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INTEGRAL OPERATORS AND COMMUTATORS

CARLOS PÉREZ AND RODRIGO TRUJILLO-GONZÁLEZ

(Received February 26, 2001, revised November 27, 2001)

Abstract. We prove sharp weighted norm inequalities for vector-valued singular inte-
gral operators and commutators. We first consider the strong(p, p) case withp > 1 and then
the weak-type(1, 1) estimate. Our results do not assume any condition on the weight function
and involve iterations of the classical Hardy-Littlewood maximal function.

1. Introduction and Main Results. The purpose of this paper is to sharpen the re-
sults obtained in [5] for vector valued singular integral operators. Indeed, the method consid-
ered in that paper is based on extrapolation ideas. This method is very general and the results
hold for any kind of operators. Furthermore, it is not possible to derive better results with such
a generality. However, we are going to show that for vector valued singular integral operators
we can improve those results.

To be more precise, we letT be a classical Calderón-Zygmund operator with kernelK

(see Section 2.2), and letTq , q > 0, be the vector-valued singular integral operator associated
to T by

Tqf (x) = |Tf (x)|q =
( ∞∑

j=1

|Tfj (x)|q
)1/q

,

where, by abuse of notation, we also denote byT the vector valued extension of the scalar
operatorT . For any Calderón-Zygmund singular integral operatorT the first author proved
in [11] that wheneverp > 1 andε > 0,∫

Rn
|Tf (y)|pw(y)dy ≤ C

∫
Rn

|f (y)|pML(logL)p−1+ε (w)(y)dy .

See Section 2.3 for the definition and main properties of the maximal operator ofML(logL)α ,
α > 0. On the other hand, it is not hard to see that if we apply the extrapolation method from
[5, Theorem 1.4] to the vector-valued singular operatorTq , we obtain, forp > q > 1 and
ε > 0,

(1.1)

∫
Rn

|Tqf (y)|p w(y)dy ≤ C

∫
Rn

|f (y)|pq M
L(logL)p

2/q−1+ε (w)(y)dy ,

where|f (x)|q = (
∑∞

j=1 |fj (x)|q)1/q .
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We show in this paper that this estimate can be improved by using different techniques.
Our result on(p, p)-type weighted estimates is the following.

THEOREM 1.1. Let 1 < p, q < ∞, w(x) be a weight and Tq be a vector-valued
singular integral operator. Suppose that A(t) is a Young function satisfying the condition

(1.2)

∫ ∞

c

(
t

A(t)

)p′−1
dt

t
< ∞

for some c > 0. Then there exists a constant C > 0 such that

(1.3)

∫
Rn

(Tqf (x))pw(x)dx ≤ C

∫
Rn

|f (x)|pq MA(w)(x)dx .

Observe that (1.2) is independent ofq and this is not the case of (1.1).
As a corollary we have the following result.

COROLLARY 1.2. Let 1 < p, q < ∞, w(x) be a weight and Tq be a vector-valued
singular integral operator.

a) Let ε > 0. Then there exists a constant C > 0 such that

(1.4)

∫
Rn

(Tqf (x))pw(x)dx ≤ C

∫
Rn

|f (x)|pq ML(logL)p−1+ε (w)(x)dx .

b) As a consequence, we have that there exists a constant C > 0 such that

(1.5)

∫
Rn

(Tqf (x))pw(x)dx ≤ C

∫
Rn

|f (x)|pq M [p]+1(w)(x)dx .

Estimates (1.5) and (1.4) are sharp because they coincide with the corresponding scalar
results, where the results are already optimal [11].

We remark that the first author obtained in [15] an estimate similar to (1.5) (also to (1.4))
for the vector-valued maximal operator

Mqf (x) =
( ∞∑

j=1

(Mfj (x))q
)1/q

.

The main result from [15] is∫
Rn

(Mqf (x))pw(x)dx ≤ C

∫
Rn

|f (x)|pq M [p/q]+1(w)(x)dx .

Observe that the operatorM [p]+1 is replaced by the pointwise smaller operatorM [p/q]+1.
This result is also sharp, but is different from the corresponding scalar result, namely the
celebrated Fefferman and Stein weighted estimate∫

Rn
(Mf (x))pw(x)dx ≤ c

∫
Rn

|f (x)|pMw(x)dx .

As in the scalar situation, the proof of Theorem 1.1 is based on the Calderón-Zygmund
classical principle which establishes the control of the singular integral operator by the Hardy-
Littlewood maximal operator (see Theorem 1.3 below). Also our approach makes use of a
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pointwise estimate between the maximal operatorsM#
δ andM:

(1.6) M#
δ (Tqf )(x) ≤ CM(|f |q)(x) ,

where 0< δ < 1 (see Lemma 3.1 for details). Whenδ = 1, estimate (1.6) is false and the
right hand side should be replaced byM(|f |rq)(x)1/r , r > 1. In this case we believe that this
estimate was known, but it is not sharp enough to derive our results.

As a consequence of (1.6), we deduce the following vector-valued version of the classical
estimate of Coifman [2] which is used in the proof of Theorem 1.1.

THEOREM 1.3. Let 1 < q < ∞ and 0 < p < ∞. Let w(x) be a weight satisfying the
A∞ condition. Then the following a priori estimate holds: there exists a constant C > 0 such
that

(1.7)

∫
Rn

(Tqf (x))pw(x)dx ≤ C[w]pA∞

∫
Rn

(M(|f |q)(x))pw(x)dx

for any smooth function f for which the left hand side is finite. Similarly, we have that there
exists a constant C > 0 such that

(1.8) ‖Tqf ‖Lp,∞(w) ≤ C‖M(|f |q)‖Lp,∞(w)

for any smooth vector function f for which the left hand side is finite.

We remark that it is not clear how to prove (1.7) adapting the good-λ inequality derived
in [2].

The weighted weak-type(1, 1) estimate version of (1.3) is the following.

THEOREM 1.4. Let 1 < q < ∞ and ε > 0. Then there exists a constant C > 0 such
that for any weight w and λ > 0

w({y ∈ Rn; |Tqf (y)| > λ}) ≤ C

λ

∫
Rn

|f (x)|qML(logL)ε (w)(x)dx ,

where f is an arbitrary smooth vector function.

