intersection is of type H they form an
event such that the expected number of isomorphic events is Ẽ(Ri)Ẽ(Rj)/Ẽ(H).
But from the fact that Ri is nice it follows from Claim 4.13 that the average degree
of H is smaller than δ, or in other words, Ẽ(H) →∞, and

Ẽ(Ri)Ẽ(Rj)/Ẽ(H) = o(n2k).

Since we have a finite number of such contributions this gives the desired bound.

The last brick missing in the proof of the theorems is the following lemma. In
the previous section we defined g2, an approximation of f , and C as the union of
all sets CG with the following properties:

1) |G| was bounded from above.
2) E(G) was bounded from above and below.
3) µ(CG) was not too small.
We promised to show that g2 is almost determined by the number of appearances

of the graphs Si, in the sense that if CS ⊂ C, then for any constant δ > 0

Pr({|g2(T )− E(g2|CS)| > δ}|T ∈ CS) → 0.(25)

Recalling the Fourier expansion of g2 it is sufficient to show this for the functions
f̂(S)VS , where S is modest, or using (8):

Lemma 4.14. Let G be such that CG ⊂ C. Let S be modest and V = VS. Then:

∀δ > 0 Pr({|V (T )− E(V |CG)| > √
p
(−|S|)

δ}|T ∈ CG) → 0.
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Proof. Note that all the modest graphs have the same average degree: the only
one that guarantees a bounded (from above and below) expectation. Furthermore
E(S)/E(R) is bounded for any R that is a subgraph of a modest graph S. Recalling
Lemma 3.1 we wish to show that XR

E(R) is almost constant on each CG for R ⊆ S.
So let us calculate the conditioned variance of XR in a given CG. If R is modest,
then XR is constant. So we may concentrate on R which is a subgraph of one of
the Si, but not modest itself, i.e. E(R) is large. Recall that Lemma 3.4 gave the
following expression for the non-conditioned variance of XR:

Var(XR) � E(R)2(
∑

1/E(H))

where the sum is over all non-empty subgraphs of R. If none of the modest graphs
are subgraphs of R this is o(E(R)2), since for every subgraph H , E(H) is also large.
So the standard deviation of XR in this case is o(E(R)). Obviously conditioning
on an event whose probability is bounded away from zero (being in CG) cannot
change this. Let us consider then, the variance of XR when some Si is a subgraph
of R. CG was defined by the fact that the union of the modest graphs appearing
was isomorphic to G. Let g be a specific copy of G. Let Bg be the space consisting
of all graphs that have g as a subgraph with the probability measure induced by
the conditional probability in G(n, p). As in Remark 4.6 we define graphs, orbits,
expected number of copies of a graph, etc. in our new space in the natural way. Let
Cg = CG ∩ Bg. From symmetry we get that the expectation and variance of XR

conditioned on being in CG is the same as conditioning on being in Cg. Focusing
our attention on Cg every copy of R must have g as a subgraph. Therefore XR

now depends on the appearance of copies of certain graphs T1, T2, . . . , Tk, such that
Ti ∪ g ∼ R. So we may now define XT so that XR = XT (in the space Cg), but
XT counts the appearance of copies of the Ti’s . Since g is the union of all modest
graphs in any graph in Cg we may assume Ti has no modest subgraphs in Bg, and
E(H) →∞ for all H ⊂ Ti.

Now, a simple calculation shows that

µ(CG ∩Bg)/µ(Bg) = µ(CG)/E(G)

and from the definition of C, E(G) is bounded from above and µ(CG) from below,
hence if Var(XT ) = o(E(XT )2) conditioned on being in Bg the same must be true
on Cg.

Remark. The reason for calculating in the space Bg and not directly in Cg is that
the conditional measure in the first space is much simpler than that of the latter.

We now repeat the calculation done in Lemma 3.4, in the same manner as done
in the proof of Lemma 4.12 with the sum∑

E(XY )− E(X)E(Y )

and the expectations as defined in the space Bg. We get that

Var(XT ) ≤ cE(XT )2/MinH⊂TiE(H).

From our remark concerning E(H) we conclude that this is o(E(T )2), so the stan-
dard deviation of XR is indeed o(E(R)).

The above considerations show that XR/E(R) is almost a constant on any set CG

(its standard deviation is o(1)), and hence by Lemma 3.1 f̂(S)VS = cVs/
√|Θ(S)| is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1040 EHUD FRIEDGUT AND JEAN BOURGAIN

indeed almost constant on our subsets. Moreover for S’s such that
∑

H∈Θ(S) f̂2(H)
= c

f̂(S)VS = Vs

√
c/|Θ(S)| ∼

√
c/E(S)(

∑
(−1)(|S|−|R|)

Ẽ(R)
E(R)

)

where Ẽ is the conditioned expectation of XR. This completes the proof of the
lemma and the theorem.

