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ON A SHARP LOWER BOUND ON THE BLOW-UP RATE
FOR THE L2 CRITICAL NONLINEAR

SCHRÖDINGER EQUATION

FRANK MERLE AND PIERRE RAPHAEL

1. Introduction

1.1. Setting of the problem. We consider in this paper the L2 critical nonlinear
Schrödinger equation

(1.1) (NLS)
{

iut = −∆u − |u| 4
N u, (t, x) ∈ [0, T ) × RN

u(0, x) = u0(x), u0 : RN → C

with u0 ∈ H1 = H1(RN ) in dimension N ≥ 1. From a result of Ginibre and Velo
[7], (1.1) is locally well-posed in H1 and thus, for u0 ∈ H1, there exists 0 < T ≤ +∞
such that u(t) ∈ C([0, T ), H1) and either T = +∞ (we say the solution is global)
or T < +∞ and then lim supt↑T |∇u(t)|L2 = +∞ (we say the solution blows up in
finite time).

(1.1) admits the following conservation laws in the energy space H1:

L2-norm :
∫
|u(t, x)|2 =

∫
|u0(x)|2;

Energy : E(u(t, x)) = 1
2

∫
|∇u(t, x)|2 − 1

2+ 4
N

∫
|u(t, x)|2+ 4

N = E(u0);
Momentum : Im

(∫
∇uu(t, x)

)
= Im

(∫
∇u0u0(x)

)
.

For notational purposes, we shall introduce the following invariant:

(1.2) EG(u) = E(u) − 1
2

(
|Im(

∫
∇uu)|

|u|L2

)2

.

It is classical from the conservation of energy and the L2-norm that the power of
the nonlinearity in (1.1) is the smallest power for which blowup may occur, and
the existence of blow-up solutions is known from the virial identity: let an initial
condition u0 ∈ Σ = H1 ∩ {xu ∈ L2}; then the corresponding solution u(t) to (1.1)
satisfies

(1.3) u(t) ∈ Σ and
d2

dt2

∫
|x|2|u(t, x)|2 = 16E(u0).

Thus if u0 ∈ Σ with E(u0) < 0, the positive quantity
∫
|x|2|u(t, x)|2 cannot exist

for whole times and u blows up in finite time.
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38 FRANK MERLE AND PIERRE RAPHAEL

Equation (1.1) admits a number of symmetries in the energy space H1: if u(t, x)
is a solution to (1.1), then ∀(λ0, t0, x0, β0, γ0) ∈ R+

∗ × R × RN × RN × R, so is

v(t, x) = λ
N
2
0 u(t + t0, λ0x + x0 − β0t)ei

β0
2 ·(x− β0

2 t)eiγ0 .

The following pseudo-conformal symmetry is not in the energy space H1 but in the
virial space Σ: if u(t, x) solves (1.1), then so does

v(t, x) =
1

|t|N
2

u(
1
t
,
x

t
)ei |x|2

4t .

Special solutions play a fundamental role for the description of the dynamics of
(1.1). They are the so-called solitary waves of the form u(t, x) = eiωtWω(x), ω > 0,
where Wω solves

(1.4) ∆Wω + Wω|Wω|
4
N = ωWω.

Equation (1.4) is a standard nonlinear elliptic equation, and from [2] and [8], there
is a unique positive solution up to translation Qω(x). Qω is, in addition, radi-
ally symmetric. Letting Q = Qω=1, then Qω(x) = ω

N
4 Q(ω

1
2 x) from the scaling

property. Therefore, one computes

|Qω|L2 = |Q|L2 .

Moreover, multiplying (1.4) by N
2 Qω + x · ∇Qω and integrating by parts yields the

so-called Pohozaev identity:

E(Qω) = ωE(Q) = 0.

In particular, none of the three conservation laws in H1 sees the variation of size
of the Qω stationary solutions.

For |u0|L2 < |Q|L2 , the solution is global in H1 from the conservation of energy,
the L2-norm and the Gagliardo-Nirenberg inequality as exhibited by Weinstein in
[23]:

(1.5) ∀u ∈ H1, E(u) ≥ 1
2

(∫
|∇u|2

)(
1 −

(∫
|u|2∫
Q2

) 2
N

)
.

In addition, this condition is sharp: for |u0|L2 ≥ |Q|L2 , blowup may occur. Indeed,
the pseudo-conformal transformation applied to the stationary solution eitQ(x)
yields an explicit solution

(1.6) S(t, x) =
1

|t|N
2

Q(
x

t
)e−i |x|2

4t + i
t

which blows up at T = 0 with |S(t)|L2 = |Q|L2 . Note that the blow-up speed for
S(t) is

|∇S(t)|L2 ∼ 1
|t| .

Moreover, from [13], S(t) is the unique minimal mass finite time blow-up solution
up to the symmetries.
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LOWER BOUND ON THE BLOW-UP RATE 39

Most results concerning the blow-up dynamics of (1.1) now concern the pertur-
bative situation when

u0 ∈ Bα∗ = {u0 ∈ H1 with
∫

Q2 ≤
∫

|u0|2 <

∫
Q2 + α∗},

for some small constant α∗ > 0. At least two different blow-up behaviors are known
to possibly occur:

• There exists in dimension N = 1, 2 a family of solutions of type S(t) by a
result of Bourgain and Wang, [4], that is, solutions with |∇u(t)|L2 ∼ 1

T−t

near blow-up time.
• On the other hand, it has been suspected since the 70s that the blow-up

speed of generic initial data is different from the S(t) speed, which indeed is
never observed numerically. Let us say that quite a number of both formal
and numerical works have been devoted to the derivation of the exact blow-
up law for (1.1) and that different laws have been proposed, in particular by
Zakharov. Then in the 80s, a combination of refined numerical simulations
and formal asymptotic expansions led Landman, Papanicolaou, Sulem and
Sulem [9], to propose in dimension N = 2 the log-log law

|∇u(t)|L2 ∼
(

log | log(T − t)|
T − t

) 1
2

as the generic blow-up speed. A numerical confirmation of the log-log law
was recently proposed by Akrivis, Dougalis, Karakashian and McKinney
in [1]. Further formal arguments to explain the log-log correction to self-
similar blowup may also be found in Dyachenko, Newell, Pushkarev and
Zakharov [5] and Pelinovsky [18]. We refer to the monograph [21] and ref-
erences therein for a complete introduction to the history of the problem.
Then in 2001, Perelman in [19] established rigorously the existence in di-
mension N = 1 of an even log-log solution and its stability in some space
E ⊂ H1.

The situation has been clarified in the sequence of papers [14], [15], [16]. More
precisely, let us consider the following property:

Spectral Property. Let N ≥ 1. Consider the two real Schrödinger operators

(1.7) L1 = −∆ +
2
N

(
4
N

+ 1
)

Q
4
N −1y · ∇Q , L2 = −∆ +

2
N

Q
4
N −1y · ∇Q,

and the real-valued quadratic form for ε = ε1 + iε2 ∈ H1:

(1.8) H(ε, ε) = (L1ε1, ε1) + (L2ε2, ε2).

Then there exists a universal constant δ̃1 > 0 such that ∀ε ∈ H1, if (ε1, Q) =
(ε1, Q1) = (ε1, yQ) = (ε2, Q1) = (ε2, Q2) = (ε2,∇Q) = 0, then

H(ε, ε) ≥ δ̃1(
∫

|∇ε|2 +
∫

|ε|2e−|y|)

where Q1 = N
2 Q + y · ∇Q and Q2 = N

2 Q1 + y · ∇Q1.

This property has been proved in [14] for dimension N = 1 and will always
be implicitly assumed in higher dimension N ≥ 2. Recently, a numerical proof
is derived in [6]. Let us say that this Spectral Property contains two parts: first
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40 FRANK MERLE AND PIERRE RAPHAEL

count exactly the number of negative eigenvalues of each quadratic form, second
prove that the explicit set of orthogonality conditions chosen is enough to ensure
the coercivity of the quadratic forms. As it is stated, the first part always holds
numerically until N = 10, and the second part holds for N = 2, 3, 4, which in
particular covers the physically relevant case N = 2, but fails for N = 5, 6. In
conclusion, the Spectral Property holds true at least for

N = 1, 2, 3, 4,

and for N ≥ 5, it could be true that another set of orthogonality conditions or a
relaxed form of the Spectral Property holds true and is enough to have the whole
proof go through. An interesting case for further investigation is when N → +∞;
again in this case, the asymptotic form of the ground state is explicit and all com-
putations can be done. One can hope to derive a similar spectral property which
will lead to the same results.

We now have:

Theorem 1 ([14], [15], [16], [20]). Let N = 1 or N ≥ 2, assuming that the Spectral
Property holds true. There exist universal constants α∗ > 0, C∗

1 > 0, C∗
2 > 0

such that the following holds true. Given u0 ∈ Bα∗ , let u(t) be the corresponding
solution to (1.1) with [0, T ) its maximum time interval of existence on the right in
H1. Then:

• If EG
0 < 0, then u(t) blows up on the right and on the left in time, and the

following upper bound on the blow-up rate holds for t close enough to T :

(1.9) |∇u(t)|L2 ≤ C∗
1

(
log | log(T − t)|

T − t

) 1
2

.

• If EG
0 = 0 and u0 is not a soliton up to scaling, phase and translation

invariances, then u(t) blows up on the right or on the left in time with
upper bound (1.9). Moreover, if u0 ∈ Σ, then finite time blowup occurs on
both sides in time with upper bound (1.9).

• The set O of initial data u0 ∈ Bα∗ such that u(t) blows up on the right in
finite time with upper bound (1.9) is open in H1.

• If u(t) blows up in finite time and (1.9) does not hold, then the following
sharp lower bound on the blow-up rate holds:

(1.10) |∇u(t)|L2 ≥ C∗
2

(T − t)
√

EG
0

.

We now address the question of lower bounds on the blow-up rate. On the one
hand, observe that outside the open set where the log-log upper bound (1.9) holds,
we have the lower bound (1.10), which is conjectured to be sharp as it is the rate
of blowup for the explicit blow-up solution S(t).

On the other hand, in the log-log regime, a known lower bound holds from the
scaling argument:

(1.11) |∇u(t)|L2 ≥ C∗
√

T − t
.

Even though self-similar blowup is known to generically happen in other situations,
it is conjectured from the criticality of the problem never to hold true in H1 in our
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LOWER BOUND ON THE BLOW-UP RATE 41

setting. We proved this result in [16] for data u0 ∈ Bα∗ :
√

T − t|∇u(t)|L2 → +∞ as t → T.

This result is an L2 property in the sense that there exist explicit self-similar solu-
tions in Ḣ1, but they never belong to L2. The proof in [16] relies on classification
results of non-L2 dispersive blow-up solutions. In a first step, we prove that such
an object satisfies additional decay properties in Σ. In a second step, we are able to
characterize these solutions thanks to L2 dispersion under this additional control in
Σ. Moreover, using the pseudo-conformal transformation as an explicit symmetry
of (1.1), this classification result is equivalent to proving the following character-
ization of solitons: if u0 ∈ Σ with E0

G = 0 and u0 is not a soliton up to the H1

symmetries, then u(t) blows up for t > 0 and t < 0 in finite time with upper bound
(1.10).

1.2. Statement of the results. This paper is devoted to the proof of the sharp
lower bound on the blow-up rate:

Theorem 2 (log-log lower bound). Let N = 1 or N ≥ 2, assuming that the Spectral
Property holds true. There exist universal constants α∗ > 0, C∗

3 > 0 such that the
following holds true. Let u0 ∈ Bα∗ and assume that the corresponding solution u(t)
blows up in finite time 0 < T < +∞. Then one has the following lower bound on
the blow-up rate for t close to T :

(1.12) |∇u(t)|L2 ≥ C∗
3

(
log | log(T − t)|

T − t

) 1
2

.

Comments on the result.

1. Pointwise estimate: At this stage of the theory, it is noteworthy that the log-
log upper bound (1.9) is needed for the proof of the log-log lower bound (1.12). In
addition, we obtain a slightly stronger result in the proof as we exhibit a pointwise
in time differential inequality for the size of the solution; see section 5.

2. Exact blow-up speed for the log-log: From the proof, we in fact have an exact
equivalent of the blow-up speed in the log-log regime, i.e., for the solutions which
satisfy the upper bound (1.9):

(1.13)
|∇u(t)|L2

|∇Q|L2

(
T − t

log | log(T − t)|

) 1
2

→ 1√
2π

as t → T.

This theorem will be obtained as a refinement of techniques developed in [16],
Part B, for the proof of nonexistence of self-similar blow-up solutions. This amounts
to understanding precisely the mass exchanges between the blow-up part of the so-
lution and the linear radiative dynamic at infinity. This dispersive mechanism in L2

has been partially exhibited in [16] in a regime where additional decay assumptions
on the solution in Σ hold in the vicinity of the blow-up time. For generic initial
data, such estimates do not hold: recall that the result in [16] is a classification
result of nondispersive solutions in L2. In this paper, exhibiting a Lyapounov func-
tion in the log-log regime involving the L2-norm, we are able to extend the analysis
in [16] to H1. Nevertheless, we expect that existence of such a Lyapounov prop-
erty is very specific to (1.1), whereas arguments given in [16] should be more robust.
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42 FRANK MERLE AND PIERRE RAPHAEL

In addition, we are able to extend the dynamical characterization of solitons in
the zero energy manifold to the full energy space H1:

Theorem 3 (Blowup for H1 zero energy solutions). Let N = 1 or N ≥ 2, assuming
that the Spectral Property holds true. There exists a universal constant α∗ > 0 such
that the following holds true. Let u0 ∈ Bα∗ with EG

0 = 0 and assume that u0 is not
a soliton up to fixed scaling, phase, translation and Galilean invariances. Then u
blows up both for t < 0 and t > 0, and (1.13) holds.

Let us observe again that blowup on the right or on the left in time is known from
[16]. The main problem that one is confronted with for zero energy solutions is the
possibility of a nonlinear vanishing, |∇u(t)|L2 → 0 as t → +∞. This behavior has
been ruled out for data u0 ∈ Σ in [16] using the pseudo-conformal transformation
as an explicit symmetry of (1.1). Nevertheless, the zero energy set is an important
set in the energy space H1 as zero energy solutions are natural asymptotic profiles
for blow-up solutions. In this setting, no information is usually obtained outside
the energy space, and thus Theorem 3 is more than a technical improvement of the
result obtained in [16], Part B. Moreover, the nonlinear vanishing dynamic is ruled
out from the conservation of the L2-norm and the zero energy assumption, showing
in fact that the Hamiltonian information is in this case enough to prove a strong
rigidity of the blow-up dynamic.

These results on (1.1) in the sequence of papers [14], [15], [16], [20] and the
present paper may be summarized as follows in a general statement.

Theorem 4 (Dynamics of (1.1)). Let N = 1 or N ≥ 2, assuming that the Spectral
Property holds true. There exist universal constants α∗ > 0, C∗ > 0 such that the
following holds true. For u0 ∈ H1, let u(t) be the corresponding solution to (1.1)
with [0, T ) its maximum time interval with existence on the right in H1. Define the
set

O = {u0 ∈ Bα∗ with
∫ T

0

|∇u(t)|L2dt < +∞}.

Then:
• If u0 ∈ O, then 0 < T < +∞ and it follows that

|∇u(t)|L2

|∇Q|L2

(
T − t

log | log(T − t)|

) 1
2

→ 1√
2π

as t → T.

• The set of initial data u0 ∈ Bα∗ with negative energy EG
0 ≤ 0 and super

critical mass
∫

Q2 <
∫
|u|2 is included in O.

• O is open in H1.
• If 0 < T < +∞ and u0 ∈ Bα∗ does not belong to O, then the following

lower bound holds:

|∇u(t)|L2 ≥ C∗

(T − t)
√

EG
0

.

Remark 1. It is an open problem to get a bound from above on the blow-up rate
in the regime where (1.10) holds. Recall again that solutions obtained in [4] have
the speed |∇u(t)|L2 ∼ 1

T−t .
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LOWER BOUND ON THE BLOW-UP RATE 43

This paper is organized as follows. Section 2 is devoted to recalling key objects
and properties obtained in [14], [15], [16], [20]. In section 3, we outline the strategy
of the proof of Theorem 2. In section 4, we obtain new dispersive estimates which
allow us in section 5 to conclude the proof. Theorem 3 will follow similarly.

Throughout this paper, we will assume in dimension N ≥ 2 that the Spectral
Property holds true (recall that it has been proven to hold true for N = 1, 2, 3, 4).
In addition, all results in this paper deal with initial conditions u0 ∈ H1 in the L2

vicinity of Q, ∫
Q2 ≤

∫
|u0|2 ≤

∫
Q2 + α∗

for some α∗ > 0 small enough.
We also fix some notation. δ(α∗) > 0 will denote a constant such that δ(α∗) → 0

as α∗ → 0. Moreover, given a well-localized function f , we set

f1 =
N

2
f + y · ∇f and f2 =

N

2
f1 + y · ∇f1.

Note that integration by parts yields

(f1, g) = −(f, g1).

We accept one exception to this notation and will note ε = ε1 + iε2 in terms of real
and imaginary parts.

Part of this work has been supported by grant DMS-0111298. The authors thank
the referees for their suggestions.

2. Recall of dynamical properties of solutions to (1.1)

Our aim in this section is to recall the objects involved in the analysis of the
dynamics of solutions to (1.1) which have been exhibited in [14], [15], [16], [20], and
we refer to these papers for detailed proofs and explanations. These properties are
the starting point of our analysis. We use a suitable finite-dimensional geometrical
decomposition of the solution and estimates on the corresponding geometrical pa-
rameters. These dispersive type estimates then allow us to understand part of the
interactions between the finite-dimensional dynamic and the infinite-dimensional
part of the solution.