REMARK 1.5. As above this result is a vector valued extension of the corresponding
scalar result [11]. WhenT is replaced byM, the weight on the right hand side is the best
possible, namelyMw ([15]). The result can be sharpened by replacing the maximal operator
ML(logL)ε by the maximal operatorMA, whereA is any Young function satisfying (1.2) for
all p > 1.

We also consider in this paper vector-valued extensions of the by now classical commu-
tator of Coifman-Rochberg-Weiss[h, T ] defined by the formula

[h, T ]f (x) = h(x)Tf (x) − T (hf )(x) =
∫

Rn
(h(x) − h(y))K(x, y)f (y)dy .

Hereh is a locally integrable function and is usually called the symbol of the operator.T is
any Calderón-Zygmund operator with kernelK. The main result from [3] establishes that,
whenever the symbolh is a B.M.O. function, the commutator is bounded onLp(Rn), p > 1.
Later on this result was extended to the caseLp(w), w ∈ Ap. The first author has shown in
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[14] that there is a version of Coifman’s estimate [2] where the role played by the maximal
function M is replaced byM2 = M ◦ M. This is also the point of view of [12], where it
is shown that commutators with B.M.O. functions are not of weak type(1, 1) but that they
satisfy aL(logL) type estimate. These results show that somehow commutators with B.M.O.
functions carry a higher degree of singularity. We will extend these estimates to the vector-
valued context.

As above, for a sequencef (x) = {fj (x)}∞j=1 of functions, the vector–valued version of
the commutator[h, T ] is given by the expression

[h, T ]qf (x) = |[h, T ]f (x)|q =
( ∞∑

j=1

|[h, T ]fj (x)|q
)1/q

.

As in the case of singular integrals, we first need an appropriate version of the Calderón-
Zygmund principle. The precise estimate is given as follows.

THEOREM 1.6. Let 1 < q < ∞, 0 < p < ∞, w ∈ A∞ and h ∈ BMO . Then there
exists a constant C > 0 such that

(1.9)

∫
Rn

([h, T ]qf (x))pw(x)dx ≤ C[w]2p
A∞‖h‖p

BMO

∫
Rn

(ML logL(|f |q)(x))pw(x)dx

for any smooth vector function f such that the left hand side is finite.

The proof of this theorem is also based on a pointwise estimate very much in the spirit
of the pointwise estimate (1.6) required for the proof of Theorem 1.3, namely

(1.10) M#
δ ([h, T ]qf )(x) ≤ C‖h‖BMO(Mε(Tqf )(x) + ML logL(|f |q)(x)) ,

where 0< δ < ε (see Lemma 3.2). This time there is an extra term involving the maximal
operatorML logL, which is pointwise comparable toM2. This is optimal and explains why
commutators have a higher degree of singularity.

By arguing as in [14, Theorem 2], we obtain the sharp two-weight estimates where no
assumption is assumed on the weightw.

THEOREMM 1.7. Let 1 < p, q < ∞, δ > 0 and h ∈ BMO . Then there exists a
constant C > 0 such that for each weight w

(1.11)
∫

Rn
([h, T ]qf (x))pw(x)dx ≤ C‖h‖p

BMO

∫
Rn

|f (x)|pq ML(logL)2p−1+δ (w)(x)dx ,

where f = {fi}∞i=1 is any sequence of bounded functions with compact support.

As in the singular integral operator case, (1.11) improves the result obtained for[h, T ]q
as an application of the general extrapolation theorem from [5] derived from the scalar esti-
mate given in [14, Theorem 2].

The weighted weak-type(1, 1) estimate version of (1.11) is the following.
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THEOREM 1.8. Let 1 < q < ∞, ε > 0 and h ∈ BMO . Then there exists a constant
C > 0 such that for any weight w and λ > 0

w({x ∈ Rn; |[h, T ]qf (x)| > λ}) ≤ C

∫
Rn

Φ

(
‖h‖BMO

|f (x)|q
λ

)
ML(logL)1+ε (w)(x)dx ,

where Φ(t) = t log(e + t). The constant C is independent of the weight w, f and λ > 0.

This result is a vector valued version of the main result proved in [16].

2. Preliminaries. In this section we introduce the basic tools needed for the proof of
the main results.

2.1. Ap weights and maximal operators. By a weight we mean a positive and locally
integrable function. We say that a weightw belongs to the classAp, 1 < p < ∞, if there is a
constantC such that(

1

|Q|
∫

Q

w(y)dy

)(
1

|Q|
∫

Q

w(y)1−p′
dy

)p−1

≤ C

for each cubeQ and where as usual 1/p + 1/p′ = 1. A weightw belongs to the classA1 if
there is a constantC such that

1

|Q|
∫

Q

w(y)dy ≤ C inf
Q

w .

We will denote the infimum of the constantsC by [w]Ap . Observe that[w]Ap ≥ 1 by Hölder’s
inequality.

Since theAp classes are increasing with respect top, theA∞ class of weights is defined
in a natural way byA∞ = ⋃

p>1 Ap. However, the following characterization is more inter-
esting in applications: there are positive constantsc andρ such that for any cubeQ and any
measurable setE contained inQ

w(E)

w(Q)
≤ c

( |E|
|Q|

)ρ

.

We recall now the definitions of classical maximal operators. If, as usual,M denotes the
Hardy-Littlewood maximal operator, we consider forδ > 0

Mδf (x) = M(|f |δ)(x)1/δ =
(

sup
Q�x

1

|Q|
∫

Q

|f (y)|δdy

)1/δ

,

M#(f )(x) = sup
Q�x

inf
c

1

|Q|
∫

Q

|f (y) − c|dy ≈ sup
Q�x

1

|Q|
∫

Q

|f (y) − (f )Q|dy ,

where as usual(f )Q denotes the average off on Q, and a variant of this sharp maximal
operator, which will become the main tool in our scheme,M#

δ f (x) = M#(|f |δ)(x)1/δ.