5. The k-sat problem

The following problem has attracted much attention from physicists and com-
puter scientists (see [20] for a survey on this topic): Let x1, x2, . . . , xn be Boolean
variables and consider a CNF formula, made of clauses of size k of the variables
and their negations, i.e. a conjunction of clauses each of which is a disjunction of
k of the variables and their negations. A random formula with parameter M is
generated in the following way: Pick M of the possible 2k

(
n
k

)
clauses with uniform

probability, and let the formula be the disjunction of the chosen clauses. A prop-
erty of interest of the formula such obtained is whether it is satisfiable, i.e. whether
there is an assignment of values to x1, . . . , xn such that the formula takes on the
value “true”. Denote the probability of such an event by f(M). It is obvious that
f is a monotone decreasing function of M . It is known that for any given k there
are constants c1, c2 such that f(c1n) → 1, f(c2n) → 0 (see [10]).

Computer simulations suggest that f exhibits a threshold behavior, i.e. that the
following is true: There exists a constant c such that for any ε > 0,

f((c− ε)n) → 1, f((c + ε)n) → 0.

This was shown to be true for k = 2 with the constant c = 1 (see [10], [17]),
but for k ≥ 3 was not known. For k = 3 a series of upper and lower bounds have
seemed to be slowly converging to the value suggested by simulations (c = 4.2...);
see [19], [11], [9], [8], [16], [22], [21].

We now show that the existence of a threshold for any given k can be demon-
strated by the proof of Theorem 1.1. I would like to thank Svante Janson for
pointing out the following subtlety to me: What I actually show is not the exis-
tence of a constant c but of a function c(n) such that the phase transition happens
within an ε neighborhood of c(n), i.e. it is still feasible that though there is a swift
transition of f the critical value does not converge to any given value.

First let us consider the dual problem of the formula being a DNF formula, i.e. a
disjunction of k-conjunctions, and the property we shall study is whether or not the
formula is a tautology, i.e. does every assignment of values to the Boolean variables
yield the value “true” for the formula. This is a monotone increasing property.

Secondly let us consider a model for producing a random formula which relates
to the previous model in the same way G(n, p) relates to G(n, M): choose each
of the possible clauses independently with probability p, and let the formula be
the disjunction of the chosen clauses. For p ≈ M/N , where N = 2k

(
n
k

)
, this is

equivalent to the previous model in the following sense: the question of existence
of a “critical” constant c as described above is equivalent to the following question:
By abuse of notation define f(p) as the analog of f(M); does there exist a constant
c such that f((c− ε)n/N) → 1, f((c + ε)n/N) → 0 for every ε > 0?
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Returning to the definitions in the introduction what we are asking is: “Does
the property of satisfiability have a sharp threshold?” We claim that the answer is
affirmative.

To show this we must first point out the analogy between the case of graphs and
the case of DNF formulas. We viewed graphs as a collection of pairs (i, j) with
i, j taken from a set of vertices. Our DNF formulas are a slight generalization of
hypergraphs: they can be thought of as a collection of k-tuples chosen from a set
of variables, with one of 2k possible labels on each edge, specifying which variables
appear with a negation.

The group of graph automorphisms acting on the subgraphs of Kn can be viewed
as Sn acting on

(
[n]
2

)
, and we only considered properties invariant under the action

of this group. In the case of formulas we will consider properties (i.e. families of
formulas) invariant under the action of the wreath product of Sn with k copies of
Z2. The property of being a tautology (or satisfiability) is such a property.

A crucial aspect of the analogy is the following: given a bound on the number of
edges (clauses) of a graph (formula), there are only a finite number of isomorphism
types.

Following the proof of Theorems 1.1 and 1.2 shows that the analogy holds all
the way through, and gives for the probability space of all DNF k-formulas:

Theorem 5.1. Consider DNF formulas with clauses of given size k. There exists a
function M(k, ε, c) such that for every c > 0 and every monotone symmetric family
of such formulas, A, such that p · I ≤ c, for every ε > 0 there exists a symmetric
monotone family B such that ‖B‖ ≤ M and µ(A4B) ≤ ε.

Here ‖B‖ is the number of clauses in the largest minimal formula in B. Let |G|
be the number of clauses in G. Now, for a formula G, define E(G) in the obvious
manner to be the expected number of subformulas isomorphic to G in a random
formula. The average degree of a formula G is the ratio between the number of
variables and the number of clauses in G. Define a balanced formula to be one
with average degree no less than that of any subformula. The proof of Theorem
1.2 gives:

Theorem 5.2. There exist functions B(ε, c), b1(ε, c), b2(ε, c) such that for all c >
0, any n and any monotone symmetric family T of k-DNF formulas with n variables
such that p · I ≤ c, for every ε > 0 there exists a formula F with the following
properties:

• F is balanced.
• b1 < E(F ) < b2.
• |F | ≤ B.
• Let Pr(T |F ) denote the probability that a random formula belongs to T con-

ditioned on the appearance of F̄ , a specific copy of F . Then

Pr(T |F ) ≥ 1− ε.