2.1. Localized self-similar profiles and associated radiation. In this subsec-
tion, we recall results concerning the construction of regular approximations to self
similar profiles close to Q. Let η be a small parameter, 0 < η << 1, to be fixed
later. For b �= 0, set

Rb =
2
|b|
√

1 − η, R−
b =

√
1 − ηRb,

and BRb
= {y ∈ RN , |y| ≤ Rb}. We introduce a regular radially symmetric cut-off

function φb(x) = 0 for |x| ≥ Rb and φb(x) = 1 for |x| ≤ R−
b , 0 ≤ φb(x) ≤ 1, such

that

(2.1) |φ′
b|L∞ + |∆φb|L∞ → 0 as |b| → 0.

We also consider the norm on radial functions ‖f‖Cj = max0≤k≤j ‖f (k)(r)‖L∞(R+).
We then claim the following.
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44 FRANK MERLE AND PIERRE RAPHAEL

Proposition 1 (Localized self-similar profiles). See Propositions 8 and 9 of [16].
There exist universal constants C > 0, η∗ > 0 such that the following holds true.
For all 0 < η < η∗, there exist constants ε∗(η) > 0, b∗(η) > 0 going to zero as
η → 0 such that for all |b| < b∗(η), there exists a unique radial solution Qb to⎧⎪⎨

⎪⎩
∆Qb − Qb + ib

(
N
2 Qb + y · ∇Qb

)
+ Qb|Qb|

4
N = 0,

Pb = Qbe
i b|y|2

4 > 0 in BRb
,

Qb(0) ∈ (Q(0) − ε∗(η), Q(0) + ε∗(η)), Qb(Rb) = 0.

Moreover, let

Q̃b(r) = Qb(r)φb(r).

Then the following holds:
(i) Uniform closeness to Q: Q̃b is differentiable with respect to b with estimate
(2.2)

‖e(1−η) θ(|b|r)
|b| (Q̃b − Q)‖C3 + ‖e(1−η) θ(|b|r)

|b|

(
∂

∂b
Q̃b + i

|y|2
4

Q

)
‖C2 → 0 as b → 0,

where

(2.3) θ(w) = 10≤w≤2

∫ w

0

√
1 − z2

4
dz + 1w>2

θ(2)
2

w.

(ii) Equation of Q̃b: Q̃b satisfies

(2.4) ∆Q̃b − Q̃b + ib(Q̃b)1 + Q̃b|Q̃b|
4
N = −Ψb

with

(2.5) −Ψb = 2∇φb · ∇Qb + Qb(∆φb) + ibQby · ∇φb + (φ1+ 4
N

b − φb)Qb|Qb|
4
N ,

and for any polynomial P (y) and integer k = 0, 1,

|P (y)Ψ(k)
b |L∞ ≤ e−

CP
|b| .

(iii) Degeneracy of the energy and the momentum:

2E(Q̃b) = −Re

∫
(Ψb)1Q̃b so that |E(Q̃b)| ≤ e−

C
|b| ,(2.6)

Im

(∫
∇Q̃bQ̃b

)
= 0, Im

(∫
y · ∇Q̃bQ̃b

)
= − b

2
|yQ̃b|22.

Remark 2. One computes:

(2.7) θ(2) =
∫ 2

0

√
1 − z2

4
dz =

∫ π
2

0

2
√

1 − sin2(θ) cos(θ)dθ =
π

2
.

We now claim a nondegeneracy property of Q̃b in L2 with respect to b2:

Lemma 1. Q̃b has supercritical mass, and more precisely:

(2.8) 0 <
d

d(b2)

(∫
|Q̃b|2

)
|b2=0

< +∞.
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LOWER BOUND ON THE BLOW-UP RATE 45

Proof of Lemma 1. This is a refinement of estimates obtained in [16], Part B. Recall
from the proof of Proposition 1 (see Appendix B in [16]) that Qb is built from

Pb = Qbe
i b|y|2

4 , which satisfies⎧⎨
⎩

∆Pb − Pb + b2|y|2
4 Pb + P

1+ 4
N

b = 0,
Pb > 0 in BRb

,
Pb(0) ∈ (Q(0) − ε(η), Q(0) + ε(η)), Pb(Rb) = 0.

We then set Q̃b(r) = Qb(r)φb(r) and similarly P̃b(r) = Pb(r)φb(r). Observe that
P̃b is a function of b2 and satisfies

∆P̃b − P̃b +
b2|y|2

4
P̃b + P̃

1+ 4
N

b = −Ψ̃b,

with −Ψ̃b = 2∇φb · ∇Pb + Pb∆φb + (φ1+ 4
N

b − φb)P
1+ 4

N

b . Moreover, from the proof
of Proposition 1 in [15], P̃b is differentiable with respect to b with estimate

‖e(1−η) θ(|b|r)
|b|

∂

∂b
P̃b‖C2 ≤ C|b|,

and thus for b nonzero:

(2.9) Hb =
∂P̃b

∂(b2)
satisfies ‖e(1−η) θ(|b|r)

|b| Hb‖C2 ≤ C.

In addition, for any b0 nonzero, the function Tb0(b) =
(

b0
b

)N
2 Pb

(
b0
b x

)
is differen-

tiable with respect to b at b0 with estimate

‖e(1−η)
θ(|b0|r)

|b0|
∂Tb0

∂b
‖C2(|y|≤Rb0 ) ≤

C

|b0|
.

From this last estimate and the explicit formula for Ψ̃b, we conclude that Ψ̃b is
differentiable with respect to b2 for b nonzero with estimate:

(2.10)

∥∥∥∥∥∂Ψ̃b

∂b2

∥∥∥∥∥
C1

≤ e−
C
|b| .

Observe now:
d

d(b2)

(∫
|Q̃b|2

)
=

d

d(b2)

(∫
|P̃b|2

)
= 2(Hb, P̃b).

Moreover, from the convergence P̃b → Q as b → 0 given by (2.2) and the uniform
bound (2.9), limb→0(Hb, P̃b) = limb→0(Hb, Q). To conclude the proof of (2.8), it
now suffices to prove from a standard argument:

(2.11) lim
b→0

(Hb, Q) > 0.

Proof of (2.11). Let

(2.12) L+ = −∆ + 1 − (1 +
4
N

)Q
4
N

be the real part of the linearized operator close to Q. Then Hb satisfies

−L+Hb = − ∂Ψ̃b

∂(b2)
− b2|y|2

4
Hb −

|y|2
4

P̃b +
(

1 +
4
N

)
(Q

4
N − P̃

4
N

b )Hb.
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Take the inner product of this equation by the well-localized direction Q1. Then
we get from the previous estimates:

lim
b→0

(L+Hb, Q1) =
1
4

lim
b→0

(|y|2P̃b, Q1)) = −1
4

∫
|y|2Q2.

We conclude from the algebraic relation L+Q1 = −2Q that

lim
b→0

(L+Hb, Q1) = −2 lim
b→0

(Hb, Q) < 0,

and (2.11) is proved. This concludes the proof of Lemma 1.

The modified profiles Q̃b built in the previous subsection are not exact self-similar
solutions, and indeed the presence of the nonzero error term Ψb in (2.4) is necessary
due to the nonexistence of H1 self-similar profiles. Now as exhibited in [19] and [16],
these profiles are not sharp enough to investigate the full interaction between the
nonlinear concentration on compact sets in space and the linear dispersive dynamic
at infinity. We thus introduce the outgoing radiation escaping the soliton core
replacing the tail of an Ḣ1 self-similar solution according to the following lemma:

Lemma 2 (Linear outgoing radiation). See Lemma 15 in [16]. There exist universal
constants C > 0 and η∗ > 0 such that ∀0 < η < η∗, there exists b∗(η) > 0 such that
∀0 < b < b∗(η), the following holds true: let Ψb be given by (2.5); then there exists
a unique radial solution ζb to

(2.13)
{

∆ζb − ζb + ib(ζb)1 = Ψb∫
|∇ζb|2 < +∞.

Moreover, let θ be given by (2.3), and consider

(2.14) Γb = lim
|y|→+∞

|y|N |ζb(y)|2;

then it follows that∣∣∣|y|N
2 (|ζb| + |y||∇(ζb)|)

∣∣∣
L∞(|y|≥Rb)

≤ Γ
1
2−Cη

b < +∞,(2.15) ∫
|∇ζb|2 ≤ Γ1−Cη

b .(2.16)

For |y| large, we have more precisely:

∀|y| ≥ R2
b , e−2(1−Cη) θ(2)

b ≥ |y|N |ζb(y)|2 ≥ 4
5
Γb ≥ e−2(1+Cη) θ(2)

b ,(2.17)

∀|y| ≥ R2
b , |∇ζ(y)| ≤ C

|y|1+ N
2

Γ
1
2
b

|b| .(2.18)

For |y| small, we have: ∀σ ∈ (0, 5), ∃η∗∗(σ) such that ∀0 < η < η∗∗(σ), ∃b∗∗(η)
such that ∀0 < b < b∗∗(η), and it follows that

(2.19)
∣∣∣ζb(y)e−σ θ(b|y|)

b

∣∣∣
C2(|y|≤Rb)

≤ Γ
1
2+ 1

10σ

b .

Last, ζb is differentiable with respect to b with estimate

(2.20)
∣∣∣∣∂ζb

∂b

∣∣∣∣
C1

≤ Γ
1
2−Cη

b .
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We refer to [19] or Appendix E of [16] for the proof of Lemma 2, up to estimates
(2.18) and (2.20), which are proved in Appendix A of this paper.

Note that an important fact is that ζb is not in L2 but in Ḣ1. The constant
Γb given by (2.14) will play a fundamental role in our analysis and is precisely the
object which measures the way ζb misses L2. In our analysis, exponentially small
terms in b will systematically be estimated in terms of powers of Γb thanks to (2.17):

(2.21) e−2(1+Cη) θ(2)
b ≤ Γb ≤ e−2(1−Cη) θ(2)

b .

2.2. Geometrical decomposition of the solution. In this subsection, we intro-
duce the geometrical decomposition of the solutions to (1.1) adapted to the study
of dispersion first exhibited in [14], and collect dynamical results obtained in [15],
[16], [20].

Let an initial data u0 ∈ Bα∗ assuming α∗ > 0 small enough, and assume that the
corresponding solution u(t) to (1.1) is defined on [0, T ), 0 < T ≤ +∞. As exhibited
in [14], we first observe that we may modify u0 by a fixed Galilean transform to
ensure

(2.22) Im

(∫
∇u0u0

)
= 0,

prove the result in this context and then transpose it to the general case.

We first recall a classical lemma of proximity of H1 functions up to scaling, phase
and translation factors to the function Q related to the variational structure of Q.
Recall indeed that for u ∈ H1, solutions to E(u) = 0 and |u|L2 = |Q|L2 are exactly

eiγ0λ
N
2
0 Q(λ0(x + x0)) for some fixed parameters (λ0, γ0, x0).

Lemma 3 (Variational characterization of the ground state). There exists a uni-
versal constant α∗

1 > 0 such that: for all 0 < α′ ≤ α∗
1, there exists δ(α′) with

δ(α′) → 0 as α′ → 0 such that ∀u ∈ H1, if
∫

Q2 ≤
∫
|u0|2 ≤

∫
Q2 + α′ and

(2.23) E(u) ≤ α′
∫

|∇u|2,

then there exist parameters λ0 = |∇Q|L2

|∇u|L2
, γ0 ∈ R and x0 ∈ RN such that

|Q − eiγ0λ
N
2
0 u(λ0(x + x0))|H1 < δ(α′).

For the rest of this section, we assume that there exists a time t(u0) ∈ [0, T )
such that

(2.24) ∀t ∈ [t(u0), T ), E0 ≤ α∗
∫

|∇u(t)|2,

and 0 < α∗ ≤ 1
2α∗

1.

Remark 3. In our further analysis, two kinds of assumptions will ensure (2.24):
either limt→T |∇u(t)|L2 = +∞ and then (2.24) holds for t close to T , or E0 ≤ 0
and then t(u0) = 0.
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We now sharpen the decomposition of Lemma 3 and introduce a regular geo-
metrical decomposition of u(t) related to its proximity in H1 to the manifold

M = {eiγλ
N
2 Q̃b(λy + x)}.

Lemma 4 (Nonlinear modulation of the solution with respect to M). See Lemma
2 in [15]. There exist some continuous functions (λ, γ, x, b) : [t(u0), T ) → (0, +∞)×
R × RN × R such that

(2.25) ∀t ∈ [t(u0), T ), ε(t, y) = eiγ(t)λ
N
2 (t)u(t, λ(t)y + x(t)) − Q̃b(t)(y)

satisfies the following:
(i) (

ε1(t), |y|2Σb(t)

)
+
(
ε2(t), |y|2Θb(t)

)
= 0,(2.26) (

ε1(t), yΣb(t)

)
+
(
ε2(t), yΘb(t)

)
= 0,(2.27)

−
(
ε1(t), (Θb(t))2

)
+
(
ε2(t), (Σb(t))2

)
= 0,(2.28)

−
(
ε1(t), (Θb(t))1

)
+
(
ε2(t), (Σb(t))1

)
= 0,(2.29)

where ε = ε1 + iε2, Q̃b = Σb + iΘb in terms of real and imaginary parts;

(ii) |1−λ(t)
|∇u(t)|L2

|∇Q|L2
|+ |ε(t)|H1 + |b(t)| ≤ δ(α∗) where δ(α∗) → 0 as α∗ → 0;

(iii) t(u0) = 0 if E(u0) ≤ 0.

We now introduce the rescaled time

(2.30) s =
∫ t

t(u0)

dt′

λ2(t′)

so that s(t(u0)) = 0 and s{(t(u0), T )} = R+. Moreover, we shall note from now on
that

Q̃b = Σ + iΘ, Ψb = Re(Ψ) + iIm(Ψ)

in terms of real and imaginary parts.

We first observe from a standard argument that {λ(s), γ(s), x(s), b(s)} are C1

functions of s on R+, and ε satisfies the following equation for s ∈ R+, y ∈ RN :

bs
∂Σ
∂b

+ ∂sε1 − M−(ε) + b

(
N

2
ε1 + y · ∇ε1

)
=
(

λs

λ
+ b

)
Σ1 + γ̃sΘ +

xs

λ
· ∇Σ

(2.31)

+
(

λs

λ
+ b

)(
N

2
ε1 + y · ∇ε1

)
+ γ̃sε2 +

xs

λ
· ∇ε1 + Im(Ψ) − R2(ε),

bs
∂Θ
∂b

+ ∂sε2 + M+(ε) + b

(
N

2
ε2 + y · ∇ε2

)
=
(

λs

λ
+ b

)
Θ1 − γ̃sΣ +

xs

λ
· ∇Θ

(2.32)

+
(

λs

λ
+ b

)(
N

2
ε2 + y · ∇ε2

)
− γ̃sε1 +

xs

λ
· ∇ε2 − Re(Ψ) + R1(ε),
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with γ̃(s) = −s − γ(s). The linear operator close to Q̃b is M = (M+, M−) with

M+(ε) = −∆ε1 + ε1 −
(

4Σ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε1 −

(
4ΣΘ

N |Q̃b|2
|Q̃b|

4
N

)
ε2,

M−(ε) = −∆ε2 + ε2 −
(

4Θ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε2 −

(
4ΣΘ

N |Q̃b|2
|Q̃b|

4
N

)
ε1.

The nonlinear interaction terms are explicitly:

R1(ε) = (ε1 + Σ)|ε + Q̃b|
4
N − Σ|Q̃b|

4
N −

(
4Σ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε1(2.33)

−
(

4ΣΘ
N |Q̃b|2

|Q̃b|
4
N

)
ε2,

R2(ε) = (ε2 + Θ)|ε + Q̃b|
4
N − Θ|Q̃b|

4
N −

(
4Θ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε2(2.34)

−
(

4ΣΘ
N |Q̃b|2

|Q̃b|
4
N

)
ε1.

We now claim the following preliminary estimates for this decomposition:

Lemma 5. For all s ∈ R+, it follows that:
(i) Estimates induced by the conservation of energy and momentum:

|2(ε1, Σ) + 2(ε2, Θ)| ≤ C(
∫

|∇ε|2 +
∫

|ε|2e−|y|) + Γ1−Cη
b + Cλ2|E0|,(2.35)

|(ε2,∇Σ)| ≤ Cδ(α∗)(
∫

|∇ε|2 +
∫

|ε|2e−|y|)
1
2 .

(ii) Estimates on the modulation parameters:

|λs

λ
+ b| + |bs| ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
+ Γ1−Cη

b + Cλ2|E0|(2.36)∣∣∣∣γ̃s −
1

|Q1|22
(ε1, L+Q2)

∣∣∣∣+ ∣∣∣xs

λ

∣∣∣ ≤ δ(α∗)(
∫

|∇ε|2e−2(1−η) θ(b|y|)
b +

∫
|ε|2e−|y|)

1
2

+C

∫
|∇ε|2 + Γ1−Cη

b + Cλ2|E0|.(2.37)

Proof of Lemma 5. This lemma is very similar to Lemma 3 in [15]. The main
difference is our will to take the quantity λ2E0 explicitly into account. Note that
the algebraic formulas for the computation of the geometrical parameters under
orthogonality conditions (2.26), (2.27), (2.28) and (2.29) have been exhibited in
Appendix A of [20]. We then estimate the nonlinear interaction terms as in [15] to
get (2.36) and (5). In this last step, we use the following estimate, which has been
proven in Lemma 5 in [16]: ∀κ > 0, there exists Cκ > 0 such that for all ε ∈ H1,

(2.38)
∫

|ε|2e−κ|y| ≤ Cκ

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

This concludes the proof of Lemma 5.