The main inequality between these operators to be used is a version of the classical one
due to Fefferman and Stein (see [6], [[9]).
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THEOREM 2.1. Let 0 < p, δ < ∞ and w ∈ A∞. There exists a positive constant C

such that

(2.1)

∫
Rn

Mδf (x)pw(x)dx ≤ C[w]pA∞

∫
Rn

M#
δ f (x)pw(x)dx

for every function f such that the left hand side is finite.

2.2. Calderón-Zygmund operators. By a kernelK in Rn × Rn we mean a locally
integrable function defined away from the diagonal. We say thatK satisfies the standard
estimates if there exist positive and finite constantsγ andC such that, for all distinctx, y ∈ Rn

and allz with 2|x − z| < |x − y|, it verifies

i) |K(x, y)| ≤ C|x − y|−n ,

ii) |K(x, y) − K(z, y)| ≤ C

∣∣∣∣ x − z

x − y

∣∣∣∣
γ

|x − y|−n ,

iii) |K(y, x) − K(y, z)| ≤ C

∣∣∣∣ x − z

x − y

∣∣∣∣
γ

|x − y|−n .

We define a linear and continuous operatorT : C∞
0 (Rn) → D′(Rn) associated to the

kernelK by

Tf (x) =
∫

Rn
K(x, y)f (y)dy ,

wheref ∈ C∞
0 (Rn) andx is not in the support off . T is called a Calderón-Zygmund

operator ifK satisfies the standard estimates and if it extends to a bounded linear operator on
L2(Rn). It is well known that under these conditionsT can be extended to a bounded operator
onLp(Rn), 1 < p < ∞ and is of weak type-(1, 1). For more information on this subject see
[1], [4], [6] or [9].

We next define the vector-valued singular operatorTq associated to the operatorT by

Tqf (x) = |Tf (x)|q =
( ∞∑

j=1

|Tfj (x)|q
)1/q

.

It is well-known that, for 1< q < ∞, Tq is of type-(p, p), 1 < p < ∞, and weak
type-(1, 1). Moreover, theAp condition also implies the corresponding weighted estimate.
For a complete study on these results see [8, Chapter V].

2.3. Orlicz maximal functions. By a Young functionA(t) we shall mean a contin-
uous, nonnegative, strictly increasing and convex function on[0,∞) with A(0) = 0 and
A(t) → ∞ as t → ∞. In this paper any Young functionA will be doubling, namely
A(2t) ≤ CA(t) for t > 0.

We define theA-averages of a functionf over a cubeQ by

‖f ‖A,Q = inf

{
λ > 0 ; 1

|Q|
∫

Q

A

( |f (x)|
λ

)
dx ≤ 1

}
.
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An equivalent norm, which is often useful in calculations, is (see [10, p. 92] or [17, p.
69]):

(2.2) ‖f ‖A,Q ≤ inf
µ>0

{
µ + µ

|Q|
∫

Q

A

( |f |
µ

)
dx

}
≤ 2‖f ‖A,Q .

If A, B andC are Young functions such that

A−1(t)B−1(t) ≤ C−1(t) ,

then
‖f g ‖C,R ≤ 2‖f ‖A,R‖g ‖B,R .

The examples to be considered in our study will beA−1(t) = log(1+ t), B−1(t) = t/ log(e+
t) andC−1(t) = t . ThenA(t) ≈ et andB(t) ≈ t log(e+ t), which gives the Hölder inequality

(2.3)
1

|Q|
∫

Q

|f g |dx ≤ C‖f ‖expL,Q‖g ‖L logL,Q .

For these examples we recall that, ifh ∈ BMO and(h)Q denotes its average on the cube
Q, then

(2.4) ‖h − (h)Q‖expL,Q ≤ C‖h‖BMO

by the classical John-Nirenberg inequality.
Associate to this average, for any Young functionA(t) we can define a maximal operator

MA given by
MAf (x) = sup

Q�x

‖f ‖A,Q ,

where the supremum is taken over all the cubes containingx.
The following result from [13] will be very useful.

THEOREM 2.2. Let 1 < p < ∞. Suppose that A is a Young function. Then the
following are equivalent:

i) There exists a positive constant c such that

(2.5)

∫ ∞

c

(
t

A(t)

)p−1
dt

t
< ∞ .

ii) There exists a constant C such that

(2.6)

∫
Rn

Mf (x)p
w(x)

[MA(u)(x)]p−1dx ≤ C

∫
Rn

f (x)p
Mw(x)

u(x)p−1dx

for all non-negative, locally integrable functions f and all weights w and u.

3. Pointwise estimates. In this section we prove the basic pointwise estimates for the
vector-valued singular integral operator and commutator.

LEMMA 3.1. Let 1 < q < ∞ and 0 < δ < 1. Then there exists a constant C > 0
such that

(3.7) M#
δ (Tqf )(x) ≤ CM(|f |q)(x)
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for any smooth vector function f = {fj }∞j=1 and for every x ∈ Rn.

PROOF. Let f = {fj } be any smooth vector function. Fixx ∈ Rn and letB be a ball
centered atx of radiusr. Decomposef = f 1+f 2, wheref 1 = f χ2B = {fjχ2B}. As usual,
2B denotes the ball concentric withB and radius two times the radius ofB. Set

c = |(Tf 2)B |q =
( ∞∑

j=1

|(Tf 2
j )B |q

)1/q

.

Since for any 0< r < ∞ it follows

(3.8) |αr − βr | ≤ Cr |α − β|r
for anyα, β ∈ C with Cr = max{1, 2r−1}, we can estimate(

1

|B|
∫

B

||Tqf (y)|δ − cδ|dy

)1/δ

≤
(

1

|B|
∫

B

||Tf (y)|q − |(Tf 2)B |q |δdy

)1/δ

≤
(

1

|B|
∫

B

|Tf (y) − (Tf 2)B |δqdy

)1/δ

≤ C

[(
1

|B|
∫

B

|Tf 1(y)|δqdy

)1/δ

+
(

1

|B|
∫

B

|Tf 2(y) − (Tf 2)B |δqdy

)1/δ
]

= I + II .

For I we recall thatTq is weak type-(1, 1). Then by Kolmogorov’s inequality ([18, p. 104]),

(3.9) I ≤ C
1

|B| ‖Tqf 1‖L1,∞ ≤ C

|2B|
∫

2B

|f (y)|qdy ≤ CM(|f |q)(x) .