So if a property A of formulas has a coarse threshold, then for a certain value of
p in the critical interval, for every ε > 0 there exists a “nice” formula F such that
the probability of having A conditioned on the appearance of F̄ , a specific copy of
F is at least 1− ε.

We will show shortly that for the property of being a tautology one cannot
produce such a “magic” formula. As a corollary we get Theorem 1.3:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1042 EHUD FRIEDGUT AND JEAN BOURGAIN

Corollary 5.3. In the space of all DNF k-formulas the property of being a tautology
has a sharp threshold.

Proof. Let p in the critical interval be such that p · I < c, and assume w.l.o.g.
µp(T ) = 1/2 (µ(T ) is bounded from 0 and 1 by the definition of the critical interval).

Let T be the property of being a tautology. What we will show is that there
does not exist a short formula F̄ as described in Theorem 5.2.

Assume F̄ is such a formula. Obviously if F̄ has a subformula R̄ that itself
is a tautology, then Pr(T |F ) = 1 ≥ 1 − ε, however, an unpublished result of M.
Tarsi (see [2]) states that if such a formula R uses r variables it must have at least
r + 1 clauses. The expected number of formulas of such an isomorphism type in a
random formula is therefore at most nrpr+1. Since p = n/N < 1/n, this tends to
zero. But if F is balanced and E(F ) is bounded from below so is E(R), hence this
is a contradiction.

Let r be the number of variables in the formula F̄ . Define a quasitautology on
r variables to be a formula which is a disjunction of k-conjunctions of variables
x1, . . . , xr such that it is satisfied by all but one of the 2r possible assignments to
the variables. Let M̄ be a maximal quasitautology on the r variables (adding any
additional clause to it would make it a tautology), such that F̄ is a subformula of M̄ .
From positive correlation of increasing events it would follow from our assumptions
that Pr(T |M̄) > 1−ε. So it is sufficient to show that for any τ > 0 if n is sufficiently
large,

Pr(T |M̄) < 1/2 + τ.(26)

Define p(n) to be the critical p such that µp(T (n)) = 1/2 , where T (n) is the family
of tautologies on n variables. Note that p(n) is monotone decreasing as a function
of n, so that µp(n)(T (n− r)) ≤ 1/2.

Let 1/2− ε > τ > 0 be some constant. The following claim implies (26):

Claim 5.4. Consider n− r variables and build a random k-DNF formula with p =
p(n). Now perform a second stage and add with probability rkp each of the clauses
with less than k variables (corresponding to the clauses in which some of the r
variables of the quasitautology appeared). The resulting formula is a tautology
with probability no more than 1/2 + τ .

To simplify matters we will prove a claim that is even stronger.
After the first stage the probability of having a tautology was less than 1/2. In

the second stage with probability tending to 1 no clauses of size smaller than k− 1
were chosen (recall that p � n1−k). The expected number of clauses of size k − 1
that were added can be bounded by a constant c. Define d = 2c/τ . The probability
that more than d clauses were added in the second stage is less than τ/2 . Therefore
Claim 5.4 is implied by the following:

Claim 5.5. As before start with a random DNF formula on n − r variables with
k-clauses and p = p(n), and in the second stage pick at random d different (k− 1)-
clauses, and add them to the formula. The resulting formula is a tautology with
probability < 1/2 + τ/2.

We will prove something even stronger: Assume that in the second stage the
clauses added are not of size k − 1 but of size 1. Still, this does not increase the
probability of a tautology to 1/2 + τ/2. First we need the following:
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Lemma 5.6. Let f(n) = o(
√

n). Assume the second stage of building the formula
consists of adding f(n) clauses of size k. Then Pr(T ) after the second stage is less
than 1/2 + τ/2.

Proof. Consider µp(T ) as a function of p. We are interested in the slope of this
function in a neighborhood of pc (pc = cn/N). The lemma will follow if we show
the slope is O(N/

√
n), since enlarging p by δ results with an expected addition of

δN clauses.
Let M be a Hamming ball, the family of all formulas of size larger than Npc.

The following two facts are easy exercises, and the lemma follows from them:
1) dµp(M)/dp|p=pc ≈

√
N/pc.

2) This is the maximum possible slope at pc for all monotone families of formulas.