We now recover the virial estimate obtained in [14], [15].
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Proposition 2 (Local virial estimate). See Lemma 7 of [20]. There exist universal
constants δ0 > 0, C > 0 such that for all s ≥ 0, it follows that

(2.39) bs ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− Cλ2E0 − Γ1−Cη

b .

Let us now focus on the monotonicity properties which hold only for the solutions
u0 ∈ O; that is, we assume that the corresponding solution u(t) to (1.1) blows up
in finite time 0 < T < +∞ with the upper bound

|∇u(t)|L2 ≤ C∗
1

(
log | log(T − t)|

T − t

) 1
2

.

These estimates are much deeper in nature than those of Lemma 5 and correspond
to rigidity properties for those solutions to (1.1) obtained in [14], [15], [20].

Proposition 3 (Dynamical controls in O). See Lemma 7, section 3 of [20]. There
exist universal constants δ0 > 0, d0 > 0 such that for all u0 ∈ O, there exists some
time s0 = s0(u0) > 0 such that for all s ≥ s0, the following hold:
(i) Sign of b:

(2.40) b(s) > 0.

(ii) Almost monotonicity of the norm:

(2.41) ∀s2 ≥ s1 ≥ s0, λ(s2) < 2λ(s1).

(iii) Control of the scaling parameter:

(2.42) λ(s) ≤ e
− 1

Γ
d0
b .

Let us point out two facts regarding the above result:
• The analysis developed in [14], [15] for the negative energy solutions is

global in time in the sense that the geometrical decomposition of Lemma 4
holds for all time, s ∈ R, and one can also get the sign of the parameter b
and the monotonicity type properties for all time. On the contrary for data
in O with positive energy, Proposition 3 holds only asymptotically near the
blow-up time, s → +∞, as exhibited in [20]. Note that the key rigidity
property (2.40) still holds true in O, and is unknown outside of it.

• Control of the scaling parameter (2.42) is false in the other blow-up regime
governed by the lower bound (1.10) for which

λ
√

E0 ≥ C|b|
holds true; see [20]. On the contrary in the log-log regime, the energy type
of the term λ2|E0| will be asymptotically negligible thanks to (2.42).

3. Strategy of the proof of the log-log lower bound

This section is devoted to a brief sketch of the proof of Theorem 2.

We let an initial data u0 ∈ O with zero momentum according to (2.22), that is,
u(t), the corresponding solution to (1.1), blows up in finite time 0 < T < +∞ with
upper bound

|∇u(t)|L2 ≤ C∗
1

(
log | log(T − t)|

T − t

) 1
2

.
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Let us recall the virial estimate (2.39) and assume for the sake of simplicity that
E0 ≤ 0 in which case (2.39) implies

(3.1) bs ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− Γ1−Cη

b .

In previous works [14], [15], this Ḣ1 estimate is the starting point of the proof of
the upper bound (1.9) and points out the importance of the parameter b(t) in the
problem. Coupled with the modulation equation for the scaling parameter λ(t), it
implies controls (2.40) and (2.42) and eventually a pointwise lower bound for b: for
s large enough,

(3.2) b(s) ≥ C

log(s)
,

which eventually implies (1.9).
Our goal now for the proof of Theorem 2 is to obtain the converse inequality:

for s large enough,

(3.3) b(s) ≤ C

log(s)
.

In particular, b(s) → 0 as s → +∞. The problem is that such a decay estimate on
b cannot directly follow from local-type estimates like (3.1) and (3.4) which take
place in Ḣ1 ∩ L2

loc and would also apply to self-similar solutions which are in this
space and have a constant b (see [16] for a further discussion of this fundamental
difficulty).

As partially understood in [16], decay properties for b(s) are related to disper-
sive estimates in L2. We claim that in the full energy space H1, dispersive effects
of (1.1) in the log-log regime can be seen through the exhibition of an exact Lya-
pounov functional. We expect that this strategy will apply in different situations
in order to treat degenerate nonlinear dispersive problems.

A: Derivation of a Lyapounov functional.

Step 1. Refined virial estimate on compact sets.

As observed in [16], estimate (3.1) may be improved by introducing the radiation
ζb of Lemma 2. Yet, as this radiation is not in L2, we consider a localized radiation
ζb,A which equals ζb for |y| ≤ A and is zero elsewhere. We then claim that for a
suitable choice of cut-off parameter A = A(t) = Γ−a

b , a > 0 small enough, the new
variable ε̃ = ε − ζb,A satisfies

(3.4) bs ≥ δ0

(∫
|∇ε̃|2 +

∫
|ε̃|2e−|y|

)
+ Γb −

1
δ0

∫ 2A

A

|ε|2.

This remarkable inequality is useless compared to (3.1) to estimate local norms
and get monotonicity-type results as in [14], [15], [20]. Now the question at the
heart of our analysis is to control local information (size of the parameter b and the
set where the approximation ε ∼ ζb,A is good in a certain sense) by flux terms at
|y| = A in L2, which is provided by (3.4).
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Step 2. Linear dispersive information at infinity in space.

Let us remark that estimate (3.4) was already in [16]. We worked there not with
a general H1 solution but with an asymptotic object which was essentially known
to be negligible at infinity in L2 using extra estimates in the virial space Σ. Here on
the contrary, the term

∫ 2A

A
|ε|2 in (3.4) is controlled by a flux in L2 of the solution

for |y| ≥ A in a regime when parameter b has a fixed sign b > 0, which is relevant
according to (2.40):

(3.5)

{∫
|y|≥A

|ε|2
}

s

≥ b

∫ 2A

A

|ε|2 − Γ1+z0
b ,

for some z0 > 0. Again, a key in this estimate is the choice of the cut-off parameter
A(t) which allows some decoupling in the interactions together with the fact that
Q is exponentially decreasing at infinity.

Multiplying (3.4) by δ0b > 0 and using (3.5), we obtain the following Lyapounov
functional:

(3.6)

{∫
|y|≥A

|ε|2 + δ0b
2

}
s

≥ δ0b

(∫
|∇ε̃|2 +

∫
|ε̃|2e−|y|

)
+ δ0bΓb.

B: Dynamical control of b.

Step 1. Asymptotic stability revisited.

Integration in time of dispersive estimate (3.6) yields a direct proof of the as-
ymptotic stability:

b(s) +
∫

|∇ε(s)|2 +
∫

|ε(s)|2e−|y| → 0 as s → +∞.

We moreover make precise the size of ε with respect to b and claim a pointwise
control:

(3.7)
∫

|∇ε(s)|2 +
∫

|ε(s)|2e−|y| ≤ Γ
1
2
b(s).

Step 2. Conservation of the L2-norm and conclusion.

Consider again (3.6). We have no a priori bound on the left-hand side, that is,
the Lyapounov functional itself. We now use (for the first time in the problem) the
global information in space given by the conservation of the L2-norm:∫

|u|2 =
∫

|Q̃b|2 + 2Re(
∫

εQ̃b) +
∫

|ε|2

∼
∫

Q2 + b2 +
∫
|y|≥A

|ε|2,

where we used (3.7) to control ε on compact sets, and the fact that the localized
profiles Q̃b have super critical mass from (2.8).

Injecting this into the Lyapounov property (3.6), we obtain the key estimate:

(3.8) (−b2)s ≥ δ0bΓb.
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This yields (3.3), and the proof of the lower bound (1.12) will now follow from

−λs

λ
∼ b.

In other words and after having estimated all the interaction terms, the Lyapounov
function of the problem simply reduces to the parameter b itself or equivalently the
size of the L2-norm of the solution on the rescaled ball |y| ≤ 1.

Let us summarize this proof in a more physical picture: from the fact that
the profiles Q̃b have supercritical mass, the remainder term ε of lower order is
radiated away by escaping the soliton core according to an outgoing radiation.
Now the rate at which this expulsion is performed is submitted to the constraint
of the conservation of the L2-norm together with the dispersive estimates (3.4).
Differential inequality (3.8) then simply expresses a flux type of computation in L2

balancing dispersive effects.

4. Derivation of the Lyapounov functional in H1

This section is devoted to the proof of dispersive estimates (3.4), (3.5), (3.8)
needed for the proof of Theorem 2. We let an initial data u0 ∈ H1 with zero
momentum according to (2.22) and assume that the corresponding solution satisfies
(2.24). It thus admits a decomposition as in Lemma 4 for s ≥ 0. Moreover, we will
always assume that b(s) has a fixed sign:

(4.1) ∀s ≥ 0, b(s) > 0.

4.1. Virial dispersion in the radiative regime. As exhibited in [14], [15], the
key to estimate the solution on compact sets is the virial type of control (2.39):

bs ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− Cλ2E0 − Γ1−Cη

b ,

which was a consequence of the more precise control:
(4.2)

bs ≥ −(ε1, (Re(Ψ))1)−(ε2, (Im(Ψ))1)+δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
−Cλ2E0−Γ1+z0

b ,

for some universal constant z0 > 0. This estimate is a consequence of the disper-
sive structure in Ḣ1 of the solution on sets |y| ≤ C. Our goal is to improve it,
which according to (4.2) amounts to treating the linear term −(ε1, (Re(Ψ))1) −
(ε2, (Im(Ψ))1). This is achieved by introducing the radiation of Lemma 2 as in
[16], which corresponds to estimates for |y| ≤ C

|b| .

A first attempt would be to try to estimate through a virial type relation a
new variable ε − ζb. The heart of the matter is now that ζb is indeed in Ḣ1, but
not in L2, and we then are no longer able to estimate the main interaction terms.
We thus introduce a cut-off version of the radiation: let a radial cut-off function
χA(r) = χ

(
r
A

)
with χ(r) = 1 for 0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2. The choice

of the parameter A(t) is a crucial issue in our analysis, and it roughly relies on
two constraints: we want A to be large in order first to enter the radiative zone,
i.e., A >> 2

b , and to ensure the slowest possible variations of the L2-norm in the
zone |y| ≥ A (see Lemma 7 and its proof). But we also want A not too large, in
particular to keep a good control over local L2-terms of the form

∫
|y|≤A

|ε|2; see in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



54 FRANK MERLE AND PIERRE RAPHAEL

particular the proof of Proposition 5 and the pointwise estimate (5.3). A choice
which balances these two constraints is:

(4.3) A = A(t) = e2a θ(2)
b(t) so that Γ−a

2
b ≤ A ≤ Γ− 3a

2
b ,

for some parameter a > 0 small enough to be chosen later and which depends on
η. Note that there is in fact some optimality in this choice; see Remark 8 in [17].
We then set

ζ̃b = χAζb = ζ̃re + iζ̃im.

ζ̃b still satisfies the size estimates of Lemma 2 and is moreover in L2 with an estimate

(4.4)
∫

|ζ̃|2 ≤ Γ1−Cη
b .

The equation satisfied by ζ̃ is now

∆ζ̃b − ζ̃b + ib(ζ̃b)1 = Ψb + F

with

(4.5) F = (∆χA)ζb + 2∇χA · ∇ζb + iby · ∇χAζb.

We now may consider the new variable

ε̃ = ε − ζ̃.

Let us remark the following key points:
• First, ε̃ is now small in H1 from (4.4) and fits into the virial type of analysis.
• Second, our initial goal was to remove the linear term −(ε1, (Re(Ψ))1) − (ε2,
(Im(Ψ))1), but ζb is not an exact solution to (2.13). This induces a linear term of
the form −(ε̃1, (Re(F ))1) − (ε̃2, (Im(F ))1), F given by (4.5), which now needs to
be treated differently.

The lemma is as follows:

Lemma 6 (Virial dispersion in the radiative regime). For some universal constants
δ1 > 0, c > 0 and s ≥ 0, it follows that

(4.6) {f1(s)}s ≥ δ1

(∫
|∇ε̃|2 +

∫
|ε̃|2e−|y|

)
+ cΓb − Cλ2E0 −

1
δ1

∫ 2A

A

|ε|2,

with

(4.7) f1(s) =
b

4
|yQ̃b|22 +

1
2
Im

(∫
y · ∇ζ̃ ζ̃

)
+ (ε2, (ζ̃re)1) − (ε1, (ζ̃im)1).

Remark 4. Let us compare the two dispersive relations (2.39) and (4.6). First
observe from H1 controls on ζ̃ and ε that f1(s) ∼ b(s). Now the main difference is
the presence of the Γb term (to the power one) with the good sign. The price to pay
is the presence of the boundary term

∫ 2A

A
|ε|2, which cannot be directly estimated.

Second, it is noteworthy that this estimate still is a tool in Ḣ1.

Remark 5. The −λ2E0 term in the virial estimate (6) either has the good sign for
E0 ≤ 0, or for E0 > 0 and u0 ∈ O will be asymptotically controlled by (2.42).

Remark 6. This lemma is obtained with the following range for the small parameters
η, a > 0 involved respectively in Proposition 1 and (4.3): there exist η∗, a∗ > 0 such
that ∀0 < η < η∗, ∀0 < a < a∗, there exists b∗(η, a) such that ∀|b| ≤ b∗(η, a), and
estimates of Lemma 6 hold with universal constants.
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Proof of Lemma 6. The proof of this lemma is similar to the proof of Lemma 16
in [16], even though some technical difficulties arise in the pure H1 setting. We
proceed in several steps.

Step 1: Algebraic dispersive relation.
We claim:{

b

4
|yQ̃b|22 +

1
2
Im

(∫
y · ∇ζ̃ ζ̃

)
+ (ε2, Σ1 + (ζ̃re)1) − (ε1, Θ1 + (ζ̃im)1)

}
s

(4.8)

= H(ε − ζ̃, ε − ζ̃) +
(
ε1 − ζ̃re, Re(F1)

)
+
(
ε2 − ζ̃im, Im(F1)

)
− 2λ2E0

+ bs

{
(ε2 − ζ̃im,

∂(Σ + ζ̃re)1
∂b

) − (ε1 − ζ̃re,
∂(Θ + ζ̃im)1

∂b
)

}

− As

A2

{
(ε2 − ζ̃im, (y · ∇χ

( y

A

)
ζre)1) − (ε1 − ζ̃re, (y · ∇χ

( y

A

)
ζim)1)

}
− γ̃s

{
(ε1 − ζ̃re, (Σ + ζ̃re)1) + (ε2 − ζ̃im, (Θ + ζ̃im)1)

}
−
(

λs

λ
+ b

){
(ε2 − ζ̃im, (Σ + ζ̃re)2) + (ε1 − ζ̃re, (Θ + ζ̃im)2)

}
− xs

λ
·
{
(ε2 − ζ̃im,∇(Σ + ζ̃re)1) + (ε1 − ζ̃re,∇(Θ + ζ̃im)1)

}
+ (R1(ε), (ζ̃re)1) + (R2(ε), (ζ̃im)1) + (ε1 − ζ̃re, ((1 +

4
N

)(Q
4
N ζ̃re)1))

+ (ε2 − ζ̃im, (Q
4
N ζ̃im)1) + (ε1, L̃) + (ε2, K̃) + H̃b(ε, ε) + (R̃1(ε), Σ1)

+ (R̃2(ε), Θ1) −
2

2 + 4
N

∫
J(ε),

where (L̃, K̃, H̃b(ε, ε), R̃1,2(ε), J(ε)) are residual terms exhibited in Appendix B
where (4.8) is proved.

Step 2: Control of the interaction terms.

We now need to control the interaction terms appearing in (4.8). These estimates
are similar to the ones derived in Step 2 of the proof of Lemma 16 in [16]. A major
difference nevertheless is that we need estimates in the pure H1 setting. This will be
possible from our choice of cut-off parameter A, (4.3), which in particular ensured
(4.4) and thus

(4.9)
∫

|ε̃|2 ≤ δ(α∗).

We now claim the following estimates:
(0) Sobolev type inequality: for N = 1 or N ≥ 3,

(4.10) ∀B ≥ 2, ∀v ∈ H1,

∫
|y|≤B

|v|2 ≤ CB2(
∫

|∇v|2 +
∫

|v|2e−|y|);

this estimate fails in dimension N = 2 where a logarithmic correction must be taken
into account:

(4.11) ∀B ≥ 2, ∀v ∈ H1,

∫
|y|≤B

|v|2 ≤ CB2 log B(
∫

|∇v|2 +
∫

|v|2e−|y|).
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A similar estimate we will also later need is still in dimension N = 2:

(4.12) ∀B ≥ 2, ∀v ∈ H1,

∫
1≤|y|≤B

|v|2
|y|2 ≤ C log2 B(

∫
|∇v|2 +

∫
|v|2e−|y|).

(i) Comparison of local L2-norms of ε and ε̃:∫
|ε̃|2e−2(1−Cη) θ(b|y|)

b +
∫

|ε̃|2e−|y| ≤ C(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) + Γ1+z0
b .

(ii) Second-order interaction terms:∫
|R(ε)|e−(1−Cη) θ(b|y|)

b ≤ C(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) + Γ1+z0
b .

(iii) Small second-order interaction terms:∫
|R(ε)|(|ζ̃| + |y · ∇ζ̃|) ≤ δ(α∗)(

∫
|∇ε̃|2 +

∫
|ε̃|2e−|y|) + Γ1+z0

b .

(iv) Small second-order scalar products: for any polynomial P (y) and integers
0 ≤ k ≤ 2, 0 ≤ l ≤ 1, there exists C > 0 such that(∫

|ε̃||P (y)|(|d
k ζ̃

dyk
| + | dl

dyl

∂ζ̃

∂b
|)
)2

≤ ΓC
b (
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|).

Moreover, the term induced by the time dependence of A is controlled by∣∣∣∣As

A2

{
(ε2 − ζ̃im, (y · ∇χ

( y

A

)
ζre)1) − (ε1 − ζ̃re, (y · ∇χ

( y

A

)
ζim)1)

}∣∣∣∣
≤ δ(α∗)

(∫
|∇ε̃|2 +

∫
|ε̃|2e−|y|

)
+ Γ1+z0

b .