To estimateII we will use Jensen’s inequality, the definition ofT , the basic estimates of
the kernelK and Minkowski’s inequality to obtain the following:

II ≤ C

|B|
∫

B

|Tf 2(y) − (Tf 2)B |qdy

= C

|B|
∫

B

( ∞∑
j=1

|Tf 2
j (y) − (Tf 2

j )B |q
)1/q

dy

= C

|B|
∫

B

( ∞∑
j=1

∣∣∣∣ 1

|B|
∫

B

(Tf 2
j (y) − Tf 2

j (z))dz

∣∣∣∣
q)1/q

dy

= C

|B|
∫

B

( ∞∑
j=1

∣∣∣∣ 1

|B|
∫

B

∫
Rn\2B

(K(y,w) − K(z,w))fj (w)dwdz

∣∣∣∣
q)1/q

dy

≤ C

|B|
1

|B|
∫

B

∫
B

∫
Rn\2B

( ∞∑
j=1

|K(y,w) − K(z,w)|q |fj (w)|q
)1/q

dwdzdy(3.10)

≤ C

|B|
1

|B|
∫

B

∫
B

∫
Rn\2B

( ∞∑
j=1

∣∣∣∣ y − z

y − w

∣∣∣∣
γ q 1

|y − w|nq
|fj (w)|q

)1/q

dwdzdy
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≤ C

∞∑
k=1

∫
2kr≤|w−x|<2k+1r

( ∞∑
j=1

(
2r

2kr

)γ q 1

(2kr)nq
|fj (w)|q

)1/q

dw

≤ C

∞∑
k=1

1

2kγ

1

(2k+1r)n

∫
2k+1B

( ∞∑
j=1

|fj (w)|q
)1/q

dw

≤ CM(|f |q)(x) .

Finally, (3.7) follows from (3.9) and (3.10) and the proof of the lemma is concluded.�

As mentioned in the introduction, we need a similar estimate for the commutator.

LEMMA 3.2. Let h ∈ BMO and let 0 < δ < ε. Then there exists a constant C > 0
such that

(3.11) M#
δ ([h, T ]qf )(x) ≤ C‖h‖BMO(Mε(Tqf )(x) + ML logL(|f |q)(x))

for any smooth vector function f = {fj }∞j=1 and for every x ∈ Rn.

PROOF. Observe that for any constantλ

[h, T ]f (x) = (h(x) − λ)Tf (x) − T ((h − λ)f )(x) .

As above we fixx ∈ Rn and letB be a ball centered atx of radiusr > 0. We splitf =
f 1 + f 2, wheref 1 = f χ2B = {fjχ2B}. Let λ be a constant andc = {cj }∞j=1 a sequence of
constants to be fixed along the proof.

By (3.8) we have

(
1

|B|
∫

B

||[h, T ]qf (y)|δ − |c|δq |dy

)1/δ

≤ Cδ

(
1

|B|
∫

B

||[h, T ]f (y)|q − |c|q |δdy

)1/δ

≤ Cδ

(
1

|B|
∫

B

|[h, T ]f (y) − c|δq dy

)1/δ

= Cδ

(
1

|B|
∫

B

|(h(y) − λ)Tf (y) − T ((h − λ)f )(y) − c|δq dy

)1/δ

≤ Cδ

[(
1

|B|
∫

B

|(h(y) − λ)Tf (y)|δq dy

)1/δ

+
(

1

|B|
∫

B

|T ((h − λ)f 1)(y)|δqdy

)1/δ

+
(

1

|B|
∫

B

|T ((h − λ)f 2)(y) − c|δqdy

)1/δ]
= I + II + III .

To deal withI , we first fixλ = (h)2B , the average ofh on 2B. Then, for any 1< p <

ε/δ, we have
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I = Cδ

(
1

|B|
∫

B

|h(y) − (h)2B |δ|Tf (y)|δqdy

)1/δ

≤ Cδ

(
1

|2B|
∫

2B

|h(y) − (h)2B |p′δdy

)1/p′δ ( 1

|B|
∫

B

(Tqf (y))pδdy

)1/pδ

≤ C‖h‖BMOMδp(Tqf )(x)

≤ C‖h‖BMOMε(Tqf )(x) .

(3.12)

For II we make use of Kolmogorov’s inequality again. Then

II ≤ C
1

|B|
∫

B

|h(y) − (h)2B ||f 1(y)|qdy ≤ C
1

|2B|
∫

2B

|h(y) − (h)2B ||f (y)|qdy

≤ C‖h − (h)2B‖expL,2B‖|f |q‖L logL,2B ≤ C‖h‖BMOML logL(|f |q)(x) ,

(3.13)

where we have used (2.3) and (2.4).
Finally, for III we first fix the value ofc by takingc = {(T ((h − (h)2B)f 2

j ))B}∞j=1,

the average of eachT ((h − (h)2B)f 2
j ) onB. Then, by Jensen and Minkowski’s inequalities,

respectively, and the basic estimates of the kernelK, we have

III ≤ Cδ
1

|B|
∫

B

|T ((h − λ)f 2)(y) − c|qdy

= Cδ

1

|B|
∫

B

( ∞∑
j=1

|T ((h − (h)2B)f 2
j )(y) − T ((h − (h)2B)f 2

j )B |q
)1/q

dy

= Cδ
1

|B|
∫

B

( ∞∑
j=1

∣∣∣∣ 1

|B|
∫

B

{T ((h − (h)2B)f 2
j )(y)

− T ((h − (h)2B)f 2
j )(z)}dz

∣∣∣∣
q)1/q

dy

= C

|B|
∫

B

( ∞∑
j=1

∣∣∣∣ 1

|B|
∫

B

∫
Rn\2B

(K(y,w) − K(z,w))

× (h(w) − (h)2B)fj (w)dwdz

∣∣∣∣
q)1/q

dy

≤ C

|B|
1

|B|
∫

B

∫
B

∫
Rn\2B

( ∞∑
j=1

∣∣∣∣ y − z

y − w

∣∣∣∣
γ q 1

|y − w|nq
(3.14)