So we know that if in the second stage we add, say, n1/4 clauses of size k we
cannot increase the probability of a tautology to 1/2+τ . We wish to show that this
implies that a constant number of clauses of size 1 will not suffice either. Note that
if after the first stage we do not yet have a tautology, the probability of success
in the second stage is no more than 1 − (1/2)d. In any such case the following
lemma will show that a large number of clauses of size k will yield a tautology with
probability higher than that of d clauses of size 1:

Lemma 5.7. For A ⊆ {0, 1}n define A to be (d, m, ε)-coverable if the probability
for the union of a random choice of d subcubes of co-dimension m to cover A is at
least ε. Let f(n) be any function that tends to infinity as n tends to infinity. For
fixed k, d and ε and sufficiently large n any A ⊆ {0, 1}n that is (d, 1, ε)-coverable is
(f(n), k, ε)-coverable.

Proof. Let A ⊆ {0, 1}n be (d, 1, ε)-coverable. This means that sequentially choosing
at random d half cubes and building their union covers A with probability not less
than ε. Now, instead of picking the last half cube, pick at random

√
f/d cubes of

co-dimension k. We will prove below that this decreases the probability of ending
with a cover of A by no more than ε/2d. A trivial but helpful observation is that
first choosing the subcubes and then the half cubes yields the same result. This
enables us to repeat this consideration d times and conclude that A is (

√
f, k, ε/2)-

coverable. Since ε is fixed and f is large this implies that A is (f, k, ε)-coverable.
We now prove the above claim, that picking at random

√
f/d cubes of co-

dimension k instead of the last half cube decreases the probability of ending with
a cover of A by no more than ε/2d.

Our claim will follow if we show that for any α ≥ ε/2d a set which is (1, 1, α)-
coverable is (

√
f/d, k, α)-coverable.

For a set A to be (1, 1, α)-coverable means that it is a subset of the intersection
of s half cubes, where s ≥ 2nα. We may assume without loss of generality that it
is exactly the intersection of s = 2nα half cubes. For a given g we will bound from
below the probability of g subcubes of co-dimension k covering A by the probability
that at least one of them has A as a subset. The probability of this is approximately
1 − (1 − (s/2n)k)g. So choosing g ≈ α−k gives a cover with probability that is a
constant, and hence g =

√
f/d yields a cover with probability close to 1. This

completes the proof of the lemma and with it the proof of the theorem.
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6. Other applications

The approach used to solve the k-sat problem can be used to prove sharpness of
thresholds in other cases in a similar manner. Here are a few examples:

• The existence of a perfect matching in a 3-uniform (or r-uniform)
hypergraph. Consider a random 3-uniform-hypergraph on n = 3k vertices
with edge probability p. The property of interest is that of the existence of a
disjoint covering of the vertices by k edges. What is currently known about
the value of the critical p for this property is

log(n)/n2 ≤ pc ≤ n−4/3.

(See [27] and [15].) The question of showing that pc ≤ n−(2−o(1)) is considered to
be one of the challenging problems in random (hyper)graph theory. However we
may now deduce the sharpness of the threshold: By Theorem 1.2 this property has
a sharp threshold since it cannot be approximated by the appearance of a fixed
subhypergraph. The proof of this is straightforward:

Proof. Assume by contradiction that there exists such a hypergraph H̄ . Let m
be the number of edges in H̄ , and assume the probability of having a matching
conditioned on the appearance of H̄ is substantially larger than the unconditioned
probability, which is 1/2. The only contribution H̄ gives is by using some of its
edges for creating a matching. It is not hard to see that adding, say, m2m edges at
random must “help” to achieve a matching even more. But as in the case of the

k-sat we know that if X = o(
√

pc

(
n
3

)
), then adding X edges cannot make such a

difference.

Remark. A similar proof works for the case of “H-factors”, the property of having
a covering of the vertices of G(n, p) by disjoint copies of some fixed graph H . See
[3] for this problem. However in this case, as pointed out to me by Noga Alon, it
is not enough to use the fact that o(

√
E) edges (where E is the expected number

of edges) do not make a difference. Here one should use the fact that even o(E)
edges should not make a difference, or else the threshold would be sharp. This type
of proof seems to be easy for some “non-local” properties such as connectivity or
having a perfect matching.

• k-colorability for k > 2. In a paper in preparation [1] it is shown by similar
techniques that the property of being non-k-colorable for a fixed k larger than
2 has a sharp threshold. The crux of the proof there is to show that if G(n, p)
is non-k-colorable with probability 1/2, this does not change substantially if
the color of a fixed number of vertices is pre-determined.

• Properties for which the critical probability is log(n)/n. Such prop-
erties have a sharp threshold by Theorem 1.4. This reproves the well-known
facts that connectivity, having a Hamilton cycle, and other such properties
have a sharp threshold.