(v) Formally cubic terms: Let J(ε), R̃1,2(ε), H̃b be given respectively by (B.5),
(B.3), (B.4) and (B.2). Then∣∣∣∣

∫
J(ε)

∣∣∣∣+ ∣∣∣(R̃1(ε), Σ1)
∣∣∣+ ∣∣∣(R̃2(ε), Θ1)

∣∣∣+ ∣∣∣H̃b(ε, ε)
∣∣∣

≤ δ(α∗)
(∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|
)

+ Γ1+z0
b .

(vi) Linear degenerate scalar products:

|(ε1, L̃)| + |(ε2, K̃)| + |(ε̃1, (Q
4
N ζ̃re)1)| + |(ε̃2, (Q

4
N ζ̃im)1)|

≤ δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) + Γ1+z0
b .

(vii) Cut-off χA induced estimates:

∫
|ε|(|F | + |y · ∇F |) ≤ CΓ

1
2
b

(∫ 2A

A

|ε|2
) 1

2

.

See Appendix C for the proof.

Step 3: Estimate of degenerate scalar products.
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We claim similarly as in [16] from the conservation of energy, the Galilean in-
variance and the choice of the orthogonality conditions:

(ε1, Q)2 ≤ δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) + Γ1+z0
b + C(λ2E0)2,(4.13)

(ε2,∇Q)2 ≤ δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) + Γ1+z0
b ,(4.14)

(ε̃1, Q)2 + (ε̃1, |y|2Q)2 + (ε̃1, yQ)2 + (ε̃2, Q1)2 + (ε̃2, Q2)2 + (ε̃2,∇Q)2(4.15)

≤ δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) + Γ1+z0
b + C(λ2E0)2,

∣∣∣∣γ̃s

{
(ε1 − ζ̃re, (Σ + ζ̃re)1) + (ε2 − ζ̃im, (Θ + ζ̃im)1)

}
− 1

|Q1|22
(ε̃1, L+Q2)(ε̃1, Q1)

∣∣∣∣
(4.16)

≤ δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) + Γ1+z0
b .

Proof of (4.13). Let us recall the conservation of the energy:

2 (ε1, Q) = −2(ε1, Σ − Q + bΘ1 − Re(Ψ)) − 2 (ε2, Θ − bΣ1 − Im(Ψ))(4.17)

+
∫

|∇ε|2 + 2E(Q̃b) − 2λ2E0 −
2

2 + 4
N

∫
J(ε)

−
∫

(
4Σ2

N |Q̃b|2
+ 1)|Q̃b|

4
N ε2

1 −
∫

(
4Θ2

N |Q̃b|2
+ 1)|Q̃b|

4
N ε2

2 −
∫

8ΣΘ
N |Q̃b|2

|Q̃b|
4
N ε1ε2,

with J(ε) given by (B.5). From the definition of Ψb (2.5) and (2.2):

∣∣∣2E(Q̃b)
∣∣∣ =

∣∣∣∣Re

∫
(Ψb)1Q̃b

∣∣∣∣ ≤ e−2(1−Cη) θ(2)
b ≤ Γ1−Cη

b .

We then first estimate using the estimates of Step 2:

(ε1, Q)2 ≤ δ(α∗)
(∫

|∇ε̃|2 +
∫

|ε̃|2e−2(1−Cη) θ(b|y|)
b

)

+ Γ1+z0
b + C(λ2E0)2 +

(∫
|ε||Ψ|

)2

.

The last term in the above expression is controlled using (4.10), (4.11):

(∫
|ε||Ψ|

)2

≤ Γ1−Cη
b

(∫ Rb

R−
b

|ε|
)2

≤ Γ1−Cη
b

(∫
|∇ε̃|2 +

∫
|ε̃|2e−|y|)

)
+ Γ1+z0

b ,

and (4.13) follows.
(4.14) follows directly from the zero momentum assumption (2.22), and (4.15)

follows from the orthogonality conditions (2.26), (2.27), (2.28), (2.29) and (2.19).
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Proof of (4.16). Observe that

γ̃s

{
(ε1 − ζ̃re, (Σ + ζ̃re)1) + (ε2 − ζ̃im, (Θ + ζ̃im)1)

}
=

(
γ̃s −

1
|Q1|22

(ε̃1, L+Q2)
){

(ε1 − ζ̃re, (Σ + ζ̃re)1) + (ε2 − ζ̃im, (Θ + ζ̃im)1)
}

+
1

|Q1|22
(ε̃1, L+Q2)

{
(ε1 − ζ̃re, (Σ − Q + ζ̃re)1) + (ε2 − ζ̃im, (Θ + ζ̃im)1)

}

+
1

|Q1|22
(ε̃1, L+Q2)(ε̃1, Q1).

We now remark from (5) that∣∣∣∣γ̃s −
1

|Q1|22
(ε̃1, L+Q2)

∣∣∣∣ ≤
∣∣∣∣γ̃s −

1
|Q1|22

(ε1, L+Q2)
∣∣∣∣+ 1

|Q1|22

∣∣∣(ζ̃1, L+Q2)
∣∣∣

≤ δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|)
1
2 + Γ

1
2+z0

b .

(4.16) now follows from the estimates of Step 2.
Step 4. Conclusion of the proof.
Now let f1(s) be given by (4.7), and remark that using the orthogonality condi-

tion (2.29) and the estimates of Step 2 and (4.16), (4.8) yields so far:

{f1}s ≥ H(ε̃, ε̃) − 1
|Q1|22

(ε̃1, L+Q2)(ε̃1, Q1) − Cλ2E0(4.18)

+ {(ε1, (Re(F ))1) + (ε2, (Im(F ))1)} −
{

(ζ̃re, (Re(F )1)) + (ζ̃im, (Im(F )1))
}

− δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y| + λ2|E0|) − Γ1+z0
b .

The first-order remainder term in (4.18) is estimated according to (vii) of Step 2:

|(ε1, (Re(F ))1) + (ε2, (Im(F ))1)| ≤ CΓ
1
2
b

(∫ 2A

A

|ε|2
) 1

2

≤ δ2Γb +
1
δ2

∫ 2A

A

|ε|2

where δ2 > 0 is a small parameter to be fixed later.
Now, as a consequence of the Spectral Property stated in the introduction, we

have obtained, using an algebraic cancellation in [16] and the proof of Lemma 8,
the following property (true for any function ε̃ in H1):

H(ε̃, ε̃) − 1
|Q1|22

(ε̃1, L+Q2)(ε̃1, Q1) ≥ δ̃1(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|)

− 1
δ̃1

(
(ε̃1, Q)2 + (ε̃1, |y|2Q)2 + (ε̃1, yQ)2 + (ε̃2, Q1)2 + (ε̃2, Q2)2 + (ε̃2,∇Q)2

)
,

for some universal constant δ̃1 > 0. Using now estimate (4.15), we rewrite (4.18)
for α∗ > 0 small enough:

{f1}s ≥ δ̃1

2
(
∫

|∇ε̃1|2 +
∫

|ε̃1|2e−|y|) − Cλ2E0 − δ2Γb −
1
δ2

∫ 2A

A

|ε|2(4.19)

−
{

(ζ̃re, (Re(F ))1) + (ζ̃im, (Im(F ))1)
}

.
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We now inject in (4.19) the following flux type of computation: for some universal
constant c = c(N) > 0, the following holds:

(4.20) −
{

(ζ̃re, (Re(F ))1) + (ζ̃im, (Im(F ))1)
}

> cΓb.

This estimate is a key point in the proof and has already been used in [16]. For the
sake of completeness, we briefly recall the proof below. (4.6) now follows by taking
δ2 = c

2 .

Proof of (4.20). We recall a computation from [16]:

{
(ζ̃re, (Re(F ))1) + (ζ̃im, (Im(F ))1)

}
= Re

(∫
ζ̃F 1

)
= −Re

(∫
A≤|y|≤2A

F ζ̃1

)

= −Re

(∫
A≤|y|≤2A

(∆ζ̃ − ζ̃ + ibζ̃1)ζ̃1

)
= −Re

(∫
A≤|y|≤2A

(∆ζ̃ − ζ̃)ζ̃1

)
.

We now estimate each term separately. The dominant term is

1
|V ol(SN−1)|

Re

(∫
A≤|y|≤2A

ζ̃ ζ̃1

)
= Re

(∫ 2A

A

ζ̃

(
N

2
ζ̃ + rζ̃ ′

)
rN−1dr

)

=
N

2

∫ 2A

A

|ζ̃|2rN−1dr +
[
1
2
|ζ̃|2rN

]2A

A

− N

2

∫ 2A

A

|ζ̃|2rN−1dr ≤ −1
4
Γb,

where we used in a crucial way estimate (2.17). We claim that the other term is
negligible. Indeed,

1
|V ol(SN−1)|

Re

(∫
A≤|y|≤2A

∆ζ̃ ζ̃1

)

= Re

(∫ 2A

A

1
rN−1

d

dr
(rN−1ζ̃ ′)(

N

2
ζ̃ + rζ̃ ′)rN−1dr

)

= Re

[
rN−1ζ̃ ′(

N

2
ζ̃ + rζ̃ ′)

]2A

A

− Re

(∫ 2A

A

ζ̃ ′(
N

2
ζ̃ ′ + ζ̃ ′ + rζ̃ ′′)rN−1dr

)

= Re

[
rN−1ζ̃ ′(

N

2
ζ̃ + rζ̃ ′)

]2A

A

− (
N

2
+ 1)

∫ 2A

A

rN−1|ζ̃ ′|2dr − 1
2

[
rN |ζ̃ ′|2

]2A

A

+
N

2

∫ 2A

A

rN−1|ζ̃ ′|2dr.

We now use estimates (2.17), (2.15) and (2.18) to get∣∣∣∣∣ 1
|V ol(SN−1)|

Re

(∫
A≤|y|≤2A

∆ζ̃ ζ̃1

)∣∣∣∣∣ ≤ C
Γb

bA2
≤ Γ1+Ca

b

for b small enough, and the conclusion follows from (4.3). This ends the proof of
Lemma 6.
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4.2. L2 dispersion at infinity in space. The next step of our analysis is to con-
trol the L2 flux term

∫ 2A

A
|ε|2 which appears in (4.6) by a derivative in time. This

is achieved thanks to the computation of the flux of the L2-norm which escapes
at infinity, and the corresponding control will be purely of linear nature under the
assumption on the sign of b (4.1).

We introduce a radial nonnegative cut-off function φ(r) such that φ(r) = 0 for
r ≤ 1

2 , φ(r) = 1 for r ≥ 3, 1
4 ≤ φ′(r) ≤ 1

2 for 1 ≤ r ≤ 2, φ′(r) ≥ 0. We then set

φA(s, r) = φ

(
r

A(s)

)
,

A(s) given by (4.3), and thus:⎧⎪⎪⎨
⎪⎪⎩

φA(r) = 0 for 0 ≤ r ≤ A
2 ,

1
4A ≤ φ′

A(r) ≤ 1
2A for A ≤ r ≤ 2A,

φA(r) = 1 for r ≥ 3A,
φ′

A(r) ≥ 0, 0 ≤ φA(r) ≤ 1.

We now claim the following dispersive control at infinity in space:

Lemma 7 (L2 dispersion at infinity in space). For some universal constant C > 0
and s ≥ 0, the following holds:

(4.21)
{∫

φA|ε|2
}

s

≥ b

400

∫ 2A

A

|ε|2 − C

b2
λ2E0 − Γ1+z0

b − Γ
a
2
b

∫
|∇ε|2.

Remark 7. The range of parameters η, a, b is the same as in Lemma 6; see Remark
6.

Proof of Lemma 7. Take the inner product of (2.31) with φAε1 and of (2.32) with
φAε2 and integrate by parts. Note that the supports of (Q̃b, Ψb) and φA are disjoint.
We thus get a linear identity decoupled from the nonlinear dynamic |y| ≤ 2

b :

1
2

{∫
φA|ε|2

}
s

=
1
2

∫
∂φA

∂s
|ε|2 +

b

2

∫
y · ∇φA|ε|2 + Im

(∫
∇φA · ∇εε

)

−1
2

(
λs

λ
+ b

)∫
y · ∇φA|ε|2 −

1
2

xs

λ
·
∫

∇φA|ε|2.(4.22)

First observe from the choice of φ:
(4.23)

10
∫

φ′
( y

A

)
|ε|2 ≥ 1

A

∫
y · ∇φ

( y

A

)
|ε|2 ≥ 1

10

∫
φ′
( y

A

)
|ε|2 ≥ 1

40

∫ 2A

A

|ε|2.

The main term in (4.22) is

b

2

∫
y · ∇φA|ε|2 ≥ b

20

∫
φ′
( y

A

)
|ε|2.

We then estimate from (4.3) and (2.39):∫
∂φA

∂s
|ε|2 =

−As

A2

∫
y · ∇φ

( y

A

)
|ε|2 = 2aθ(2)

bs

Ab2

∫
y · ∇φ

( y

A

)
|ε|2

≥ aδ0

b2
(
∫

|∇ε|2 +
∫

|ε|2e−|y| − Cλ2E0 − Γ1−Cη
b )

∫
φ′
( y

A

)
|ε|2.(4.24)
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Next: ∣∣∣∣Im

(∫
∇φA · ∇εε

)∣∣∣∣ =
∣∣∣∣Im

(∫
1
A
∇φ

( y

A

)
· ∇εε

)∣∣∣∣
≤ 1

A
(
∫

|∇ε|2) 1
2 (
∫

φ′
( y

A

)
|ε|2) 1

2 ≤ 40
bA

∫
|∇ε|2 +

b

40

∫
φ′
( y

A

)
|ε|2,

≤ b

100

∫
φ′
( y

A

)
|ε|2 + Γ

a
2
b

∫
|∇ε|2.(4.25)

From (5), we estimate:

(4.26)
∣∣∣∣xs

λ
·
∫

∇φA|ε|2
∣∣∣∣ ≤ C

A

∫
φ′
( y

A

)
|ε|2 ≤ Γ

a
2
b

∫
φ′
( y

A

)
|ε|2.

Similarly from (2.36):∣∣∣∣
(

λs

λ
+ b

)∫
y · ∇φA|ε|2

∣∣∣∣(4.27)

≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y| + Γ1−Cη

b + Cλ2|E0|
)∫

φ′
( y

A

)
|ε|2.

Observe that the right-hand side of (4.27) is controlled thanks to (4.24) in the range
of parameters.

Injecting (4.23), (4.24), (4.25), (4.26) and (4.27) into (4.22) yields{∫
φA|ε|2

}
s

≥ b

100

∫
φ′
( y

A

)
|ε|2 − C

b2
λ2E0 − Γ1+z0

b − Γ
a
2
b

∫
|∇ε|2,

and (4.21) follows from the definition of φ′. This concludes the proof of Lemma 7.

4.3. L2 dispersive constraint on the solution. In this subsection, we derive the
dispersive estimate needed for the proof of Theorems 2 and 3. Virial estimate (4.6)
corresponds to nonlinear interactions on compact sets; L2 linear estimate (4.21)
measures the interactions with the linear dynamic at infinity. We now couple these
two facts through the invariance of the L2-norm, which is a global information in
space.

Proposition 4 (Lyapounov functional in H1). For some universal constant C > 0
and for s ≥ 0 assuming (4.1), the following holds:

(4.28) {J }s ≤ −Cb

(
Γb +

∫
|∇ε̃|2 +

∫
|ε̃|2e−|y| +

∫ 2A

A

|ε|2 − λ2E0

)
+ C

λ2

b2
E0,

with

J (s) =
(∫

|Q̃b|2 −
∫

Q2

)
+ 2(ε1, Σ) + 2(ε2, Θ) +

∫
(1 − φA)|ε|2(4.29)

− δ1

800

(
bf̃1(b) −

∫ b

0

f̃1(v)dv + b{(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)}
)

,

where

(4.30) f̃1(b) =
b

4
|yQ̃b|22 +

1
2
Im

(∫
y · ∇ζ̃ ζ̃

)
.
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Remark 8. Here, the range of parameters is more restricted and yields: there exist
η∗, a∗, C0 > 0 such that ∀0 < η < η∗, ∀0 < a < a∗ such that a > C0η, there
exists b∗(η, a) such that ∀|b| ≤ b∗(η, a), and the estimates of Proposition 4 hold
with universal constants.

Remark 9. The gain is that we now have a Lyapounov function J in H1. Remark
that in a regime when ε is small compared to b in a certain sense, J ∼

∫
|Q̃b|2 −∫

Q2 ∼ b2 from (2.8) and (4.28) forces b to decay.

Proof of Proposition 4. Multiply (4.6) by δ1b
800 and sum with (4.21). We get{∫

φA|ε|2
}

s

+
δ1b

800
{f1}s ≥ δ2

1b

800
(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|) +
b

800

∫ 2A

A

|ε|2

+
cδ1b

1000
Γb −

C

b2
λ2E0 − Γ

a
2
b

∫
|∇ε|2,(4.31)

f1 given by (4.7). We first integrate the left-hand side of (4.31) by parts in time:

b {f1}s =

{
bf̃1(b) −

∫ b

0

f̃1(v)dv + b{(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)}
}

s

− bs

{
(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)

}
,

f̃1 given by (4.30), and (4.31) now yields{∫
φA|ε|2 +

δ1

800

[
bf̃1(b) −

∫ b

0

f̃1(v)dv + b{(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)}
]}

s

≥ δ2
1b

800
(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y| +
∫ 2A

A

|ε|2) +
cδ1b

1000
Γb −

C

b2
λ2E0

− Γ
a
2
b

∫
|∇ε|2 +

δ1

800
bs

{
(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)

}
.

We now inject the conservation of the L2-norm:∫
|ε|2 +

∫
|Q̃b|2 + 2(ε1, Σ) + 2(ε2, Θ) =

∫
|u0|2.