× |(h(w) − (h)2B)fj (w)|q
)1/q

dwdzdy
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= C

∞∑
k=1

∫
2kr≤|w−x|<2k+1r

(
2r

2kr

)γ 1

(2kr)n
|h(w) − (h)2B ||f (w)|qdw

≤ C

∞∑
k=1

1

2kγ

1

(2k+1r)n

∫
2k+1B

|h(w) − (h)2B ||f (w)|qdw

≤ C

∞∑
k=1

1

2kγ

1

(2k+1r)n

∫
2k+1B

|h(w) − (h)2k+1B ||f (w)|qdw

+ C

∞∑
k=1

1

2kγ
|(h)2k+1B − (h)2B | 1

(2k+1r)n

∫
2k+1B

|f (w)|qdw

≤ C

∞∑
k=1

1

2kγ
‖h − (h)2k+1B‖expL,2k+1B‖|f |q‖L logL,2k+1B

+ C‖h‖BMOM(|f |q)(x)

( ∞∑
k=1

k

2kγ

)

≤ C‖h‖BMOML logL(|f |q)(x) ,

where in the last inequality we have used that|(h)2k+1B − (h)2B | ≤ 2k‖h‖BMO .
From (3.12), (3.13) and (3.14) we get (3.11) and the proof is finished. �

4. Proof of the theorems.

4.1. Proof of Theorem1.3. In order to prove

(4.15)
∫

Rn
(Tqf (x))pw(x)dx ≤ C

∫
Rn

(M(|f |q)(x))pw(x)dx ,

we make some reductions. First, we assume that the right hand side of (4.15) is finite, since
otherwise there is nothing to prove. Next we restrict to a finite number of elementsfm =
(f1, f2, . . . , fm, 0, . . . ) and prove (4.15) with a constant independent ofm. Then we letm
go to∞. To apply Theorem 2.1, take it for granted that

(4.16)
∫

Rn
(Mδ(Tq(fm))(x))pw(x) dx < ∞ .

Then, sincew ∈ A∞, we can combine Theorem 2.1 together with Lemma 3.1 with 0< δ < 1
to get ∫

Rn
(Tqfm(x))pw(x)dx ≤

∫
Rn

(Mδ(Tqfm)(x))pw(x)dx

≤ C

∫
Rn

(M#
δ (Tqfm)(x))pw(x)dx

≤ C

∫
Rn

(M(|fm|q)(x))pw(x)dx .
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It only remains to show (4.16). Indeed, sincew ∈ A∞, there existsr > 1 such that
w ∈ Ar and we can chooseδ small enough so thatp/δ > r. Then, by Muckenhoupt’s
theorem, all is reduced to checking that‖Tqfm‖Lp(w) < ∞. Now, by the classical Coifman
[2] estimate we have∫

Rn

( m∑
j=1

|Tfj (x)|q
)p/q

w(x)dx ≤Cm

m∑
j=1

∫
Rn

|Tfj (x)|pw(x)dx

≤Cm

m∑
j=1

∫
Rn

(M(fj )(x))pw(x)dx

≤Cm

∫
Rn

(M(|f |q)(x))pw(x)dx .

The proof of the theorem is complete. �

4.2. Proof of Theorem 1.1. We want to show that the vector valued extension ofT is
a bounded operator fromLp

lq (MAw(x)) into L
p
lq (w) (the definition ofLp

lq (µ) is standard, see
[8, Chapter V]). A simple duality argument shows that this is equivalent to see that the adjoint

operatorT ∗ is bounded fromL
p′
lq

′ (w1−p′
) into L

p′
lq

′ ((MAw(x))1−p′
).

So, the estimate to be established is

(4.17)
∫

Rn
(T ∗

q ′f (x))p
′
(MAw(x))1−p′

dx ≤ C

∫
Rn

|f (x)|p′
q ′ w(x)1−p′

dx .

As above we may restrict to a finite number of elementsfm = (f1, f2, . . . , fm, 0, . . . ) and
show the estimate with a constant independent ofm. First, we note that(MAw(x))1−p′ ∈
A∞ (see [11, p. 300]). Thus, sinceT ∗ is also a Calderón-Zygmund operator, we can apply
Theorem 1.3 combined with Theorem 2.2 to deduce∫

Rn
(T ∗

q ′f (x))p
′
(MAw(x))1−p′

dx ≤C

∫
Rn

(M(|f |q ′)(x))p
′
(MAw(x))1−p′

dx

≤C

∫
Rn

|f (x)|p′
q ′ w(x)1−p′

dx ,

whenever ∫
Rn

(T ∗
q ′f (x))p

′
(MAw(x))1−p′

dx < ∞ .

To show this we use an argument similar to the proof of Theorem 1.3, where now we make
use of the scalar version of (1.3) derived in [11], since we are assuming that∫ ∞

c

(
t

A(t)

)p′−1 dt

t
< ∞ .

�

4.3. Proof of Theorem 1.4. Fixλ > 0 and let{Qj } be the standard family of nonover-
lapping dyadic cubes satisfying

(4.18) λ <
1

|Qj |
∫

Qj

|f (x)|qdx ≤ 2nλ ,
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maximal with respect to left hand side inequality. Denote byzj andrj the center and side-
length of eachQj , respectively. As usual, if we denoteΩ = ⋃

j Qj , then|f (x)|q ≤ λ a. e.
x ∈ Rn \ Ω .

Now we proceed to construct an slightly different version of the classical Calderón-
Zygmund decomposition. Splitf asf = g + b, whereg = {g i}∞i=1 is given by

g i (x) =
{

fi(x) for x ∈ Rn \ Ω ,

(fi)Qj for x ∈ Qj ,

(fi)Qj being, as usual, the average offi on the cubeQj , and

b(x) = {bi(x)}∞i=1 =
{∑

Qj

bij (x)

}∞

i=1

with bij (x) = (fi(x) − (fi)Qj )χQj (x). Let Ω̃ = ⋃
j 2Qj . We then have

w({y ∈ Rn; |Tqf (y)| > λ}) ≤ w({y ∈ Rn \ Ω̃; |Tqg (y)| > λ/2}) + w(Ω̃)

+ w({y ∈ Rn \ Ω̃; |Tqb(y)| > λ/2}) .
(4.19)

For the first term we invoke Theorem 1.1. Letε > 0. By choosing 1< p < 1 + ε, we
have thatAε(t) = t logε(1 + t) satisfies (1.2). Thus,

w({y ∈ Rn \ Ω̃; |Tqg (y)| > λ/2})
≤ C

λp

∫
Rn\Ω̃

(Tqg (y))pw(y)dy ≤ C

λp

∫
Rn

|g (y)|pq ML(logL)ε(χRn\Ω̃w)(y)dy

≤ C

λp

∫
Rn\Ω

|f (y)|pq ML(logL)ε(w)(y)dy + C

λp

∫
Ω

|g (y)|pq ML(logL)ε(χRn\Ω̃w)(y)dy

= I + II .