7. Consequences of the appendix

Before dealing with the consequences of the appendix I would like to describe
the chronological development of the results in this paper and the appendix. After
the first draft of this paper was written Jean Bourgain came up with the results
described in the appendix. At that stage Theorem 1.1 was stated in a weaker form,
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with the restriction that p must be close to a rational power of n, and Theorem 1.4
was a conjecture. The appendix contains two main results: one of them, Proposi-
tion 1, is analogous to Theorem 1.1 but is placed in a more general setting where
symmetry plays no role. The second is Proposition 2 which states that Conjecture
2.4 is true. Conjecture 2.4 itself was strong enough to imply together with the rest
of the paper at that stage that Theorems 1.1 and 1.4 were true.

After this Joel Spencer suggested extensions of the arguments in the first version
of the paper to get the present strengthened versions of the theorems. This in turn
led to a simpler approach which consisted of slight alteration of the original version
of the paper, yielding the present version.

Here are some reflections as to the consequences of the results described in the
appendix:
∗What is proven in Proposition 1 is of course more general than Theorem 1.1

since it holds with no assumptions on symmetry. On the other hand in the setting
of graphs it does not imply Theorem 1.1. However in every application mentioned
in this article (k-sat, k-colorability, etc.) it seems that both theorems can be used
equally well to prove sharpness, since they both deal with the possibility of ap-
proximating “global” properties by “local” ones. It seems that this will happen for
essentially all applications.
∗Proposition 2 gives an immediate proof of Theorem 1.4. This proof is presented

in the appendix. It also can be used to substantially simplify the proof of Lemma
4.2 which is a key lemma in this paper.

* Results similar to those of this paper may be deduced from the appendix in
certain cases where there is a group action under which the families considered are
invariant, and the number of different isomorphism types of sets with a bounded
size is bounded. An intriguing question is what can be said about the possible
values of pc for properties with a coarse threshold in the case of a family of subsets
of {1, . . . , n} that is invariant, say, under the action of the cyclic group, Cn?
∗Finally, it would be interesting to try to prove Conjecture 1.5 using the tech-

niques of the appendix.

Acknowledgments

I would like to thank Gil Kalai for his patience and assistance in the preparation
of this paper, and guidance throughout my dealing with these topics. I would like
to thank Nati Linial for introducing me to the k-sat problem and encouraging me
to work on this topic, and both of the above for many long, useful and instructive
discussions.

I would also like to thank Dorit Aharonov who is responsible for a quantum leap
in the level of readability and correctness of this paper.

I wish to thank Joel Spencer for useful discussions leading to substantial im-
provements in this paper, as mentioned in section 7.

Thanks to Christian Borgs and Van Ha Vu for pointing out an error in an earlier
version of this paper, and to Jeong Han Kim for useful discussions.

Thanks to Svante Janson for useful suggestions, and for pointing out various
inaccuracies in earlier versions. His extreme care in refereeing this paper was ad-
mirable.

Last but not least I would like to thank Jean Bourgain for writing the appendix
to this paper in which he presents a more general and compact approach to the
problems treated here.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1046 EHUD FRIEDGUT AND JEAN BOURGAIN

Appendix (by Jean Bourgain):

On sharp thresholds of monotone properties

1. Introduction

A subset A of {0, 1}n is called monotone provided if x ∈ A, x′ ∈ {0, 1}n, xi ≤ x′i
for i = 1, . . . , n, then x′ ∈ A. For 0 ≤ p ≤ 1, define µp to be the product measure
on {0, 1}n with weights 1− p at 0 and p at 1. Thus

µp({x}) = (1− p)n−jpj where j = # {i = 1, . . . , n|xi = 1}.(1.1)

If A is monotone, then µp(A) is clearly an increasing function of p. Considering A
as a “property”, one observes in many cases a “sharp” threshold phenomenon, in
the sense that µp(A) jumps from near 0 to near 1 in an interval τ = τ(n) which is
small with respect to the threshold p = p(n) when n →∞, thus

τ(n)
p(n)

n→∞−→ 0.(1.2)

Typical examples appear in the theory of random graphs on m vertices, where
n =

(
m
2

)
is the set of edges. For instance, the usual percolation (emergence of giant

component) yields

p =
1
m

, τ ∼ 1
m4/3

,(1.3)

clearly corresponding to a sharp threshold.
On the other hand, if we define for instance A to be the graph property consisting

of a triangle, we get

τ ∼ p =
(

m
3

)−1/3

,(1.4)

clearly corresponding to a coarse threshold.
A general understanding of such threshold effects has been pursued by various

authors, including Margulis [M], Russo [R], Talagrand [T] and, more recently, in
joint work of G. Kalai and the author [B], [B-K]. Let us recall in particular Tala-
grand’s inequality (see earlier work of J. Kahn, G. Kalai, N. Linial [KKL]).

