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Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in

a particular velocity range a drag crisis is observed, i.e., a sharp and strong decrease of the drag force. This

counterintuitive result is well characterized for a sphere or a cylinder. Here we show that, for an object

breaking the up-down symmetry, a lift crisis is observed simultaneously to the drag crisis. The term lift

crisis refers to the fact that at constant incidence the time-averaged transverse force, which remains small or

even negative at low velocity, transitions abruptly to large positive values above a critical flow velocity.

This transition is characterized from direct force measurements as well as from change in the velocity field

around the obstacle.

Drag crisis is a puzzling phenomenon of fluid mechanics

that contradicts common intuition: in a range of traveling

speed the drag force exerted on a bluff body sharply falls

with velocity. This phenomenon, first observed by Eiffel

more than a century ago [1,2], is well described in text-

books [3]. See also Ref. [4] for a review of flows past a

circular cylinder and Ref. [5] for spectacular visualizations

around a sphere. Such visualizations demonstrate that the

drag crisis corresponds to a narrowing of the wake of the

obstacle: the transition of the boundary layer from laminar

to turbulent moves the separation lines downstream on the

rear surface of the object. The critical velocity Uc for this

transition corresponds to a critical Reynolds number Rec ¼
Ucd=ν (where d is a typical size of the obstacle and ν the

kinematic viscosity of the fluid) that depends on the exact

shape of the body. Rec is of the order of 4 × 105 for a sphere

or a cylinder. The critical Reynolds number depends also

on the free stream turbulence [6] or on the roughness of the

obstacle. A classical example is the presence of dimples at

the surface of a golf ball that decrease the critical Reynolds

number by a factor of ten, what explains their surprisingly

long trajectories [7,8]. Drag crisis is usually described for

a symmetrical object, for which no permanent lift force is

measured, although strong fluctuating transverse forces

have been observed [9]. Permanent lift can however be

generated on such a symmetrical object if it is spinning, a

possibility largely used in ball sports [7,8], or if it moves

close to a wall or inside a nonclassical fluid as granular

media [10]. On the other hand, strong lift and low drag are

usually achieved with slender bodies, e.g. an aircraft wing,

tilted to a small incidence angle. For such wings, if the

incidence angle becomes too large, the lift abruptly

decreases and the drag increases, a phenomenon called

stall. This phenomenon can be tragic for airplanes and

corresponds to the separation of the boundary layer all over

the upper surface of the wing.

In the present paper we show that, for a relatively

streamlined but thick body, such as a highly curved plate,

a sharp transition in the lift can be observed at a constant low

incident angle when the flow rate is increased. High-camber

aerofoil sections are commonly used at high incidence when

the lift as well as the drag must be large, e.g. for a landing

aircraft or for downwind yacht sails [11,12]. The lift jump

that we observe here when varying the flow velocity and

henceforth called a lift crisis, is associatedwith a transition in

the upper surface boundary layer which allows the flow to

remain attached on the convex wall further downstream,

similarly towhat is observed in a bluff bodydrag crisis.At the

same critical Reynolds number the drag is found to drop.

A sharp increase of the lift with the Reynolds number for

thick profiles at zero incidence has already been reported in

the past [13], but its origin and similarity to the drag crisis

seems to have been largely unnoticed. Note that the term lift

crisis was previously used for a symmetrical obstacle in

anothermeaning: to refer to themodification in the amplitude

of the instantaneous lift fluctuations [9,14–16]. Here the

expression lift crisis is used to refer to the abrupt jump of

the time-averaged lift.

Experiments were carried out in the IRENav hydrody-

namic tunnel to measure the forces and the velocity fields

on a two-dimensional high-camber plate. The plate is a

3-mm-thick, 50-mm-radius stainless steel circular arc section

with a chord length c ¼ 74 mm and a camber t ¼ 16.6 mm,

resulting in a relative camber t=c ¼ 22.3% located at mid-

chord (Fig. 1). The test section is 192 × 192 mm2 and 1 m

long, located downstream of honeycombs and a 1=9
contraction convergent. The measured turbulence intensity

is 1.8%. The incidence angle is set to zero for all the results

presented here. The obstacle fills almost all the channel

width, except for a small gap on each end to avoid contacts

with the walls that would alter force measurements.