The estimate ofI is immediate; since|f (x)|q ≤ λ a. e.x ∈ Rn \ Ω ,

I ≤ C

λ

∫
Rn

|f (y)|q ML(logL)ε(w)(y)dy .

For II , taking into account that for anyj

ML(logL)ε(χRn\2Qj
w)(y) ≈ ML(logL)ε (χRn\2Qj

w)(z)

for all y, z ∈ Qj (see [11, p. 303]), we have by Minkowski’s inequality
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II = C

λp

∑
Qj

∫
Qj

|g (y)|pq ML(logL)ε (χRn\Ω̃w)(y)dy

= C

λp

∑
Qj

∫
Qj

( ∞∑
i=1

∣∣(fi)Qj

∣∣q )p/q

ML(logL)ε(χRn\Ω̃w)(y)dy

≤ C

λp

∑
Qj

( ∞∑
i=1

∣∣∣∣ 1

|Qj |
∫

Qj

fi(z)dz

∣∣∣∣
q)p/q

|Qj | inf
y∈Qj

ML(logL)ε(χRn\2Qj
w)(y)

≤ C

λp

∑
Qj

(
1

|Qj |
∫

Qj

|f (z)|qdz

)p

|Qj | inf
y∈Qj

ML(logL)ε (w)(y)

≤ C

λ

∑
Qj

(
1

|Qj |
∫

Qj

|f (z)|qdz

)
|Qj | inf

y∈Qj

ML(logL)ε(w)(y)

≤ C

λ

∑
Qj

∫
Qj

|f (z)|qML(logL)ε (w)(z)dz

≤ C

λ

∫
Rn

|f (z)|qML(logL)ε(w)(z)dz .

(4.20)

where the fifth inequality follows by (4.18).
For the second term of (4.19) we proceed as follows. Again by (4.18)

w(Ω̃) ≤ C
∑
Qj

w(2Qj)

|2Qj | |2Qj | ≤ C

λ

∑
Qj

w(2Qj)

|2Qj |
∫

Qj

|f (y)|qdy

≤ C

λ

∑
Qj

∫
Qj

|f (y)|qMw(y)dy ≤ C

λ

∫
Rn

|f (y)|qML(logL)εw(y)dy

(4.21)

sinceMw(y) ≤ ML(logL)εw(y).
Finally, for the third term of (4.19) we recall that eachbij has zero average onQj . Hence,

if zj denotes the center ofQj , we have

w({y ∈ Rn \ Ω̃; |Tqb(y)| > λ/2})

≤ C

λ

∫
Rn\Ω̃

Tqb(y)w(y)dy = C

λ

∫
Rn\Ω̃

[ ∞∑
i=1

|T bi(y)|q
]1/q

w(y)dy

= C

λ

∫
Rn\Ω̃

[ ∞∑
i=1

∣∣∣∣∑
Qj

∫
Qj

K(y, z)bij (z)dz

∣∣∣∣
q]1/q

w(y)dy

= C

λ

∫
Rn\Ω̃

[ ∞∑
i=1

∣∣∣∣∑
Qj

∫
Qj

(K(y, z) − K(y, zj ))bij (z)dz

∣∣∣∣
q]1/q

w(y)dy
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≤ C

λ

∫
Rn\Ω̃

(∑
Qj

∫
Qj

[ ∞∑
i=1

|K(y, z) − K(y, zj )|q |bij (z)|q
]1/q

dz

)
w(y)dy

≤ C

λ

∑
Qj

∫
Qj

(∫
Rn\2Qj

[ ∞∑
i=1

|K(y, z) − K(y, zj )|q |bij (z)|q
]1/q

w(y)dy

)
dz(4.22)

≤ C

λ

∑
Qj

∫
Qj

(∫
Rn\2Qj

∣∣∣∣z − zj

z − y

∣∣∣∣
γ 1

|x − y|n w(y)dy

)[ ∞∑
i=1

|bij (z)|q
]1/q

dz

≤ C

λ

∑
Qj

∫
Qj

( ∞∑
k=1

∫
2krj ≤|y−zj |<2k+1rj

(
2rj

2krj

)γ 1

(2krj )n
w(y)dy

)

×
[ ∞∑

i=1

|bij (z)|q
]1/q

dz

≤ C

λ

∑
Qj

∫
Qj

[ ∞∑
i=1

|bij (z)|q
]1/q

M(χRn\2Qj
w)(z)dz

≤ C

λ

∑
Qj

[ ∫
Qj

|f (z)|qM(χRn\2Qj
w)(z)dz +

∫
Qj

|g (z)|qM(χRn\2Qj
w)(z)dz

]

= III + IV .

Trivially,

III ≤ C

λ

∫
Rn

|f (z)|qML(logL)εw(z)dz .

On the other hand,

IV ≤ C

λ

∑
Qj

[ ∞∑
i=1

∣∣∣∣ 1

|Qj |
∫

Qj

fi(z)dz

∣∣∣∣
q]1/q ∫

Qj

M(χRn\2Qj
w)(y)dy

≤ C

λ

∑
Qj

1

|Qj |
∫

Qj

|f (z)|qdz|Qj | inf
y∈Qj

M(χRn\2Qj
w)(y)

≤ C

λ

∑
Qj

1

|Qj |
∫

Qj

|f (z)|qdz|Qj | inf
y∈Qj

M(w)(y)

≤ C

λ

∑
Qj

∫
Qj

|f (z)|qM(w)(z)dz

≤ C

λ

∫
Rn

|f (z)|qM(w)(z)dz

≤ C

λ

∫
Rn

|f (z)|qML(logL)ε(w)(z)dz ,

(4.23)

concluding the proof of the theorem. �
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4.4. Proof of Theorem 1.6. As in the proof of Theorem 1.3, we fixf = fm =
(f1, f2, . . . , fm, 0, . . . ) with a finite amount of smooth functions components with compact
support. We also assume that the right hand side of (1.9) is finite, since otherwise there is
nothing to prove.