Writing
∫

φA|ε|2 =
∫
|ε|2 −

∫
(1 − φA)|ε|2, we compute{∫

φA|ε|2
}

s

= −
{(∫

|Q̃b|2 −
∫

Q2

)
+ 2(ε1, Σ) + 2(ε2, Θ) +

∫
(1 − φA)|ε|2

}
s

.

Thus, we get

{−J }s ≥ δ2
1b

800
(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y| +
∫ 2A

A

|ε|2) +
cδ1b

100
Γb −

C

b2
λ2E0

− Γ
a
2
b

∫
|∇ε|2 +

δ1

800
bs

{
(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)

}
,(4.32)

where J is given by (4.29). We now have

Γ
a
2
b

∫
|∇ε|2 ≤ Γ

a
2
b

(
Γ1−Cη

b +
∫

|∇ε̃|2
)

≤ Γ1+ a
4

b + Γ
a
2
b

∫
|∇ε̃|2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LOWER BOUND ON THE BLOW-UP RATE 63

from the assumption a > Cη. Next, we estimate from (2.36):∣∣∣bs

{
(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)

}∣∣∣ ≤ Γ
1
2−Cη

b

(∫
|∇ε|2 +

∫
|ε|2e−|y| + Cλ2|E0|

)

≤ Γ
1
4
b

(∫
|∇ε̃|2 +

∫
|ε̃|2e−|y| + λ2|E0|

)
+ Γ1+z0

b .

Injecting these two estimates into (4.32) yields (4.28). This concludes the proof of
Proposition 4.

5. Proof of the main results of the paper

5.1. Proof of the log-log lower bound. This subsection is devoted to the proof
of Theorem 2.

Let u0 ∈ Bα∗ and let u(t) be the corresponding solution to (1.1) which blows up
in finite time 0 < T < +∞. Using the Galilean invariance and the alternative (1.9)
and (1.10), we may reduce to the case u0 ∈ O satisfying (2.22) and

|∇u(t)|L2 ≤ C∗
1

(
log | log(T − t)|

T − t

) 1
2

.

We recall from Proposition 3 that u(t) admits a decomposition as in Lemma 4 for
s ≥ s0 with

(5.1) ∀s ≥ s0, b(s) > 0, λ(s) ≤ e
− 1

Γ
d0
b and λ(s) ≤ 2λ(s0).

In particular from the sign condition on b(s), Proposition 4 holds. Parameters
η, a > 0 are fixed so that Proposition 4 holds true for α∗ > 0 small enough. The
proof will now follow in two steps:

(1) The starting point is to obtain from (4.28) asymptotic information as s →
+∞. In particular, we obtain another proof of the stability of the blow-up profile
of [16]; more precisely:

b(s) → 0 as s → +∞,

and for some time s1 > 0 large enough it follows that

∀s ≥ s1,

∫
|∇ε(s)|2 +

∫
|ε(s)|2e−|y| ≤ Γ1−Ca

b(s) .

(2) On the basis of these uniform asymptotic controls, (4.28) now yields a dif-
ferential inequality for b:

bs ≤ −CΓb,

which with the techniques introduced in [14] will yield the log-log lower bound.

Proposition 5 (Asymptotic stability in O revised). We have:

(5.2) b(s) → 0 as s → +∞,

and for some time s1 > 0 large enough it follows that

(5.3) ∀s ≥ s1,

∫
|∇ε(s)|2 +

∫
|ε(s)|2e−|y| ≤ Γ1−Ca

b(s) .
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Remark 10. From this proposition,
∫
|∇ε(s)|2 +

∫
|ε(s)|2e−|y| → 0 as s → +∞,

which corresponds to the stability of the blow-up profile Q in Ḣ1 first proved in
[16]. In addition, the last estimate is essentially optimal as the size of the radiation
ζb in Ḣ1 is

∫
|∇ζb|2 ∼ Γb.

Proof of Proposition 5. Step 1: Asymptotic stability.

We first claim (5.2):
b(s) → 0 as s → +∞.

Note that this could in fact be assumed from results in [16]. Indeed, from (4.28),
one has ∀s ≥ s0: ∫ s

s0

bΓb ≤ J (s0) − J (s) + C

∫ s

s0

λ2

b2
E0.

Remark then that from its explicit value (4.29),

|J | ≤ C.

Moreover, from the assumption u0 ∈ O, the uniform estimate (2.42) holds and we
rewrite: ∀s ≥ s0,

(5.4) b ≥ C

log | log(λ)| ,

so that using ds
dt = 1

λ2 and (5.1):∫ +∞

s0

λ2

b2
|E0|ds ≤ C

∫ s

s0

λ2|E0|(log | log(λ)|)2ds = C|E0|
∫ T

t0

(log | log(λ(τ ))|)2dt

≤ C|E0|
∫ T

t0

(log | log(|∇u(t)|L2)|)2dt < +∞,

where we used the upper bound on the blow-up rate (1.9) in the last step. Remark
that this estimate is not needed in the negative energy case. We conclude that∫ +∞

s0

bΓb < +∞.

Since |bs| ≤ C from (2.36), (5.2) follows. From (5.2), we now have with (2.42):

|E0|λ2(s) ≤ e−e
C

b(s) ≤ e
− 1

2Γ
d0
b ≤ Γ2

b ,

and thus (4.28) can be rewritten: ∀s ≥ s1,

(5.5) {J }s ≤ −CbΓb + C
λ2

b2
E0 ≤ −1

2
CbΓb ≤ 0.

Step 2. Estimate on J .

From energy-type estimates, we claim the following control on J : ∀s ≥ s1,

(5.6) J (s) − f2(b(s))
{

≥ −Γ1−Ca
b + 1

C

(∫
|∇ε|2 +

∫
|ε|2e−|y|) ,

≤ CA2 log A
(∫

|∇ε|2 +
∫
|ε|2e−|y|)+ Γ1−Ca

b ,

where f2, given by

f2(b) =
(∫

|Q̃b|2 −
∫

Q2

)
− δ1

800

(
bf̃1(b) −

∫ b

0

f̃1(v)dv

)
,
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satisfies

(5.7) 0 <
df2

db2 |b2=0
< +∞.

Remark 11. The main point is that the dominant term in ε in (4.29) is 2(ε1, Σ) +
2(ε2, Θ)+

∫
(1−φA)|ε|2, which also appears in the conservation of energy. Now the

orthogonality conditions on ε, which in our analysis are related to the virial relation
that is dispersion on compact sets, are also adapted to the coercive structure of the
linearized energy; see also [14]. Indeed, let

L+ = −∆ + 1 −
(

1 +
4
N

)
Q

4
N , L− = −∆ + 1 − Q

4
N

be the linear operators close to Q; recall that the quadratic form which appears
when developing the energy close to Q is (L+ε1, ε1) + (L−ε2, ε2)−

∫
|ε|2. We then

have from [11] (the proof there is for N = 1, but the same proof holds in any
dimension assuming that the kernel of L+ is reduced to 〈∂x1Q, . . . , ∂xn

Q〉. This
fact has been proved by Maris in [10] under an assumption (H5) which can be
checked in [12]):

Lemma 8 ([11]). There exists a universal constant δ2 > 0 such that the following
holds true. Let µ+ < 0 be the lowest eigenvalue of L+ and φ+ be a corresponding
eigenvector with ‖φ+‖L2 = 1. Then for all v = v1 + iv2 ∈ H1,

(5.8) (L+v1, v1) + (L−v2, v2) ≥ δ2|v|2H1 −
1
δ2

{
(v1, φ+)2 + (v1,∇Q)2 + (v2, Q)2

}
.

We then claim from this estimate the following: there exists a universal constant
δ3 > 0 such that

(L+ε1, ε1) + (L−ε2, ε2) −
∫

φA|ε|2 ≥ δ3(
∫

|∇ε|2 +
∫

|ε|2e−|y|)(5.9)

− 1
δ3

{
(ε1, Q)2 + (ε1, |y|2Q)2 + (ε1, yQ)2 + (ε2, Q2)2

}
.

See Appendix D for the proof of (5.9).

Proof of (5.6). We rewrite (4.29):

J (s) − f2(b(s)) = 2(ε1, Σ) + 2(ε2, Θ) +
∫

(1 − φA)|ε|2(5.10)

− bδ1

800

{
(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)

}
.

From the estimates on ζ̃ of Lemma 2, the choice of A (4.3) and (4.10), (4.11), we
have

∣∣∣(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)
∣∣∣ ≤ Γ

1
2−Cη

b

(∫ A

0

|ε|2
) 1

2

≤ A2 log AΓ1−Cη
b + C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)

≤ Γ1−Ca
b + C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 FRANK MERLE AND PIERRE RAPHAEL

The other term in (5.10) is estimated from the conservation of energy (4.17):

2(ε1, Σ) + 2(ε2, Θ) +
∫

(1 − φA)|ε|2

=
∫

(1 − φA)|ε|2 + 2(ε1, Re(Ψ)) + 2(ε2, Im(Ψ)) + 2E(Q̃b) − 2λ2E0

− 2
2 + 4

N

∫
J(ε) +

∫
|∇ε|2 −

∫
(

4Σ2

N |Q̃b|2
+ 1)|Q̃b|

4
N ε2

1

−
∫

(
4Θ2

N |Q̃b|2
+ 1)|Q̃b|

4
N ε2

2 −
∫

8ΣΘ
N |Q̃b|2

|Q̃b|
4
N ε1ε2,

with J(ε) given by (B.5), which can be rewritten as

2(ε1, Σ) + 2(ε2, Θ) +
∫

(1 − φA)|ε|2 = (L+ε1, ε1) + (L−ε2, ε2) −
∫

φA|ε|2

+ 2(ε1, Re(Ψ)) + 2(ε2, Im(Ψ)) + 2E(Q̃b) − 2λ2E0 −
2

2 + 4
N

∫
J(ε)

−
∫ [

(
4Σ2

N |Q̃b|2
+ 1)|Q̃b|

4
N − (

4
N

+ 1)Q
4
N

]
ε2
1

−
∫ [

(
4Θ2

N |Q̃b|2
+ 1)|Q̃b|

4
N − Q

4
N

]
ε2
2 −

∫
8ΣΘ

N |Q̃b|2
|Q̃b|

4
N ε1ε2.

We first estimate for s ≥ s1:

|(ε1, Re(Ψ))| + |(ε2, Im(Ψ))| +
∣∣∣E(Q̃b)

∣∣∣+ λ2|E0|

≤ Γ1−Ca
b + Γa

b

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

The cubic term
∫
|J(ε)| and the rest of the quadratic form are controlled similarly

as in the proof of (v) of Step 2 of Lemma 6 by δ(α∗)
(∫

|∇ε|2 +
∫
|ε|2e−|y|)+Γ1+z0

b .
We thus obtain∣∣∣∣J (s) − f2(b(s)) −

{
(L+ε1, ε1) + (L−ε2, ε2) −

∫
φA|ε|2

}∣∣∣∣
≤ δ(α∗)

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
+ Γ1−Ca

b .

We now are in a position to conclude the proof of (5.6). The upper bound follows
from (4.10), (4.11), which indeed yields

(5.11)
∫

(1 − φA)|ε|2 ≤ CA2 log A

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

For the lower bound, we use the elliptic estimate (5.9) together with estimate (4.15)
inherited from our choice of orthogonality conditions. This ends the proof of (5.6).
To prove (5.7), we first have from (4.30) and the estimates of Lemma 2:∣∣∣∣∣∣

d

db2

(
bf̃1(b) −

∫ b

0

f̃1(v)dv

)
|b2=0

∣∣∣∣∣∣ < +∞.

We now use in a fundamental way the supercritical mass property for the modified
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profile Q̃b. Indeed, the constant δ1 > 0 in (4.29) can be chosen as small as we want,
so that (2.8) ensures (5.7).

Step 3: Pointwise control of ε by b.

We now turn to the proof of (5.3). Letting s ≥ s1, we consider two cases.
Case 1: bs(s) ≤ 0. Then (5.3) follows from (2.39) and a > Cη.
Case 2: bs(s) > 0. First observe from b(s) → 0 as s → +∞ that we may assume
without loss of generality that s ∈ (s∗1, s∗2) with

bs(s∗1) = bs(s∗2) = 0 and bs ≥ 0 in [s∗1, s
∗
2],

and thus:

(5.12) b(s∗1) ≤ b(s) ≤ b(s∗2).

Case 1 applies at s = s∗1:

(5.13) (
∫

|∇ε|2 +
∫

|ε|2e−|y|)(s1) ≤ Γ1−Ca
b(s1)

.

Next, from the Lyapounov monotonicity property (5.5):

J (s∗2) ≤ J (s) ≤ J (s∗1),

and injecting (5.6) into this inequality, we get

f2(b(s)) +
1
C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
(s) ≤ J (s) + Γ1−Ca

b(s)

≤ f2(b(s∗1)) + Γ1−Ca
b(s) + Γ1−Ca

b(s∗
1) ≤ f2(b(s∗1)) + 2Γ1−Ca

b(s) ,

where we used (4.3) and (5.12) for the two last steps. Now from the monotonicity
property (5.7) of f2(b),

f2(b(s∗1)) ≤ f2(b(s)),
and (5.3), follows. This concludes the proof of Proposition 5.

We now are in position to conclude the proof of Theorem 2.

Proof of Theorem 2. We proceed in several steps, following the analysis in [15], and
refer to section 5.2 of [15] for further details.

Step 1. Pointwise uniform control of the scaling parameter.

We claim the following uniform estimate for s ≥ s2 large enough:

(5.14) Cb(s) ≤ 1
log | log λ(s)| ,

for some universal constant C > 0. Note that this estimate expresses the converse
inequality in (2.42) obtained in [15] for the proof of the log-log upper bound.

Proof of (5.14). From (5.3) and (5.6), we have for s ≥ s2:

(5.15)
b2

C
≤ J ≤ Cb2
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for some universal constant C > 0, and thus from (5.5), g =
√
J satisfies the

following differential inequality:

gs =
(J )s

2
√
J

≤ −C

g
ge−

C
g ≤ − 1

2C
g2e−

2C
g , i.e.

(
e

2C
g

)
s
≥ 1,

and thus we have for s ≥ s2 large enough:

(5.16) e
C

b(s) ≥ s, i.e. b(s) ≤ Cg(s) ≤ C

log(s)
.

Now observe from (2.42) that control (2.36) may be written with (5.3):∣∣∣∣λs

λ
+ b

∣∣∣∣ ≤ C(
∫

|∇ε|2 +
∫

|ε|2e−|y|) + Γ1−Cη
b ≤ Γ

1
2
b

and thus

(5.17)
b

2
≤ −λs

λ
≤ 2b.

We integrate this in time on [s2, s] using b > 0 to derive for s ≥ s2 large enough:

− log(λ(s)) ≤ 2
∫ s

s2

b(τ )dτ ≤ C

∫ s

s2

1
log(τ )

dτ ≤ Cs.

Taking the log of this inequality and injecting (5.16) yields:

log | log(λ(s))| ≤ C log(s) ≤ C

b(s)
,

and (5.14) is proved.

Step 2. Conclusion.

We differ here from the strategy of integration on doubling time intervals of the
norm used in [15], which was designed to control the oscillations of λ induced by
the variations of ε. Here at the level of our analysis, using the pointwise estimate
on ε (5.3), we derive a pointwise differential inequality for λ(t): ∀t ≥ t2,

(5.18)
1
C

≤ −
(
λ2 log | log(λ)|

)
t
≤ C,

for some universal constant C > 0.
Indeed, we compute:

−
(
λ2 log | log(λ)|

)
t

= −λλt log | log(λ)|
(

2 +
1

| log(λ)| log | log(λ)|

)

= −λs

λ
log | log(λ)|

(
2 +

1
| log(λ)| log | log(λ)|

)
.

Thus from (5.17), we have
b

4
log | log(λ)| ≤ −

(
λ2 log | log(λ)|

)
t
≤ 4b log | log(λ)|,

and (5.18) now follows from (5.4) (which is of course equivalent to the log-log upper
bound; see [15]) and (5.14).

Integrating (5.18) in time t yields:

∀t ≥ t2,
T − t

C
≤ λ2(t) log | log(λ(t))| ≤ C(T − t).
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The lower bound

|∇u(t)|L2 ≥ C

√
log | log(T − t)|

T − t
now easily follows for t close enough to T . This concludes the proof of Theorem 2.

5.2. Time dependence of the geometrical parameters for the log-log dy-
namics. In this subsection, we collect the dispersive controls obtained for the log-
log dynamics and the exact size of the different parameters in order to make precise
the constants in the asymptotics. We thus let u0 ∈ O satisfy (2.22), where u(t) is
the corresponding solution to (1.1) with blow-up time 0 < T < +∞. At this stage,
we have proved that there exist η0 small enough, a0 = C0η0 both fixed with C0 > 0
universal such that the results of the previous subsections apply. This yields for t
close to T :

1
C

√
log | log(T − t)|

T − t
≤ |∇u(t)|L2 ≤ C

√
log | log(T − t)|

T − t
,

1
C

√
T − t

log | log(T − t)| ≤ λ(t) ≤ C

√
T − t

log | log(T − t)| ,

1
C log | log(T − t)| ≤ b(t) ≤ C

log | log(T − t)| ,

1
C
| log(T − t)| log | log(T − t)| ≤ s(t) ≤ C| log(T − t)| log | log(T − t)|,

for some universal constant C > 0.