Define for i = 1, . . . , n, the influence of the ith variable as

µp(Ai) where Ai = {x ∈ {0, 1}n|x ∈ A, Uix ∈ A}(1.5)

and Ui(x) is obtained by replacement of the ith coordinate xi by 1−xi and leaving
the other coordinates unchanged. The relation with the preceding results from the
easy fact that

I ≡ dµp(A)
dp

=
1
p

n∑
i=1

µp(Ai)(1.6)

(here and in the sequel we will always assume p to be small).
Denote

γ = sup
i=1,... ,n

µp(Ai).(1.7)
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Then, by [T]

µp(A)(1 − µp(A)) ≤ C log
1
p

n∑
i=1

µp(Ai)

log
[

2
µp(Ai)

] ≤ C
log 1

p

log 1
γ

n∑
i=1

µp(Ai)(1.8)

from where, by (1.6)

p
dµp(A)

dp
≥ c

log 1
γ

log 1
p

µp(A)[1 − µp(A)].(1.9)

It is clear that a sharp threshold is obtained provided the left member of (1.9)
remains larger through the transition interval.

In [B-K], a stronger inequality is obtained assuming additional structure, namely
invariance of the property under a certain symmetry group. These results turn out
however not to be useful when p is small, in particular when log 1

p ∼ log n, often
the case in applications.

The first purpose of this Appendix is to provide a general sharp-threshold crite-
rion applicable through the entire range of p. The original motivation comes from
E. Friedgut’s recent paper [F], according to which in the context of graphs and
hypergraphs a coarse threshold for a monotone property A, i.e.

p.I < C,(1.10)

implies that A is well approximable by a monotone property A1 for which minimal
elements are of bounded size, i.e. there is for all ε > 0 a monotone property A1

such that

µp(A∆A1) < ε(1.11)

and the minimal elements of A1 are of size bounded by C′(C, ε).
An important application of the result is the fact that the k-SAT (= k-satisfia-

bility) problem has a sharp threshold.
Friedgut’s argument does not seem immediately extendible to the case of a gen-

eral monotone property and the corresponding statement seems unknown so far.
The next statement yields a slightly different (but closely related) condition.

Proposition 1. Let A ⊂ {0, 1}n be a monotone property and assume say

µp(A) =
1
2
,(1.12)

p
dµp(A)

dp
< C,(1.13)

p = o(1).

Then there is δ = δ(C) such that either

µp(x ∈ {0, 1}n|x contains x′ ∈ A of size |x′| ≤ 10C) > δ(1.14)

or there exists x′ 6∈ A of size |x′| ≤ 10C such that the conditional probability

µp(x ∈ A|x ⊃ x′) >
1
2

+ δ.(1.15)

Remark. In the assumption µp(A) = 1
2 one may replace 1

2 by any other 0 < α < 1
with α + δ in (1.15).

Let us observe that Friedgut’s result for graphs and hypergraphs is used in a
first stage to derive property (1.15). In particular, the proposition may be applied
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directly to the k-SAT problem mentioned above; on the other hand, it clearly has a
variety of other applications, for instance to properties of spin glasses or arithmetic
properties of random sets of integers.

Our second purpose is to verify a conjecture from Friedgut’s paper [F] on the size
of the relevant Fourier coefficients (Conjecture 2.4) when the monotone property
has a coarse threshold.

Proposition 2. Assume F = χA satisfying

p · I < C(1.16)

and

F =
∑

F̂ (S)rS ,(1.17)

its corresponding Walsh expansion, where thus

F̂ (S) =
∫

F (x)rS(x)µp(dx),(1.18)

rS(x) =
∏
i∈S

r(xi) with
∫

rdµp = 0,

∫
r2dµp = 1.(1.19)

Then ∑
S∈Ωτ

|F̂ (S)|2 < δ(C, τ)(1.20)

where

Ωτ = {S ⊂ {1, . . . , n}| |F̂ (S)| < τp
|S|
2 }(1.21)

and for fixed C, the function δ(C, τ) → 0 for τ → 0.

Corollary 3. In the case of monotone graph (or hypergraph) properties on m ver-
tices, this fact implies that a coarse threshold p is necessarily of the form p ∼ m−v/e

with rational exponent v/e (a result obtained in [F] by other means).

2. Proof of Proposition 1

Let F = χA be the indicator function of a subset A of a product measure space
Ω(n) dµ.

Let µ(A) = 1
2 , and let A be monotone. Let F =

∑
S⊂{1,... ,n} FS be the general-

ized Walsh expansion of the function F on Ωn, i.e.

FS = FS(xi|i ∈ S) where
∫

FSdxi = 0 for all i ∈ S.