The upstream water flow velocity U∞ in the tunnel can be
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adjusted between 1.4 and 8.13 m=s, resulting in a Reynolds

number range Re ¼ U∞c=ν ∈ ½105; 6 105�. As usual in

aeronautics, the Reynolds number is built on the chord

length c and not on the thickness t. The plate is connected to a

force balance based on strain gauges allowing us to measure

the drag and lift forces with a resolution better than 0.5 and

1.7 N respectively, thus of the order of 20% at low Reynolds

numbers and 1% at high Reynolds numbers. Forces are

recorded at 1 kHz and time averaged during 30 sec. More

details on the hydrodynamic tunnel and hydrodynamic

balance can be found in Ref. [17]. Transverse L and

longitudinal D components of the hydrodynamic force are

made dimensionless by the relations

CL ¼
L

1=2ρU2
∞A

; ð1aÞ

CD ¼
D

1=2ρU2
∞A

; ð1bÞ

where, according to the aeronautics convention, A is the

surface of the plate projected on the horizontal plane (chord

length multiplied by the span) and ρ is the water density.

Figure 2 presents the increase of the lift coefficientCLwith

Reynolds number, measured by the force balance. This curve

displays an abrupt transition for Rec ¼ ð2.00� 0.04Þ × 105,

from negative (downward) to positive (upward) lift, with no

visible hysteresis when increasing or decreasing the flow

rate. Figure 2 also shows that the drag coefficientCD drops at

the same critical Reynolds number. Thus the curved plate

simultaneously experiences a drag and a lift crisis, and the

lift-to-drag ratioCL=CD jumps from−3up toþ8.5. Note that

the value CD ≃ 0.2 measured below the critical Reynolds

number corresponds to a drag coefficientCx definedwith the

projected area normal to the flow (thickness multiplied by

span) close to 1, as is common for a bluff body with massive

flow separation and a wake almost as wide as the object.

The lift crisis transition does not look like a proper

bifurcation, or it would be a rather imperfect bifurcation, as

no cusp with a slope discontinuity is observed. Moreover,

we must remember that these data are time averaged and

significant temporal fluctuations exist on the lift and drag

forces. Contrary to what was sometimes reported for the

drag crisis or stall [18], here we do not observe measurable

hysteresis when increasing or decreasing the fluid velocity.

To characterize the sharp transition, the abruptness of the

lift jump around the inflexion point may be described by

the power-law scaling jCL − CL0j ∼ ðjRe − Recj=RecÞ
γ , as

shown on Fig. 3. The same exponent γ ≃ 0.2 fits the data

below and above the transition, and its value suggests that

the slope dCL=dRe becomes very large in Rec.

In order to better characterize the lift crisis we performed

velocity field measurements around the obstacle using 2D

particle image velocimetry (PIV). The flow is illuminated

from above with a laser sheet normal to the spanwise

direction and located at mid span (z ¼ 0). Two mirrors are

placed below the tunnel test section to illuminate the other

side of the plate, which allows the whole velocity field

around the obstacle to be measured. The water flow is
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FIG. 1. Curved plate section: chord length c ¼ 74.5 mm and

camber t ¼ 16.6 mm (top) and tunnel test setup (bottom). All

dimensions are in mm.
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FIG. 2. Lift coefficient CL (scale on the left axis) versus

Reynolds number, measured directly with the force balance

(circle) or from the PIV fields (square). The drag coefficient

CD (scale on the right axis) measured with the force balance

(plus) is plotted on the same graph.
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FIG. 3. Power law of the lift jump below (diamond) and above

(plus) Rec. The dashed line is a power law fit with Rec ¼ 200100,

CL0 ¼ 0.08 and exponent γ ¼ 0.2.



seeded with μm sized polyamide particles and visualized

by a 4k-pixel CCD camera at a sampling frequency of

10 Hz in double frame. For each value of the flow velocity,

300 image pairs are recorded and processed in order to

determine the time-averaged velocity field Uðx; yÞ. More

details on the PIV measurement system and processing can

be found in Refs. [17,19].

Figures 4(a) and 4(b) present PIV time-averaged veloc-

ities in the vicinity of the obstacle. Figure 4(a) is typical of

the subcritical flow (Re < Rec) whereas Fig. 4(b) is typical

of the supercritical flow (Re > Rec). At moderate Reynolds

number the flow on the upper surface is massively

separated with a separation point located close to the top

of the camber, around x=c≃ 0.57 [Fig. 4(a)]. The resulting

wide low-velocity area behind the obstacle corresponds to a

periodic emission of alternate vortices, as confirmed by

visualizations of the instantaneous velocity fields. The

highest mean velocities are measured below the plate,

resulting, according to Bernoulli’s equation, in low pressure

and therefore in a downward lift force (CL < 0). This point

is confirmed by the fact that the wake is slightly oriented

upward. For larger Reynolds numbers [Fig. 4(b)] the flow

on the upper surface remains attached along the convex

surface much farther downstream. The separation point

moves almost to the trailing edge (x=c≃ 0.95) resulting

in a much smaller low-velocity area downstream of the

obstacle and to a very narrow wake slightly oriented

downward [Fig. 4(d)]. The largest velocities are now

located above the obstacle, where low pressures induce a

strong upward lift (CL > 0).