We claim the following at blow-up time for the geometrical parameters λ(t), b(t)
and rescaled time s(t):

Proposition 6 (Exact law for the geometrical parameters). We have as t → T :

|∇u(t)|L2

|∇Q|L2

√
T − t

log | log(T − t)| →
1√
2π

,

λ(t)

√
log | log(T − t)|

T − t
→

√
2π,(5.19)

b(t) log | log(T − t)| → 1
π

,(5.20)

s(t)
| log(T − t)| log | log(T − t)| →

1
2π

.(5.21)

Remark 12. The quantity |∇Q|L2 , or equivalently |Q|L2 , may be computed explic-
itly for N = 1. It is an open problem to compute it for N ≥ 2.

Proof of Proposition 6. The strategy is as follows: for any parameter (η, a = C0η),
0 < η < η0, we introduce a new decomposition with parameters (b(η), λ(η), ε(η))
and rescaled time s(η). Such a decomposition is well defined on a time interval
[t(η), T ) from the asymptotic stability. We then apply the previous scheme of proof
to estimate these parameters and improve the various constants appearing in their
time-dependent laws. The last step is to compare this decomposition with the one
for fixed parameters η0, a0, and then conclude the proof.
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Step 1. New decomposition for t close to T .

From the asymptotic stability of Proposition 5,

b(η0, s) → 0 as s → +∞

and for s large enough:∫
|∇ε(η0, s)|2 +

∫
|ε(η0, s)|2e−|y| ≤ Γ1−Ca0

b(η0,s) .

Now pick a small parameter 0 < η < η0 and let a = C0η. We have from the above
controls that u(t) admits on [t(η), T ) a decomposition close to Q̃b(η) as in Lemma
4 with new parameters b(η, t), λ(η, t), ε(η, t) and rescaled time s(η, t). Indeed, the
existence of the decomposition is only related to the size of b(η0, t) and the local
L2-norm of ε(η0, t) both of which go to zero as t → T . Applying the previous
analysis to this decomposition, we recover all previous estimates on [t(η), T ) and in
particular (5.3):

(5.22) ∀t ∈ [t(η), T ),
∫

|∇ε(η, t)|2 +
∫

|ε(η, t)|2e−|y| ≤ Γ1−Ca
b(η,t) .

Step 2. Estimates for the η-decomposition.

From (2.7) and (2.21), we have

e−
π(1+Cη)

b(η) ≤ Γb(η) ≤ e−
π(1−Cη)

b(η) .

On the one hand, virial estimate (2.39) with uniform control (2.42) yields: ∀s ≥
s(η),

(5.23) {b(η)}s ≥ −Γ1−Cη
b(η) .

The integration of the differential inequality (5.23) yields for s ≥ s(η) large enough:

(5.24)
(
e

π(1−Cη)
b(η)

)
s
≤ 1, i.e. b(η, s) ≥ π(1 − Cη)

log(s)
.

On the other hand, for the upper bound, we recall (4.28):

{J (η)}s ≤ −Cb(η)Γb(η).

Injecting (5.3) into the explicit form of J (η) (4.29), we have using (5.7):

lim
s→+∞

J (η, s)
b2(η, s)

= lim
b→0

f2(η, b)
b2(η)

= C∗ > 0

for some universal constant C∗ > 0. The differential inequality (4.28) can now be
rewritten as (

e
π(1+Cη)

√
C∗√

J (η)

)
s

≥ 1, i.e.
√
J (η) ≤ π(1 + Cη)

√
C∗

log(s)
.

Together with (5.24), we thus have obtained: ∀η > 0, there exists s(η) ∈ [0, +∞)
such that

(5.25) ∀t ∈ [s(η), +∞),
π(1 − Cη)

log(s)
≤ b(η, s) ≤ π(1 + Cη)

log(s)
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LOWER BOUND ON THE BLOW-UP RATE 71

We now turn to the proof of (5.20). We first have from the control of the blow-up
speed both from above and below the crude estimate:

s(η, t) =
∫ t

0

dτ

λ2(η, τ)
so that

1
C
| log(T − t)| ≤ s(η, t) ≤ C| log(T − t)|.

Taking the log of this inequality and injecting it into (5.25) yields: ∀t ∈ [t(η), T ),

(5.26)
π(1 − Cη)

log | log(T − t)| ≤ b(η, t) ≤ π(1 + Cη)
log | log(T − t)| .

Now estimate (5.17) may be improved using (2.36) and (5.3) to yield: ∀t ∈ [t(η), T ),

(1 − η)b(η, t) ≤ −{λ(η)}s

λ(η)
= −λ(η) {λ(η)}t ≤ (1 + η)b(η, t),

and thus with (5.26):

∀t ∈ [t(η), T ),
π(1 − Cη)

log | log(T − t)| ≤ −1
2
{
λ2(η)

}
t
≤ π(1 + Cη)

log | log(T − t)| .

Integrating this in time t yields: ∀t ∈ [t(η), T ),

(5.27) (1 − Cη)
√

2π ≤ λ(η, t)

√
log | log(T − t)|

T − t
≤ (1 + Cη)

√
2π.

Step 3. Comparison of the decompositions and conclusion.

(5.19) now easily follows. Indeed, for all η > 0, there exists t(η) ∈ [0, T ) such
that (5.27) holds. Now for each 0 < η < η0, we have∫

|∇u(t)|2 =
1

λ2(η, t)

∫
|∇

(
Q̃b(η,t) + ε(η, t)

)
|2

so that from the asymptotic stability:

(5.28) |∇u(t)|L2λ(η, t) → |∇Q|L2 as t → T.

From (5.27), we conclude:

|∇u(t)|L2

|∇Q|L2

√
T − t

log | log(T − t)| →
1√
2π

as t → T.

Applying again (5.28) with η = η0, we obtain (5.19). (5.21) now follows from an
explicit computation from (5.19):

s(t) =
∫ t

0

dτ

λ2(τ )
∼ 1

2π

∫ t

0

log | log(T − τ )|
T − τ

dτ

∼ 1
2π

| log(T − t)| log | log(T − t)| as t → T.

For (5.20), we get, comparing the two decompositions for t ∈ [t(η), T ),

|b(t) − b(η, t)| ≤
(∫

|∇ε|2 +
∫

|ε|2e−|y|
) 1

2

≤ Γ
1
4
b(t) ≤

1
| log(T − t)|C ,

and (5.26) yields the result. This ends the proof of Proposition 6.
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Let us conclude this subsection with some dispersive controls on ε which clarify
the size of the main (larger-order) terms in the problem. For ν > 0 small, we let

(η, a) = (ν2, ν),

which enters the range of parameters given by Remark 8, and define the geometrical
decomposition of Lemma 4. We also let A(t) be the cut-off parameter given by (4.3).

Proposition 7 (Dispersive control on ε). There exist universal constants C1, C2 >
0 such that for all ν > 0 small enough, there exists s(ν) > 0 such that ∀s ∈
[s(ν), +∞), we have:
(i) Pointwise control on ε:

(5.29)
∫

|∇ε(η, s)|2 +
∫

|ε(η, s)|2e−|y| ≤ Γ1−Cν
b(η,s) .

(ii) Time-averaged control of ε:∫ +∞

s

(∫
|∇ε̃(η, s)|2 +

∫
|ε(η, s)|2e−|y| + Γb(η,s)

)
ds ≤ C1

| log(s)| ,(5.30)

C2

| log(s)| ≤
∫ +∞

s

(∫ 2A

A

|ε(η, s)|2
)

ds ≤ C1

| log(s)| .(5.31)

Remark 13. These estimates hold for η0, a0 = C0η0. For further use, we need to
work with the full range of parameters of Remark 8. Moreover, in (5.31), we have
from the proof a similar control of

∫K′A

KA
|ε(s)|2 for any constants K ′ > K > 0, the

constants C1, C2 depending then on K, K ′.

Remark 14. Estimate (5.31) together with (5.30) gives a precise localization prop-
erty in the space of the L2 mass inherited from the universal radiative structure.

Proof of Proposition 7. We omit in the proof the dependence of the parameters on
η.
(i) (5.29) is (5.22).
(ii) (5.30) is a consequence of the dispersive control (4.28) with (5.15): for some
universal constant C > 0 and for s ≥ s(a) large enough, the following holds:

Cb

(
Γb +

∫
|∇ε̃|2 +

∫
|ε̃|2e−|y| +

∫ 2A

A

|ε|2
)

≤ −{J }s

and
b2(s)

C
≤ J (s) ≤ Cb2(s).

We divide this differential inequality by
√
J and get

C

(
Γb +

∫
|∇ε̃|2 +

∫
|ε̃|2e−|y| +

∫ 2A

A

|ε|2
)

≤ −
{√

J
}

s

and thus∫ +∞

s

(∫
|∇ε̃(s)|2 +

∫
|ε̃(s)|2e−|y| +

∫ 2A

A

|ε(s)|2 + Γb(s)

)
ds ≤ C

√
J (s)

≤ Cb(s) ≤ C

| log(s)| .
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The control of the local L2-norm of ε only follows from (2.19).
We are left with proving the lower bound in (5.31). Recall (4.6):

{f1(s)}s ≥ δ1

(∫
|∇ε̃|2 +

∫
|ε̃|2e−|y|

)
+

c

2
Γb −

1
δ1

∫ 2A

A

|ε|2,

where f1 given by (4.7) satisfies from (5.3):

f1(s) ≥ Cb(s)

for some C > 0 universal. Integrating the previous differential inequality in time
together with the lower bound b(s) ≥ C

log(s) yields the result. This ends the proof
of Proposition 7.

5.3. Proof of blowup for H1 zero energy solutions. This subsection is devoted
to the proof of Theorem 3, which will follow from the existence of the Lyapounov
functional J of Proposition 4 together with the study of flux exchanges in L2.

Let u0 ∈ Bα∗ with

E(u0) = Im(
∫

∇u0u0) = 0.

Our aim is to prove that u(t), the corresponding solution to (1.1), blows up for
t > 0 and for t < 0 at the exact log-log rate. Remark that in [16], this result was
proved for u0 ∈ Σ, using the pseudo-conformal symmetry, which allows us to reduce
the problem to proving classification results for blow-up solutions satisfying

|u(t)|2 ⇀

(∫
|u0|2

)
δx=0.

In our situation where u0 is not in Σ, this approach fails. Here, we present a direct
proof of this fact based essentially on the dispersive estimate (4.28) together with
information on the sign of b(s).

Step 1. Recall of previous analysis in [16].

We first briefly recall the analysis in [16]. An elementary but fundamental ob-
servation is that Lemma 4 holds on the whole time interval (−T−, T+) from E0 = 0.
We thus introduce the same geometrical decomposition as before, i.e. Lemma 4,
and the estimates of Lemma 5 still hold true for s ∈ R. As pointed out in [16], the
main difference concerns the results of Proposition 3:

• Virial estimate (2.39) still holds true on the whole time interval existence
(−T−, T+) or equivalently s ∈ R: there exist universal constants δ0 > 0,
C > 0, such that ∀s ∈ R:

(5.32) bs ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− Γ1−Cη

b .

• In addition, if u0 is not the soliton up to scaling, phase and translation
invariances, then there is at most one s0 ∈ R such that b(s0) = 0. If s0

exists, then

b(s) > 0 for s > s0 and b(s) < 0 for s < s0.
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In this case, the analysis in [16] ensures that the solution blows up on
both sides in time with the upper bound (1.9), and thus from the previous
section, the lower bound (1.12) also holds.

The existence of s0 has been proved in [14] for strictly negative energy solutions
and is unknown in our case where a regime with |∇u(t)|L2 → 0 is possible a priori.
This is the regime we need to rule out.

In other words, to prove Theorem 3, we may argue by contradiction and (by
possibly considering u(−t), which is also a solution) assume:

(5.33) ∀s ∈ R, b(s) > 0.

In this situation, u(t) blows up on the right in finite time 0 < T < +∞ and is
globally defined on the left.

To obtain a contradiction, we study the qualitative behavior of the solution as
s → −∞. The existence of the Lyapounov functional J allows us to recover the
asymptotic stability in the following sense:∫ 0

−∞

(∫
|∇ε(s)|2 +

∫
|ε(s)|2e−|y|

)
ds < +∞.

Using this dispersive control, we then show that the sign of the parameter b near
−∞ forces an ingoing radiative behavior for ε which implies:∫

|ε(s)|2 → 0 as s → −∞.

From the conservation laws, this means that u is a soliton up to the symmetries,
which is a contradiction.

Step 2. Asymptotic stability:
∫
|∇ε(s)|2 +

∫
|ε|2(s)e−|y| → 0 as s → −∞.

From the existence of the Lyapounov functional J of section 4.3, let us prove
first:

(5.34) b(s) → 0 as s → −∞.

From (5.33), Proposition 4 applies and we have: ∀s ∈ R,

(5.35) {J }s ≤ −CbΓb,

with J given by (4.29). The main difference with the analysis of the previous
subsection is that the asymptotic control (5.15) no longer holds a priori, and thus
(5.35) does not provide a differential inequality for b. Indeed, we will see that in
this regime, J (s) converges to a nonzero constant as s → −∞ and thus cannot be
compared to b2 from (5.34).

Nevertheless, observe from its definition that

∀s ∈ R, |J (s)| ≤ C,

and thus the integration in time of (5.35) ensures∫ 0

−∞
bΓbds < +∞.

Now from (5.33) and |bs| ≤ C from (2.36), we get (5.34).
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We now claim from the virial identity that this implies:

(5.36)
∫

|∇ε(s)|2 +
∫

|ε|2(s)e−|y| → 0 as s → −∞.

Proof of (5.36). First, take the inner product of (2.31) with (ε1e
−|y|) and of (2.32)

with (ε2e
−|y|). Then one evaluates: ∀s,

(5.37)
∣∣∣∣
(∫

|ε|2e−|y|
)

s

∣∣∣∣ ≤ C.

Arguing by contradiction, we assume that for some sequence sn → −∞:

(5.38)
∫

|ε|2(sn)e−|y| ≥ c0 > 0.

Then from (5.37), there exists τ0 > 0 such that

(5.39) ∀n ≥ 0, ∀s ∈ [sn, sn + τ0],
∫

|ε|2(s)e−|y| ≥ c0

2
.

Integrating the virial identity (2.39) on [sn, sn + τ0] with the lower bound (5.39),
we get

0 <
c0δ0τ0

2
≤ δ0

∫ sn+τ0

sn

∫
|ε|2e−|y| ≤ C(1 + τ0) sup

s∈[sn,sn+τ0]

b(s),

and a contradiction to (5.38) follows as the right-hand side of this inequality goes
to zero as n → +∞ from (5.34), and thus

∫
|ε|2e−|y| → 0 as s → −∞. (5.36) now

follows from the conservation of energy (4.17).

Step 3. Decay rate of ε in Ḣ1.

We claim here:

(5.40)
∫ 0

−∞

(∫
|∇ε(s)|2 +

∫
|ε(s)|2e−|y|

)
ds < +∞.

Using again the Lyapounov function, we first compare ε and Γb. Note that (5.6)
with (5.7) yields the lower bound:

J ≥ 1
C

(
b2 +

∫
|∇ε|2 +

∫
|ε|2e−|y|

)
> 0.

Thus from the uniform bound on J and the monotonicity (5.35) of J , we have

J (s) → l− > 0 as s → −∞.

From (5.6),

CA2(s) log A(s)
(∫

|∇ε(s)|2 +
∫

|ε(s)|2e−|y|
)

≥ l−
2

− Cb2 ≥ l−
4

> 0

for s large enough, and thus from (4.3): there exists s3 < 0 such that

(5.41) ∀s < s3,

∫
|∇ε(s)|2 +

∫
|ε(s)|2e−|y| ≥ Γ

1
4
b(s).
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Now the virial control (5.32) can now be rewritten with the lower bound (5.41):

∀s < s3, bs ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
−Γ1−Cη

b ≥ δ0

2

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
,

and (5.40) follows.

Step 4. L2 control on ε and conclusion.

We now prove that the upper bound (5.40) with the sign assumption (5.33) imply
a global control of ε in L2, which will yield a contradiction.

For D ≥ 2, consider a cut-off function χD(r), which definition depends on the
dimension: for N = 1 or N ≥ 3, we let χD(r) = χ

(
r
D

)
for some smooth cut-off

function χ(r) = 1 for 0 ≤ r ≤ 1, χ(r) = 0 for r ≥ 2, χ′(r) ≤ 0; for N = 2, we
impose a slightly different structure to take into account the logarithmic growth in
(4.11) and (4.12), and let

(5.42) χD(r) =

⎧⎪⎨
⎪⎩

1 for r ≤ D,

2
(

log D
log r − 1

2

)
for D ≤ r ≤ D2,

0 for r ≥ D2.

We now claim:

(5.43) ∀D ≥ 2, ∀s ≤ s3,

{∫
χD|ε|2

}
s

≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
,

for some universal constant C > 0. Let us conclude the proof of Theorem 3 assum-
ing (5.43). Indeed, integrate (5.43) in time on [s̃, s] where s̃ < s < s3. We get using
(5.40): ∀D ≥ 2, ∀s̃ < s < s3,∫

χD|ε(s)|2 ≤
∫

χD|ε(s̃)|2 + C

∫ s

s̃

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)

≤
∫

χD|ε(s̃)|2 + C

∫ s

−∞

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

Letting s̃ → −∞, we have from the asymptotic stability (5.36):

∀D ≥ 2,

∫
χD|ε(s̃)|2 → 0 as s̃ → −∞,

and thus: ∀D ≥ 2, ∀s < s3,∫
χD|ε(s)|2 ≤ C

∫ s

−∞

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

Letting D → +∞, we conclude:

∀s < s3,

∫
|ε(s)|2 ≤ C

∫ s

−∞

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
,

and from (5.40): ∫
|ε(s)|2 → 0 as s → −∞.
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Injecting this into the conservation of the L2-norm, we get∫
|u0|2 = lim

s→−∞

∫
|u(s)|2 =

∫
Q2.

Here, we use the L2 conservation to get an estimate on the size of the solution.
From E(u0) = 0 and the variational characterization of Q, u is a soliton up to some
fixed scaling, translation and phase parameters, which is a contradiction.