Recall that if we denote

F (i) ≡
∑
i∈S

FS ,

then (in the case of monotone A)

µ(Ai) ∼ ‖F (i)‖2
2.

Hence, our assumption and (1.6) yield that∑
‖F (i)‖2

2 =
∑

|S| ‖FS‖2
2 = pI < C.(2.1)
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Since ∑
S 6=∅

‖FS‖2
2 =

∫
|F −

∫
F |2 =

1
4

and
∑
S

|S| ‖FS‖2
2 < C,

we get ∑
S 6=∅

|S|<10C

‖FS‖2
2 >

1
10

.(2.2)

Since F (i) = F − ∫ Fdxi and F is 0, 1-valued∫
|F (i)|2dxi =

(∫
Fdxi

)(
1−

∫
Fdxi

)
=

1
2

∫
|F (i)|dxi

and

‖F (i)‖2
2 =

∫
|F (i)|2dx ∼

∫
|F (i)|dx = ‖F (i)‖1.(2.3)

By general square function inequalities for generalized Walsh expansions (see [B]),
fixing 1 < q ≤ 2, we get∥∥∥∥( ∑

i∈S, |S|≤10C

|FS |2
)1/2∥∥∥∥q

q

≤ C1‖F (i)‖q
q = C1

∫
|F (i)|q ≤ C1

∫
|F (i)|(2.4)

where one may take C1 = (q − 1)−5C .
We will also use the inequality∥∥∥∥( ∑

|S|≤10C

|FS |2
)1/2∥∥∥∥

q′
≤ C1‖F‖q′ = C1 (q′ =

q

q − 1
, C1 as above).(2.5)

It follows from (2.3), (2.4) that∑
i

∥∥∥∥( ∑
i∈S

|S|≤10C

|FS |2
)1/2∥∥∥∥q

q

≤ C1

∑
i

‖F (i)‖2
2 = C1

∑
|S| ‖FS‖2

2 < 2CC1.(2.6)

Fix 0 < ε < M < ∞ to be specified and define

ηi =

1 if
(∑

i∈S
|S|<10C

F 2
S

)1/2

> ε,

0 otherwise,

(2.7)

ξ =

{
1 if

∑
ηi < M,

0 otherwise.
(2.8)

Thus ∫
(1− ξ) <

1
M

∫ (∑
ηi

)
<

1
Mε2

∫ ∑
i

( ∑
i∈S

|S|≤10C

F 2
S

)
<

C

Mε2
(2.9)

and ∑
ηiξ < M.(2.10)
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Write by (2.2)

1
10

=
∫ ∑

S 6=∅
|S|≤10C

F 2
S ≤

∫ ∑
0<|S|≤10C

F 2
S

(∏
i∈S

ηi

)
ξ(2.11)

+
∫ ∑

i

( ∑
i∈S

|S|≤10C

F 2
S

)
(1 − ηi)(2.12)

+
∫ ( ∑

|S|≤10C

F 2
S

)
(1− ξ).(2.13)

By (2.10),

(2.11) < M10C =
∫

max
0<|S|≤10C

F 2
S .(2.14)

By (2.6) with, say, q = 4
3 and (2.7)

(2.12) <

∫ ∑
i

ε2/3

( ∑
i∈S,|S|≤10C

F 2
S

)2/3

< 2C(35C) ε2/3.(2.15)

By (2.5), (2.9)

(2.13) ≤
(∫ [ ∑

|S|≤10C

F 2
S

]2)1/2

·
(∫

(1 − ξ)
)1/2

< C2
1

C1/2

M1/2ε
< C1/2 310C 1

M1/2ε
.

(2.16)

Thus, collecting estimates (2.14), (2.16) we get

1
10

< M10C

∫
max

0<|S|≤10C
|FS |2 + 2C(35C) ε2/3 + C1/2 310C 1

M1/2ε
.(2.17)

For appropriate consecutive choice of ε and M , it follows that∫
max

0<|S|≤10C
|FS | > 3−500C2

.(2.18)

Recall that for S = {1, . . . , iK}
FS = (ES − ES\{i1}) · · · (ES − ES\iK

)F

where ES′ denotes the conditional expectation wrt the variables {xi|i ∈ S′}.
Hence, from (2.18), using the fact that |FS | ≤ 210C and letting δ = 3−500C2

2−10C ,
we get that ∫ [

max
|S|≤10C

|ESF −
∫

F |
]

dx > δ.(2.19)

Assume now A ⊂ {0, 1}n, dµp monotone, with µp the usual product measure

µp({x}) = p
∑

xi(1 − p)n−∑xi ,

and µp(A) = 1
2 .
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We will use the notation x for both elements of {0, 1}n and subsets of {1, . . . , n}.
Assume further that p = o(1) and