These pictures qualitatively confirm the existence of the

lift crisis. The flow changes from the one past a bluff body

with massive separation (high drag) in the subcritical regime

to the flow around a more streamlined lift-generating

obstacle (high lift and smaller drag) in the supercritical

regime. Indeed, as shown on Fig. 5, the separation point

location on the upper surface detected in the velocity fields

shows a sharp jump at the critical Reynolds number.

For a 2D potential flow the lift on an obstacle can be

computed from the shape of the streamlines. In particular
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one can replace the area inside any closed streamlines by an

equivalent Rankine solid [20]. Here the closed area can be

defined in Figs. 4(a) and 4(b) as the dark blue area where

U=U∞ ≤ 0.4. This zone drastically changes shape from a

large ellipse with a small negative incidence below the

critical Reynolds number, to a flat-bottom thick wing at

zero incidence above Rec. Furthermore, we can also infer

the lift experienced by the obstacle directly from the PIV

velocity field, computing the velocity circulation Γ along a

path C around the obstacle:

Γ ¼

I
C

U · dl: ð2Þ

Indeed the Kutta-Joukowski theorem states that for a 2D

potential flow, the lift coefficient is proportional to the

circulation [21]:

CL ¼ −
2Γ

U∞c
: ð3Þ

The lift coefficient deduced from the integration of

PIV fields along a large rectangle around the obstacle

(x=c ∈ ½−0.4; 1.56�; y=c ∈ ½−0.78; 1�) are plotted in Fig. 2.

The results agree within 10% with the lift measured with

the force balance and in particular exhibit the same abrupt

lift jump at Rec. The good agreement of the 2D lift derived

from the velocity in the mid-span plane with the global lift

measured by the balance confirms that the mean flow is

reasonably 2D. We also checked that, while enlarging the

integration contour C in the PIV plane, the circulation and

thus the 2D lift remains almost constant (variations are

smaller than 1%). Concerning the drag crisis, it can be

related to the reduction of the wake thickness, as can be

seen in the velocity profiles in the wake of the obstacle

plotted in Figs. 4(c) and 4(d). The velocity deficit is deeper

and larger at low Reynolds numbers. In principle the drag

can be derived from the momentum deficit in the wake and

from pressure losses [22,23]; however, here direct force

measurements were more accurate.

With this experiment we show that the well-known drag

crisis of bluff bodies can be associatedwith an abrupt jumpof

the lift for nonsymmetrical objects. The lift crisis highlighted

here for a curved plate is a general phenomenon for

nonsymmetrical objects. In particular, we tested asymmetric

bodies with different sections: a solid body with the same

upper surface than the curved plate presented above but with

a flat bottom (called circular-back section), and a solid half-

cylinder. The lift crisis is also observed on both bodies

simultaneously to the drag crisis, with a critical Reynolds

number Rec ¼ 2.5 × 105 and a transition exponent γ ≃ 0.5

on the circular-back section, while Rec ¼ 3.0 × 105 and

γ ≃ 0.2 on the half-cylinder section (see Supplemental

Material [24]). Evidently, the lift crisis cannot be separated

from the drag crisis: both are governed by the abrupt change

in theboundary layer separation. The lift crisis described here

can also be related to asymmetric transitions in the boundary

layers of spheres: e.g. for rotating balls, an inverse Magnus

effect corresponding to an inversion of the lift has been

observed close to the drag crisis [25–27]. Furthermore, for

nonrotating balls with a localized asymmetric roughness, the

change in the deflection force seems to be at the origin of

knuckleballs [28–30]. Similarly, the existence of the lift jump

at the drag crisis threshold seems to be an important

phenomenon to consider to analyze the galloping instability

of anisotropic cables [31].

In conclusion, as far as we know, such a sharp jump and

inversion of lift with the Reynolds number at constant angle

of incidence and the analogy to the drag crisis of bluff

bodies has not been described, probably because classical

bluff bodies are spheres or cylinders with no asymmetry,

while lifting wings are slender bodies with no clear drag

crisis at low incidence. This abrupt generation or inversion

of the transverse force above a critical flow velocity could

be used for practical applications such as a velocity

threshold detector, or the passive stability control of an

unmanned flying vehicle [32].
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