We will prove the estimates with constant independent of the number of elements off .
By (2.1), sincew ∈ A∞, it follows from Lemma 3.2 and Lemma 3.1, for 0< δ < ε < 1, that

‖[h, T ]qf ‖Lp(w) ≤ ‖Mδ([h, T ]qf )‖Lp(w)

≤ C[w]A∞‖M#
δ ([h, T ]qf )‖Lp(w)

≤ C[w]A∞‖h‖BMO(‖Mε(Tqf )‖Lp(w) + ‖ML logL(|f |q)‖Lp(w))

≤ C[w]2A∞‖h‖BMO(‖M#
ε (Tqf )‖Lp(w) + ‖ML logL(|f |q)‖Lp(w))

≤ C[w]2A∞‖h‖BMO(‖M(|f |q)‖Lp(w) + ‖ML logL(|f |q)‖Lp(w))

≤ C[w]2A∞‖h‖BMO‖ML logL(|f |q)‖Lp(w) ,

whenever we are able to prove that‖Mδ([h, T ]qf )‖Lp(w) and‖Mε(Tqf )‖Lp(w) are both finite
as Theorem 2.1 requires.

Sincew ∈ A∞, there existsr > 1 such thatw ∈ Ar and we can chooseδ andε small
enough so thatp/δ, p/ε > r. Then, by Muckenhoupt’s theorem, all is reduced to check
that‖[h, T ]qf ‖Lp(w) < ∞ and‖Tqf ‖Lp(w) < ∞. But this is a consequence of the scalar
situation:‖[h, T ]g ‖Lp(w) ≤ ‖ML logL(g )‖Lp(w) < ∞ [14] and‖T g ‖Lp(w) ≤ ‖Mg ‖Lp(w) <

∞ [2], wheng is a smooth function with compact support, since the amount of elements on
f is finite. Recall that the right hand side of (1.9) is finite. The theorem is proved. �

4.5. Proof of Theorem 1.8. A simple homogeneity argument shows that we may as-
sume that‖h‖BMO = 1, and with this assumption it suffices to show that

w({x ∈ Rn; |[h, T ]qf (x)| > λ}) ≤ C

∫
Rn

Φ

( |f (x)|q
λ

)
ML(logL)1+ε (w)(x)dx ,

whereΦ(t) = t log(e + t).
We proceed as in the proof of Theorem 1.4, using essentially the same notation. Let

{Qj } be the family of non-overlapping dyadic cubes which are maximal with respect to the
condition

(4.24) λ <
1

|Qj |
∫

Qj

|f (x)|qdx ≤ 2nλ .

For eachj we letzj andrj be the center and side-length ofQj . If we denoteΩ = ⋃
j Qj ,

then|f (x)|q ≤ λ a. e.x ∈ Rn \ Ω .
Split f asf = g + b, whereg = {g i}∞i=1 is given by

g i (x) =
{

fi(x) for x ∈ Rn \ Ω ,

(fi)Qj for x ∈ Qj ,
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(fi)Qj being, as usual, the average offi on the cubeQj , and

b(x) = {bi(x)}∞i=1 =
{∑

Qj

bij (x)

}∞

i=1

with bij (x) = (fi(x) − (fi)Qj )χQj (x). Let Ω̃ = ⋃
j 2Qj . We then have

w({y ∈ Rn; |[h, T ]qf (y)| > λ})
≤ w({y ∈ Rn \ Ω̃; |[h, T ]qg (y)| > λ/2}) + w(Ω̃)

+ w({y ∈ Rn \ Ω̃; |[h, T ]qb(y)| > λ/2}) .

(4.25)

Let ε > 0. We use Theorem 1.7, withp and δ such that 1< p < 1 + ε/2 and
δ = ε − 2(p − 1) > 0. Then

w({y ∈ Rn \ Ω̃; |[h, T ]qg (y)| > λ/2})
≤ C

λp

∫
Rn\Ω̃

([h, T ]qg (y))pw(y)dy ≤ C

λp

∫
Rn

|g (y)|pq ML(logL)1+ε (χRn\Ω̃w)(y)dy

≤ C

λp

∫
Rn\Ω

|f (y)|pq ML(logL)1+ε (w)(y)dy + C

λp

∫
Ω

|g (y)|pq ML(logL)1+ε (χRn\Ω̃w)(y)dy

= I + II .

The estimate ofI is immediate; since|f (x)|q ≤ λ a. e.x ∈ Rn \ Ω ,

I ≤ C

λ

∫
Rn

|f (y)|q ML(logL)1+ε (w)(y)dy ≤ C

∫
Rn

Φ

( |f (y)|q
λ

)
ML(logL)1+ε (w)(y)dy .

For II we proceed as in the proof of (4.20) obtaining

II ≤ C

λ

∫
Rn

|f (y)|qML(logL)1+ε (w)(y)dy

≤ C

∫
Rn

Φ

( |f (y)|q
λ

)
ML(logL)1+ε (w)(y)dy .

For the second term of (4.25) we proceed as in the proof of (4.21). Then

w(Ω̃) ≤ C

λ

∫
Rn

|f (y)|qML(logL)1+ε (w)(y)dy

≤ C

∫
Rn

Φ

( |f (y)|q
λ

)
ML(logL)1+ε (w)(y)dy .