Proof of (5.43). Take the inner product of (2.31) with χDε1 and of (2.32) with
χDε2 and integrate by parts. We get:

1
2

{∫
χD|ε|2

}
s

=
b

2

∫
y · ∇χD|ε|2 + Im

(∫
∇χD · ∇εε

)
(5.44)

+
∫

4|Q̃b|
4
N

N |Q̃b|2
χD

[
(Σ2 − Θ2)ε1ε2 + ΣΘ(ε2

2 − ε2
1)
]
+ (ε1, χDIm(Ψ))

− (ε2, χDRe(Ψ)) − bs

{
(ε1, χD

∂Σ
∂b

) + (ε2, χD
∂Θ
∂b

)
}

+ γ̃s {(ε1, χDΘ)

− (ε2, χDΣ)} +
(

λs

λ
+ b

){
(ε2, χDΘ1) + (ε1, χDΣ1) −

1
2

∫
y · ∇χD|ε|2

}

+
xs

λ
·
{

(ε1, χD∇Σ) + (ε2, χD∇Θ) − 1
2

∫
∇χD|ε|2

}
+ (R1(ε), χDε2) − (R2(ε), χDε1).

The dominant term in (5.44) is the flux term which has a sign:

∀s < s3,
b

2

∫
y · ∇χD|ε|2 ≤ 0,

and this will imply the result.
We now estimate all other terms in (5.44). The most dangerous term is the mo-

mentum type of term Im
(∫

∇χD · ∇εε
)

for which we need an estimate independent
of D. It is a consequence of the L2 estimate:

(5.45)
∫

|∇χD|2|ε|2 ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

Indeed, we have in dimension N = 1 or N ≥ 3 from (4.10):∫
|∇χD|2|ε|2 =

1
D2

∫ ∣∣∣∇χ(
y

D
)
∣∣∣2 |ε|2 ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

In dimension N = 2, we have from (5.42) and (4.12):∫
|∇χD|2|ε|2 = log2 D

∫
D≤|y|≤D2

|ε|2

|y|2 log4 |y|
≤ C

log2 D

∫
1≤|y|≤D2

|ε|2
|y|2

≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.
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We conclude from (5.45):∣∣∣∣Im

(∫
∇χD · ∇εε

)∣∣∣∣ ≤ C

(∫
|∇ε|2

) 1
2
(∫

|∇χD|2|ε|2
) 1

2

≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

The boundary terms are estimated thanks to (5.41):

|(ε1, χDIm(Ψ))| + |(ε2, χDRe(Ψ))| ≤ Γ
1
2−Cη

b

(∫
|y|≤ 4

b

|ε|2
) 1

2

≤ Γ
1
4
b

(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2

≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 3
2

.

For the quadratic terms, we first estimate from the decay estimates on Q̃b of Propo-
sition 1 and (4.10):∣∣∣∣∣

∫
4|Q̃b|

4
N

N |Q̃b|2
χD

[
(Σ2 − Θ2)ε1ε2 + ΣΘ(ε2

2 − ε2
1)
]∣∣∣∣∣ ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

Next, we have from (C.3):∫
|R(ε)χDε| ≤

{
C(

∫
|ε|3e−( 4

N −1)(1−Cη) θ(b|y|)
b +

∫
|ε|2+ 4

N ) for N ≤ 3,

C
∫
|ε|2+ 4

N for N ≥ 4.

This estimate is the same as that of
∫
|J(ε)| in the proof of (v) in Appendix C, and

we estimate: ∫
|R(ε)χDε| ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

We now rewrite the estimates on the modulation parameters (2.36) and (5) with
E0 = 0 and (5.41):∣∣∣∣λs

λ
+ b

∣∣∣∣+ |bs| ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
,(5.46)

∣∣∣xs

λ

∣∣∣+ |γ̃s| ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2

.(5.47)

The decay estimate (2.2) on Q̃b together with (2.38) yield the control of the scalar
product terms. The two last terms involving L2-type norms are estimated as follows:∣∣∣∣λs

λ
+ b

∣∣∣∣
∣∣∣∣
∫

y · ∇χD|ε|2
∣∣∣∣ ≤ C|y∇χD|L∞

∣∣∣∣λs

λ
+ b

∣∣∣∣
(∫

|ε|2
)

≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
,

where the last step follows from (5.46); we next have from (5.45) and (5.47):∣∣∣∣xs

λ
·
∫

∇χD|ε|2
∣∣∣∣ ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2
(∫

|∇χD|2|ε|2
) 1

2
(∫

|ε|2
) 1

2

≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

This concludes the proof of estimate (5.43) and of Theorem 3.
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Appendix

A. Proof of Lemma 2

Lemma 2 has been proved in [16], Appendix E, except for (2.18) and (2.20). We
now detail the proof of these two estimates.

Recall from Appendix E in [16] that the outgoing radiation is built as

ζb = ξbe
−i b|y|2

4 ,

where ξb solves the following linear equation viewed as an ODE on r ∈ [0, +∞):

(A.1) ξ′′b +
N − 1

r
ξ′b − ξb +

b2r2

4
ξb = Ψ̃b and

∫ ∣∣∣∇(
ξbe

−ib r2
4

)∣∣∣2 < +∞,

where Ψ̃b = Ψbe
i b|y|2

4 . More precisely, ξb can be written for r large:

∀r ≥ 4
b
, ξb(r) = νbZout(r) with Γb = |νb|2,

and where Zout is a solution to the homogeneous equation (A.1) with the following
asymptotic behavior as r → +∞:

Zout(r) = φb(r)e
i
b Θ(br), φb(r) =

1

r
N
2

(
1 −

(
2
br

)2) ,

where

Θ(r) =
∫ r

2

ds

√
s2

4
− 1 + b2Θ̃(r), ‖rΘ̃(r)‖C2(r≥3) ≤ C.

Proof of (2.18). Observe from its explicit value that Θ(r) has the following asymp-
totic development:

Θ(r) =
r2

4
− log(r) + Θ∞ + Θ̂(r) + b2Θ̃(r) with ‖Θ̂‖Ci(r≥3) ≤

C

r1+i
, i = 1, 2,

for some universal constants Θ∞, C. We thus get the following formula for ζb:

∀r ≥ R2
b , ζb(r) = νbφb(r)e

i
b Θ(br) with Θ(r) = − log(r) + Θ∞ + Θ̂(r) + b2Θ̃(r).

Taking the derivative in r of this expression yields (2.18) for r ≥ R2
b .

Proof of (2.20). Note that going back to the proof of estimate (2.10), we may
exhibit the following bound in terms of Γb:∣∣∣∣∣∂Ψ̃b

∂b

∣∣∣∣∣
C1

≤ Γ
1
2−Cη

b .

Going back to the explicit formula for the computation of ξb in terms of Ψ̃b, see
(229) of [16], we differentiate it with respect to b and get (2.20).
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B. Proof of the virial identity (4.8)

This appendix is devoted to the proof of the algebraic virial identity (4.8). This
relation is a generalization of the one obtained in [16] in a more specific context,
and thus the proof is very similar to the one given in Appendix D in [16]. We briefly
recall the main steps of the computation.

Take the inner product of (2.32) with (Σ + ζ̃re)1 and of (2.31) with −(Θ + ζ̃im)1
and sum the obtained identities to get:

{
b

4
|yQ̃b|22 +

1
2
Im

(∫
y · ∇ζ̃ ζ̃

)
+ (ε2, Σ1 + (ζ̃re)1) − (ε1, Θ1 + (ζ̃im)1)

}
s

= −
(

M+(ε) + b(
N

2
ε2 + y · ∇ε2), Σ1 + (ζ̃re)1

)

−
(

M−(ε) − b(
N

2
ε1 + y · ∇ε1), Θ1 + (ζ̃im)1

)

+
{

(ε2 − ζ̃im,
∂

∂s
(Σ + ζ̃re)1) − (ε1 − ζ̃re,

∂

∂s
(Θ + ζ̃im)1)

}

− γ̃s

{
(ε1 + Σ, Σ1 + (ζ̃re)1) + (ε2 + Θ, Θ1 + (ζ̃im)1)

}

−
(

λs

λ
+ b

){
(ε2 + θ, (Σ + ζ̃re)2) − (ε1 + Σ, (Θ + ζ̃im)2)

}

− xs

λ
·
{

(ε2 + Θ,∇(Σ + ζ̃re)1) − (ε1 + Σ,∇(Θ + ζ̃im)1)
}

− (Re(Ψ), Σ1 + (ζ̃re)1) − (Im(Ψ), Θ1 + (ζ̃im)1)

+ (R1(ε), Σ1 + (ζ̃re)1) + (R2(ε), Θ1 + (ζ̃im)1),

where we used the fact that for any function f = fre + ifim in terms of real and
imaginary parts,

1
2

{
Im

(∫
y · ∇ff

)}
s

= (∂sfre, (fim)1) − (∂sfim, (fre)1) .

To transform the above identity, first observe from the Q̃b equation and an integra-
tion by parts (see Appendix D in [16]):

−
(

M+(ε) + b(
N

2
ε2 + y · ∇ε2), Σ1

)
−
(

M−(ε) − b(
N

2
+ y · ∇ε1), Θ1

)

= 2(ε1, Σ + bΘ1 − Re(Ψ)) + 2(ε2, Θ − bΣ1 − Im(Ψ))

− (ε1, Re(Ψ1)) − (ε2, Im(Ψ1)).
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Inject the conservation of energy (4.17) together with (Re(Ψ), Σ1)+(Im(Ψ), Θ1) =
2E(Q̃b) and the definition of R̃1(ε), R̃2(ε) given by (B.3), (B.4), to get in a first
step:

{
b

4
|yQ̃b|22 +

1
2
Im

(∫
y · ∇ζ̃ ζ̃

)
+ (ε2, Σ1 + (ζ̃re)1) − (ε1, Θ1 + (ζ̃im)1)

}
s

= −2λ2E0 + [H(ε, ε) − (ε1, Re(Ψ1)) − (ε2, Im(Ψ1))

−(Re(Ψ), (ζ̃re)1) − (Im(Ψ), (ζ̃im)1)

−
(

M+(ε) + b(
N

2
ε2 + y · ∇ε2), (ζ̃re)1

)
−
(

M−(ε) − b(
N

2
+ y · ∇ε1), (ζ̃im)1

)]

+ bs

{
(ε2 − ζ̃im,

∂(Σ + ζ̃re)1
∂b

) − (ε1 − ζ̃re,
∂(Θ + ζ̃im)1

∂b
)

}

− As

A2

{
(ε2 − ζ̃im, (y · ∇χ

( y

A

)
ζre)1) − (ε1 − ζ̃re, (y · ∇χ

( y

A

)
ζim)1)

}

− γ̃s

{
(ε1 − ζ̃re, (Σ + ζ̃re)1) + (ε2 − ζ̃im, (Θ + ζ̃im)1)

}

−
(

λs

λ
+ b

){
(ε2 − ζ̃im, (Σ + ζ̃re)2) + (ε1 − ζ̃re, (Θ + ζ̃im)2)

}

− xs

λ
·
{
(ε2 − ζ̃im,∇(Σ + ζ̃re)1) + (ε1 − ζ̃re,∇((Θ + ζ̃im)1))

}
+ H̃b(ε, ε) + (R1(ε), (ζ̃re)1) + (R2(ε), (ζ̃im)1) + (R̃1(ε), Σ1) + (R̃2(ε), Θ1)

− 2
2 + 4

N

∫
J(ε),

(B.1)

where

L̃ =
{(

4Σ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N −

(
1 +

4
N

)
Q

4
N

}
(ζ̃re)1 +

4ΣΘ
N |Q̃b|2

|Q̃b|
4
N (ζ̃im)1,

K̃ =
{(

4Θ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N − Q

4
N

}
(ζ̃im)1 +

4ΣΘ
N |Q̃b|2

|Q̃b|
4
N (ζ̃re)1,

the quadratic form H is the usual one given by (1.8), and H̃b is the corrective term

(B.2) H̃b(ε, ε) =
∫

V1(y)|ε1|2 +
∫

V2(y)|ε2|2 +
∫

V12(y)ε1ε2,
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for some well-localized potentials

V1(y) =
2
N

(
4
N

+ 1
){

|Q̃b|
4
N

|Q̃b|4
Σ3y · ∇Σ − Q

4
N −1y · ∇Q

}

+
|Q̃b|

4
N

|Q̃b|4
Θ2

{
6
N

ΣΣ1 −
(

4
N

+ 2
)

Σ2 − Θ2

}

+
2
N

|Q̃b|
4
N

|Q̃b|4
ΘΘ1

{
Θ2 +

(
4
N

− 1
)

Σ2

}
,

V2(y) =
2
N

{
|Q̃b|

4
N

|Q̃b|4
Σ3y · ∇Σ − Q

4
N −1y · ∇Q

}

+
|Q̃b|

4
N

|Q̃b|4
Θ2

{
2
N

(
4
N

− 1
)

ΣΣ1 −
(

4
N

+ 2
)

Σ2 −
(

4
N

+ 1
)

Θ2

}

+
2
N

ΘΘ1
|Q̃b|

4
N

|Q̃b|4

{
3Σ2 +

(
4
N

+ 1
)

Θ2

}
,

V12(y) =
4
N

|Q̃b|
4
N

|Q̃b|4

{
Θ[Σ1Θ2 +

(
4
N

− 1
)

(Σ2Σ1 + ΣΘΘ1) − 2Σ|Q̃b|2] + Σ3Θ1

}
.

The nonlinear interaction terms (R̃i)i=1,2(ε) correspond to the formally cubic part
of (Ri)i=1,2(ε) given by (2.33), (2.34), explicitly:

R̃1(ε) = R1(ε) − ε2
1

|Q̃b|
4
N

|Q̃b|4

{
2
N

(
4
N

+ 1
)

Σ3 +
6
N

ΣΘ2

}
(B.3)

− ε2
2

|Q̃b|
4
N

|Q̃b|4

{
2
N

Σ3 +
2
N

(
4
N

− 1
)

ΣΘ2

}

− 4
N

|Q̃b|
4
N

|Q̃b|4
ε1ε2

{(
4
N

− 1
)

Σ2Θ + Θ3

}
,

R̃2(ε) = R2(ε) − ε2
2

|Q̃b|
4
N

|Q̃b|4

{
2
N

(
4
N

+ 1
)

Θ3 +
6
N

ΘΣ2

}
(B.4)

− ε2
1

|Q̃b|
4
N

|Q̃b|4

{
2
N

Θ3 +
2
N

(
4
N

− 1
)

ΘΣ2

}

− 4
N

|Q̃b|
4
N

|Q̃b|4
ε1ε2

{(
4
N

− 1
)

Θ2Σ + Σ3

}
.
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The cubic term J(ε) coming from the conservation of energy becomes:

J(ε) = |ε + Q̃b|
4
N +2 − Q̃

4
N +2

b −
(

4
N

+ 2
)

|Q̃b|
4
N +2

|Q̃b|2
(Σε1 + Θε2)(B.5)

− ε2
1

|Q̃b|
4
N +2

|Q̃b|4

{(
2
N

+ 1
)(

4
N

+ 1
)

Σ2 +
(

2
N

+ 1
)

Θ2

}

− ε2
2

|Q̃b|
4
N +2

|Q̃b|4

{(
2
N

+ 1
)(

4
N

+ 1
)

Θ2 +
(

2
N

+ 1
)

Σ2

}

− ε1ε2
|Q̃b|

4
N +2

|Q̃b|4
8
N

(
2
N

+ 1
)

ΣΘ.

It now remains to transform the first two lines of (B.1) according to the following
identity, which has been proved in Appendix D of [16]:

H(ε − ζ̃b, ε − ζ̃b) = H(ε, ε) − (ε1, Re(Ψ1)) − (ε2, Im(Ψ1))

− (Re(Ψ), (ζ̃re)1) − (Im(Ψ), (ζ̃im)1)

−
(

L+ε1 + b(
N

2
ε2 + y · ∇ε2), (ζ̃re)1

)
−
(

L−ε2 − b(
N

2
ε1 + y · ∇ε1), (ζ̃im)1

)

− (ε1 − ζ̃re, (Re(F ) + (1 +
4
N

)Q
4
N ζ̃re)1) − (ε2 − ζ̃im, (Im(F ) + Q

4
N ζ̃im)1).

This concludes the proof of (4.8).

C. Proof of the estimates of Step 2 of Lemma 6

Note that each estimate (i)1≤i≤7 holds for 0 < η < ηi, 0 < a < ai and constant
0 < z0 ≤ z0(ηi, ai) for 0 < b < b∗(η, a). Taking the infimum on the seven estimates
yields the claim. Note that these constants a priori depend on the dimension N .
In most instances, we shall argue differently depending on the dimension.

(0) The proof is similar to the one of (2.38). Let us briefly sketch the argument.
We argue differently depending on the dimension:

• N = 1: Assume v ∈ C∞
0 and let y0 ∈ [0, 1] such that |v(y0)|2 ≤

∫
|v|2e−|y|.

Then writing v(y) = v(y0) +
∫ y

y0
vy(x)dx, we get∫

|y|≤B

|v|2 ≤ C

∫
|y|≤B

(
|v(y0)|2 + |y − y0|

(∫ y

y0

|vy|2(x)dx

)
dy

)

≤ CB2

(∫
|v|2e−|y| +

∫
|vy|2

)
,

and (4.10) follows.
• N ≥ 3: This estimate follows from the Sobolev injection |ε|L2∗ ≤ C|∇ε|L2

or Hardy’s inequality.
• N = 2: In dimension N = 2, a logarithmic correction has to be taken into

account in the result. Assume v ∈ C∞
0 and decompose v(r, θ) in Fourier

series v(r, θ) =
∑+∞

k=−∞ vk(r)eikθ, vk(r) = 1
2π

∫ 2π

0
v(r, θ)e−ikθdθ. For k �= 0,

|vk(r)| ≤ Cr
|k|

(∫ 2π

0
|∇v(r, θ)|2dθ

) 1
2

from which we recover Hardy’s inequality
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on the nonradial part:

(C.1)
∫
R2

|v − v0(|x|)|2
|x|2 ≤ C

∫
R2

|∇v|2.