µp{x|x contains an element x′ ∈ A of size |x′| ≤ 10C} = o(1)(2.20)

(cf. alternative (1.14) of the proposition).
From (2.19), (2.20), it follows that there is x ∈ {0, 1}n and S ⊂ {1, . . . , n}, |S| ≤

10C, such that if n is sufficiently large

x does not contain x′ ∈ A, |x′| ≤ 10C,(2.21) ∣∣∣∣(ESF )(x)− 1
2

∣∣∣∣ = ∣∣∣∣( ∫ F
∏
i6∈S

dxi

)
(xi|i ∈ S)− 1

2

∣∣∣∣ > δ

2
.(2.22)

Observe from the monotonicity that for all choices {xi|i ∈ S}(∫
F
∏
i6∈S

dxi

)
(xi|i ∈ S) ≥

(∫
F
∏
i6∈S

dxi

)
(xi = 0|i ∈ S)

≥
(∫

Fdx

)
− p|S| = 1

2
− o(1).

Hence (2.22) implies that(∫
F
∏
i6∈S

dxi

)
(xi|i ∈ S) >

1
2

+
δ

2
.(2.23)

By construction of x, x′ = x ∩ S 6∈ A and (2.23) clearly implies that

µp(x ∈ A|x′ ⊂ x) >
1
2

+
δ

2
,(2.24)

i.e. (1.5) of the proposition.
This completes the proof.

3. Proof of Proposition 2

Let F = χA satisfy (2.1).
We will first come back to inequality (2.17).
Denote by Ω any subset of {S ⊂ {1, . . . , n}|S 6= ∅, |S| < B} with B > C some

bound on the size and let

κ =
∑
S∈Ω

‖FS‖2
2.(3.1)

A simple repetition of the estimates (2.11)–(2.13), (2.10), (2.15), (2.16) yields that

κ ≤ MB

∫
max
S∈Ω

F 2
S + (2.12) + (2.13)(3.2)

< MB max
S∈Ω

‖FS‖2
∞ + BC3B/2 ε2/3 + 3B C1/2

M1/2ε
.(3.3)

Choosing ε and M appropriately, it follows that

max
S∈Ω

‖FS‖∞ > 81−B2
κ3B.(3.4)
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Combining (2.1) and (3.4), we get thus the following estimate for an appropriate
choice of B: ∑

‖FS‖∞<τ

‖FS‖2
2 ≤

∑
|S|>B

‖FS‖2
2 +

∑
0<|S|<B, ‖FS‖∞<τ

‖FS‖2
2

<
C

B
+ 81B/3 τ

1
3B < const.

C√
log 1

τ

(3.5)

when τ → 0.
In the case of probability space {0, 1}n, µp, with p ≤ 1/2 one has that

FS = F̂ (S)rS(3.6)

with rS(x) defined as in (1.19). Thus

‖rS‖∞ = ‖r‖|S|∞ =
(

1− p

p

)|S|/2

,(3.7)

‖rS‖1 = ‖r‖|S|1 = (2
√

p(1− p))|S|(3.8)

since

r(0) = −
√

p

1− p
, r(1) =

√
1− p

p
.(3.9)

It follows that

‖FS‖∞ =
(

1− p

p

)|S|/2

|F̂ (S)|(3.10)

and, if ‖F‖∞ ≤ 1

|F̂ (S)| ≤ (4p(1− p)
)|S|/2

.(3.11)

Letting Ωτ be as in (1.21), (3.10) permits us to reformulate (3.5) as∑
S∈Ωτ

|F̂ (S)|2 <
C ′√
log 1

τ

for τ → 0(3.12)

which is an estimate of the form (1.20).
This fact roughly means that if F = χA satisfies (2.1), only the Fourier coeffi-

cients F̂ (S) of “extremal” size

|F̂ (S)| ∼ p|S|/2(3.13)

and with |S| bounded will contribute to the L2-norm (
∑ |F̂ (S)|2)1/2.

These analytic considerations are again independent of a monotonicity assump-
tion on A.

If A is a monotone property, the preceding phenomenon is then valid whenever
a coarse threshold occurs.

In the particular case of a monotone graph (or hypergraph) property A on m

vertices, F̂ (S) only depends on the isomorphism type of the graph S and the number
of these is clearly bounded if a bound on |S| is imposed. It follows from the
preceding result on the Fourier coefficient size that if p = o(1) m→∞−→ 0 in a coarse
threshold, then for some isomorphism type S involving v vertices and e edges

Θ(S)(p)|S| = Θ(S)pe ∼ 1(3.14)
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where Θ(S) ∼ (
m
v

)
stands for the number of isomorphs of S. Hence p ∼ m−v/e,

yielding the statement about the rationality of the threshold exponent.
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