Finally, taking into account the following decomposition

[h, T ]qb(x) =
(∑

i

∣∣∣∣∑
j

(h(x) − (h)Qj )T (bij )(x) − T ((h − (h)Qj )bij )(x)

∣∣∣∣
q)1/q

≤
∑
j

|h(x) − (h)Qj |
(∑

i

|T (bij )(x)|q
)1/q
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+
[∑

i

∣∣∣∣T
(∑

j

(h − (h)Qj )bij

)
(x)

∣∣∣∣
q]1/q

= A(x) + B(x) ,

the third term of (4.25) is estimated by

w

({
x ∈ Rn \ Ω̃; A(x) >

λ

4

})
+ w

({
x ∈ Rn \ Ω̃; B(x) >

λ

4

})
= IV + V .

Using the standard estimates of the kernelK and the cancellation ofbij overQj we have

IV ≤
∑
j

C

λ

∫
Rn\Ω̃

|h(x) − (h)Qj |
(∑

i

|T (bij )(x)|q
)1/q

w(x)dx

≤ C

λ

∑
j

∫
Rn\2Qj

|h(x) − (h)Qj |

×
∫

Qj

|K(x, y) − K(x, zj )|
(∑

i

|bij (y)|q
)1/q

w(x)dydx

≤ C

λ

∑
j

∫
Qj

(∑
i

|bij (y)|q
)1/q

×
(∫

Rn\2Qj

|K(x, y) − K(x, zj )||h(x) − (h)Qj |w(x)dx

)
dy

≤ C

λ

∑
j

∫
Qj

(∑
i

|bij (y)|q
)1/q

×
( ∞∑

k=1

∫
2krj≤|x−zj |<2k+1rj

∣∣∣∣y − zj

x − y

∣∣∣∣
γ 1

|x − y|n |h(x) − (h)Qj |w(x)dx

)
dy

≤ C

λ

∑
j

(∫
Qj

(∑
i

|bij (y)|q
)1/q

dy

)

×
∞∑

k=1

2−kγ

(2k+1rj )n

∫
|x−zj |<2k+1rj

|h(x) − (h)Qj |χRn\2Qj
(x)w(x)dx .

To control the sum onk we use again standard estimates together with the generalized Hölder
inequality and John-Nirenberg’s theorem. Indeed, ify ∈ Qj , we have

∞∑
k=1

2−kγ

(2k+1rj )n

∫
|x−zj |<2k+1rj

|h(x) − (h)Qj |χRn\2Qj
(x)w(x)dx

≤ C

∞∑
k=1

2−kγ

(2k+1rj )n

∫
2k+1Qj

|h(x) − (h)2k+1Qj
|χRn\2Qj

(x)w(x)dx
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+
∞∑

k=1

|(h)2k+1Qj
− (h)Qj |

2−kγ

(2k+1rj )n

∫
2k+1Qj

χRn\2Qj
(x)w(x)dx

≤ C

∞∑
k=1

2−kγ ‖h − (h)2k+1Qj
‖expL,2k+1Qj

‖χRn\2Qj
w‖L logL,2k+1Qj

+
∞∑

k=1

2−kγ (k + 1)M(χRn\2Qj
w)(y)

≤ C

(
ML(logL)(χRn\2Qj

w)(y)

∞∑
k=1

2−kγ + M(χRn\2Qj
w)(y)

∞∑
k=1

2−kγ k

)

≤ CML(logL)1+ε (χRn\2Qj
w)(y) .

Thus we have

IV ≤ C

λ

∑
j

∫
Qj

(∑
i

|bij (y)|q
)1/q

ML(logL)1+ε (χRn\2Qj
w)(y)dy ,

and we can continue the estimate ofIV in the same way as in the proof of (4.22) withM
replaced byML(logL)1+ε . We conclude that

IV ≤ C

λ

∫
Rn

|f (y)|qML(logL)1+ε (w)(y)dy

≤ C

∫
Rn

Φ

( |f (x)|q
λ

)
ML(logL)1+ε (w)(x)dx .

To estimateV we will use Theorem 1.4 for singular integrals:

V = w

({
x ∈ Rn \ Ω̃; B(x) >

λ

4

})

≤ C

λ

∫
Rn

[∑
i

∣∣∣∣∑
j

(h(x) − (h)Qj )bij (x)

∣∣∣∣
q]1/q

ML(logL)ε(χRn\Ω̃w)(x)dx

≤ C

λ

∑
j

∫
Qj

|h(x) − (h)Qj |
(∑

i

|bij (x)|q
)1/q

ML(logL)ε (χRn\2Qj
w)(x)dx

≤ C

λ

∑
j

inf
Qj

ML(logL)ε (χRn\2Qj
w)(x)

×
(∫

Qj

|h(x) − (h)Qj ||f (x)|qdx +
∫

Qj

|h(x) − (h)Qj ||g (x)|qdx

)
= V1 + V2 .
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To estimateV2 we combine the argument to prove (4.23), replacingM by ML logL, to-
gether with the definition ofBMO:

V2 ≤ C

∫
Rn

|f (x)|qML(logL)ε (w)(x)dx .

ForV1 we have by the generalized Hölder inequality (2.3)

V1 = C

λ

∑
j

inf
Qj

ML(logL)ε(χRn\2Qj
w)(x)

∫
Qj

|h(x) − (h)Qj ||f (x)|qdx

≤ C

λ

∑
j

inf
Qj

ML(logL)ε(χRn\2Qj
w)(x)|Qj |‖|f |q‖L logL,Qj .

Now, combining formula (2.2) with (4.24) and recalling thatΦ(t) = t log(e + t), we have

1

λ
|Qj |‖fq‖L logL,Qj ≤ 1

λ
|Qj | inf

µ>0

{
µ + µ

|Qj |
∫

Qj

Φ

( |f (x)|q
µ

)
dx

}

≤ |Qj | +
∫

Qj

Φ

( |f (x)|q
λ

)
dx

≤ 1

λ

∫
Qj

|f (x)|qdx +
∫

Qj

Φ

( |f (x)|q
λ

)
dx

≤ 2
∫

Qj

Φ

( |f (x)|q
λ

)
dx .

Then

V1 ≤ C

∫
Qj

Φ

( |f (x)|q
λ

)
ML(logL)ε(χRn\2Qj

w)(x)dx

≤ C

∫
Rn

Φ

( |f (x)|q
λ

)
ML(logL)1+ε (w)(x)dx .

The proof of the theorem is finished. �
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