Now let r0 ∈ [12 , 1] such that |v0(r0)|2 ≤ 10
∫
|v|2e−|y|. For r ≥ 1, we write

v0(r) = v0(r0) +
∫ r

r0
∂τv0(τ )dτ and estimate

|v0(r)|2 ≤ C|v0(r0)|2 + C

(∫ r

r0

∂τv0(τ )dτ

)2

≤ C|v0(r0)|2 + C

(∫ r

r0

τ |∂τv0(τ )|2dτ

)(∫ r

r0

dτ

τ

)

≤ C

∫
|v|2e−|y| + C(

∫
|∇v|2) log(r).(C.2)

We conclude from (C.1) and (C.2):∫
|y|≤B

|v|2 =
∫
|y|≤1

|v|2 +
∫

1≤|y|≤B

|v|2 ≤ CB2(
∫

|v|2e−|y| +
∫

|∇v|2)

+
∫

1≤τ≤B

τ |v0(τ )|2dτ ≤ CB2 log B(
∫

|v|2e−|y| +
∫

|∇v|2),

which concludes the proof of (4.11). Similarly,∫
1≤|y|≤B

|v|2
|y|2 ≤ C(

∫
|∇v|2 +

∫
1≤r≤B

|v0(r)|2
r

dr)

≤ C(
∫

|∇v|2 +
∫

|v|2e−|y|)(1 +
∫ B

1

log r

r
dr)

≤ C log2 B(
∫

|∇v|2 +
∫

|v|2e−|y|)

and (4.12) is proved.
(i) First observe from (2.15) and (2.19) that:∫

|ε̃|2e−|y| ≤
∫

|ε̃|2e−2(1−Cη) θ(b|y|)
b +

∫
|ζ̃|2e−2(1−Cη) θ(b|y|)

b

≤
∫

|ε̃|2e−2(1−Cη) θ(b|y|)
b + Γ1+z0

b .

We now may apply estimate (2.38) to ε̃ to get the claim.
(ii) From [15], the following holds:

(C.3) |R(ε)| ≤
{

C(|ε|2e−( 4
N −1)(1−Cη) θ(b|y|)

b + |ε|1+ 4
N ) for N ≤ 3,

C min(|ε|2e−( 4
N −1)(1−Cη) θ(b|y|)

b , |ε|1+ 4
N ) for N ≥ 4.

We now first estimate from (2.15) and (2.19): ∀N ≥ 1,∫
|ε|2e−( 4

N −1)(1−Cη) θ(b|y|)
b e−(1−Cη) θ(b|y|)

b ≤
∫

|ε̃|2e−( 4
N )(1−Cη) θ(b|y|)

b + Γ1+z0
b ,

which is now estimated with (2.38). The other term for N ≤ 3 is controlled as
follows. We first have∫

|ε|1+ 4
N e−(1−Cη) θ(b|y|)

b ≤
∫

|ε̃|1+ 4
N e−(1−Cη) θ(b|y|)

b + Γ1+z0
b

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LOWER BOUND ON THE BLOW-UP RATE 85

from 1 + 4
N > 2. The conclusion follows from the Sobolev injection for N = 3. For

N = 1, 2, we write∫
|ε̃|1+ 4

N e−(1−Cη) θ(b|y|)
b ≤ C

(∫
|ε̃| 8

N +
∫

|ε̃|2e−2(1−Cη) θ(b|y|)
b

)

≤ C

(∫
|ε̃|2+ 4

N +
∫

|ε̃|2e−2(1−Cη) θ(b|y|)
b

)
,

and the conclusion follows from the Gagliardo-Nirenberg inequality and (2.38).
(iii) We use again the estimate (C.3). For N ≤ 3,∫

|ε|2e−( 4
N −1)(1−Cη) θ(b|y|)

b (|ζ̃| + |y · ∇ζ̃|)

≤ Γ1+z0
b + Γ

1
2 (1−Cη)

b

∫
|ε̃|2e−( 4

N −1)(1−Cη) θ(b|y|)
b ,

and the conclusion follows from (2.38). The other term is estimated for all N ≥ 1:∫
|ε|1+ 4

N (|ζ̃| + |y · ∇ζ̃|) ≤ Γ
1
2 (1−Cη)

b

∫
|y|≤2A

|ε|1+ 4
N

≤ Γ
1
2 (1−Cη)

b

∫
|y|≤2A

|ε̃|1+ 4
N + Γ1+z0

b

≤ Γ
1
2 (1−Cη)

b AC

(∫
|ε̃|2+ 4

N

) 1+ 4
N

2+ 4
N + Γ1+z0

b ,

and the conclusion follows from the Gagliardo-Nirenberg inequality.
(iv) Indeed, first estimate from (2.15), (2.20):∣∣∣∣∣P (y)(|d

kζ̃

dyk
| + | dl

dyl

∂ζ̃

∂b
|)
∣∣∣∣∣
L∞

≤ ACΓ
1
2−Cη

b ,

so that from the Cauchy-Schwarz inequality:(∫
|ε̃||P (y)(|d

kζ̃

dyk
| + | dl

dyl

∂ζ̃

∂b
|)
)2

≤ Γ1−Cη
b AC

∫
|y|≤2A

|ε̃|2.

The conclusion follows from (4.10).
For the second claim, we argue similarly. First observe from (4.3) that

∣∣As

A

∣∣ ≤
C
∣∣ bs

b2

∣∣. Next, from (4.10) and (4.3), we have∣∣∣∣As

A2

{
(ε2 − ζ̃im, (y · ∇χ

( y

A

)
ζre)1) − (ε1 − ζ̃re, (y · ∇χ

( y

A

)
ζim)1)

}∣∣∣∣
=

∣∣∣∣As

A2

{
(ε̃2, (y · ∇χ

( y

A

)
ζre)1) − (ε̃1, (y · ∇χ

( y

A

)
ζim)1)

}∣∣∣∣
≤ |bs|ACΓ

1
2−Cη

b (
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|)
1
2 ,

where we used (4.10) in the last step. We now use (2.36) and the following, which
is a straightforward consequence of the conservation of energy:

λ2|E0| ≤ C(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|)
1
2 + Γ

1
2−Cη

b ,
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to estimate

|bs| ≤ C(
∫

|∇ε̃|2 +
∫

|ε̃|2e−|y|)
1
2 + Γ

1
2−Cη

b ,

and the conclusion follows.
(v) Recall from [15]:

|J(ε)| ≤
{

C(|ε|3e−( 4
N −1)(1−Cη) θ(b|y|)

b + |ε|2+ 4
N ) for N ≤ 3,

C|ε|2+ 4
N for N ≥ 4.

For all N ≥ 1, ∫
|ε|2+ 4

N ≤ Γ1+z0
b +

∫
|ε̃|2+ 4

N ,

and the conclusion follows from the Gagliardo-Nirenberg inequality. For N ≤ 3,∫
|ε|3e−( 4

N −1)(1−Cη) θ(b|y|)
b ≤

∫
|ε̃|3e−( 4

N −1)(1−Cη) θ(b|y|)
b + Γ1+z0

b .

For N = 3, the conclusion follows from the Sobolev embeddings; for N = 1, |ε̃|L∞ ≤
δ(α∗) yields the conclusion; for N = 2,∫

|ε̃|3e−(1−Cη) θ(b|y|)
b ≤ (

∫
|ε̃|4) 1

2 (
∫

|ε̃|2e−2(1−Cη) θ(b|y|)
b )

1
2 ,

and the conclusion follows from the Gagliardo-Nirenberg inequality.
Next, let R̃(ε) = R̃1(ε) + iR̃2(ε). Then from [15]:

∫ ∣∣∣R̃(ε)
∣∣∣ e−(1−Cη) θ(b|y|)

b ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C(|ε|5e−(1−Cη) θ(b|y|)
b + |ε|3e−3(1−Cη) θ(b|y|)

b )
for N = 1,

C(
∫
|ε|3e−(1−Cη) θ(b|y|)

b ) for N = 2,

C(
∫
|ε|3e− 2

3 (1−Cη) θ(b|y|)
b ) for N = 3,

C(
∫
|ε| 2

N +2e−
2
N (1−Cη) θ(b|y|)

b ) for N ≥ 4,

and the proof follows similarly as before.
Last, the corrective term H̃b given by (B.2) is estimated in any dimension from

[15]: ∣∣∣H̃b(ε, ε)
∣∣∣ ≤ δ(α∗)

∫
|ε|2e−

4
N (1−η) θ(b|y|)

|y| ,

and the conclusion follows.
(vi) This estimate follows from the explicit values of the vectors (L̃, K̃) of Step 1
and the estimate (2.19). For example,

|(ε1, L̃)| =
∣∣∣∣
(

ε1, {(
4Σ2

N |Q̃b|2
+ 1)|Q̃b|

4
N − (1 +

4
N

)Q
4
N }(ζ̃re)1

+
4ΣΘ

N |Q̃b|2
|Q̃b|

4
N (ζ̃im)1

)∣∣∣∣
≤ C(

∫
|ε|2e− 2

N (1−Cη) θ(b|y|)
b )

1
2 Γ

1
2 (1−Cη+ C

N )

b

≤ δ(α∗)(
∫

|∇ε̃|2 +
∫

|ε̃|2e−2(1−Cη) θ(b|y|)
b ) + Γ1+z0

b .
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The others follow similarly with the help of (2.19).
(vii) Injecting (2.18), (2.15) into (4.5) yields

|F |L∞ + |y · ∇F |L∞ ≤ C

A
N
2

Γ
1
2
b ,

and thus by the Cauchy-Schwarz inequality:∫
|ε|(|F | + |y · ∇F |) ≤ (|F |L∞ + |y · ∇F |L∞)

∫
A≤|y|≤2A

|ε|

≤ C
Γ

1
2
b

A
N
2

(AN )
1
2 (
∫

A≤|x|≤2A

|ε|2) 1
2 ,

and the conclusion follows.

D. Proof of estimate (5.9)

This appendix is devoted to the proof of the estimate (5.9), which follows in two
steps. We will note for ε = ε1 + iε2 ∈ H1:

(Lε, ε) = (L+ε1, ε1) + (L−ε2, ε2).

Step 1. Elliptic estimate on L.

We claim that for some universal constant δ3 > 0: ∀ε = ε1 + iε2 ∈ H1,

(D.1) (Lε, ε) ≥ δ3|ε|2H1 −
1
δ3

{
(ε1, Q)2 + (ε1, |y|2Q)2 + (ε1, yQ)2 + (ε2, Q2)2

}
.

This follows from Lemma 8, where we had

(L+ε1, ε1) + (L−ε2, ε2) ≥ δ2|ε|2H1 −
1
δ2

{
(ε1, φ+)2 + (ε1,∇Q)2 + (ε2, Q)2

}
.

Arguing as for the proof of Lemma 3 in [14], we exhibit a similar estimate but with
different orthogonality conditions.

Indeed, let ε = ε1 + iε2 ∈ H1 satisfy

(ε1, |y|2Q) = (ε1, yQ) = (ε2, Q2) = 0,

and let the auxiliary function

ε̂ = ε − aQ1 − b · ∇Q − icQ.

We choose a, b, c so that

(ε̂1, φ+) = (ε̂1,∇Q) = (ε̂2, Q2) = 0,

that is,

a = 4
(ε1, φ+)
(Q1, φ+)

, b =
(ε1,∇Q)
(∇Q, yQ)

and c =
(ε2, Q)
(Q, Q)

.

Note from L+φ+ = µ+φ+ and L+Q1 = −2Q that µ+(Q1, φ+) = −2(Q, φ+) < 0
from Q > 0, φ+ > 0. Now using the orthogonality conditions on ε1, ε2, we also
have

a = − (ε̂1, |y|2Q)
(Q1, |y|2Q)

, b = − (ε̂1, yQ)
(yQ,∇Q)

, and c = − (ε̂2, Q2)
(Q, Q2)

.

Therefore, we have for some constant K > 0,
1
K

|ε|2H1 ≤ |ε̂|2H1 ≤ K|ε|2H1 .
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Moreover, from (Q, Q1) = 0, L+(Q1) = −2Q, L+(∇Q) = 0, L−(Q) = 0, we have

(ε̂1, Q) = (ε1, Q) , (L+ε̂1, ε̂1) = (L+ε1, ε1) + 4a(ε1, Q)

and

(L−ε̂2, ε̂2) = (L−ε2, ε2).

Applying the elliptic estimate (5.8) to ε̂, we conclude

(Lε, ε) = (Lε̂, ε̂) − 4a(ε1, Q) ≥ δ5|ε̂|2H1 − 4a(ε1, Q) ≥ δ3|ε|2H1 −
1
δ3

(ε1, Q)2,

and (D.1) follows.

Step 2. Localization of the elliptic estimate.

The proof of (5.9) now follows from a standard perturbation result. Let us briefly
recall it. We sketch the argument for L+; the same proof applies for L−. Let an
even cut-off function ξA = ξ

(
y
A

)
, ξ(y) = 1 for |y| ≤ 1

4 , ξ(y) = 0 for |y| ≥ 1
2 so that

ξA(1 − φA) = ξA. Recall that φA = 0 for |y| ≤ A
2 and φA = 1 for |y| ≥ 3A. Given

ω ∈ H1, we let

(D.2) ω = ξAω + (1 − ξA)ω = ωi + ωe.

We write L+ = −∆ + 1 − V with V = (1 + 4
N )Q1+ 4

N , and note FA(ω, ω) =
(L+ω, ω) −

∫
φA|ω|2.

First compute:

FA(ω, ω) =
∫

|∇ωi|2 −
∫

V |ωi|2 +
∫

(1 − φA)|ω|2

+
∫

|∇ωe|2 −
∫

V |ωe|2 + 2
∫

∇ωi · ∇ωe − 2
∫

V ωiωe.

We first observe from the support localization of ωe and going back to the proof of
(0) in Appendix C that we have

∫
|ωe|2e−C|y| ≤ δ(A)

∫
|∇ωe|2 with δ(A) → 0 as A → +∞.

This identity with Cauchy-Schwarz yields∣∣∣∣
∫

V |ωe|2
∣∣∣∣+

∣∣∣∣
∫

V ωiωe

∣∣∣∣ ≤ δ(A)(
∫

|ωi|2 +
∫

|∇ωe|2).

The gradient interaction term is estimated by reinjecting (D.2) and integrating by
parts, which yields ∫

∇ωi · ∇ωe ≥ −δ(A)
∫ A

2

A
4

|ω|2.
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These two estimates yield for A > A∗ large enough:

FA(ω, ω) ≥ 1
2

∫
|∇ωe|2 +

∫
|∇ωi|2 −

∫
V |ωi|2 + (1 − δ(A))

∫
(1 − φA)|ω|2

≥ 1
2

∫
|∇ωe|2 +

∫
|∇ωi|2 −

∫
V |ωi|2 + (1 − δ(A))

∫
|ωi|2

≥ 1
2

∫
|∇ωe|2 +

δ3

2
|ωi|2H1 −

1
δ3

{
(ωi, Q)2 + (ωi, |y|2Q)2 + (ωi, yQ)2

}
,

≥ δ3

8

∫
|∇ω|2 +

δ3

4
|ωi|2L2 −

2
δ3

{
(ω, Q)2 + (ω, |y|2Q)2 + (ω, yQ)2

}
,

where we used (D.1). It now suffices to observe that∫
|ω|2e−|y| ≤ C(

∫
|ωi|2 + δ(A)

∫
|∇ωe|2)

and estimate (5.9) follows.
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[15] Merle, F.; Raphaël, P., Sharp upper bound on the blow-up rate for the critical nonlinear
Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591–642. MR1995801

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2047201
http://www.ams.org/mathscinet-getitem?mr=2047201
http://www.ams.org/mathscinet-getitem?mr=0695535
http://www.ams.org/mathscinet-getitem?mr=0695535
http://www.ams.org/mathscinet-getitem?mr=1691575
http://www.ams.org/mathscinet-getitem?mr=1691575
http://www.ams.org/mathscinet-getitem?mr=1655515
http://www.ams.org/mathscinet-getitem?mr=1655515
http://www.ams.org/mathscinet-getitem?mr=1169619
http://www.ams.org/mathscinet-getitem?mr=1169619
http://www.ams.org/mathscinet-getitem?mr=0533218
http://www.ams.org/mathscinet-getitem?mr=0533218
http://www.ams.org/mathscinet-getitem?mr=0969899
http://www.ams.org/mathscinet-getitem?mr=0969899
http://www.ams.org/mathscinet-getitem?mr=0966356
http://www.ams.org/mathscinet-getitem?mr=0966356
http://www.ams.org/mathscinet-getitem?mr=1952162
http://www.ams.org/mathscinet-getitem?mr=1952162
http://www.ams.org/mathscinet-getitem?mr=1829643
http://www.ams.org/mathscinet-getitem?mr=1829643
http://www.ams.org/mathscinet-getitem?mr=1201323
http://www.ams.org/mathscinet-getitem?mr=1201323
http://www.ams.org/mathscinet-getitem?mr=1203233
http://www.ams.org/mathscinet-getitem?mr=1203233
http://www.ams.org/mathscinet-getitem?mr=1968208
http://www.ams.org/mathscinet-getitem?mr=1968208
http://www.ams.org/mathscinet-getitem?mr=1995801


90 FRANK MERLE AND PIERRE RAPHAEL
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