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Abstract

Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1.

Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned

mirror2–4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric

nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of

two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is

spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color

SMLM in cells.

Concepts for mirror-enhanced fluorescence have been

around for centuries. In the 1970s, fluorophore-metal

interactions were studied in depth5, followed by the

development of a quantitative theory based on semi-

classical quantum mechanics6. For an emitter located in

the vicinity of a metal-dielectric substrate, the metal

surface acts as a mirror, which leads to an enhancement

and modulation of the excitation field2, the fluorescence

decay rates and the quantum yield3,6 that arise from

interference effects, and an enhanced detectability due to

virtual 4Pi fluorescence detection4. Mirror-enhanced

concepts have been shown to be compatible with super-

resolution modalities7; however, their combined strengths

have not yet been employed to their full potential.

SMLM methods excel in visualization of the cellular

architecture at a molecular level1. The common concept

of all SMLMmethods is the separation of the fluorescence

emission of individual fluorophores in time by photo-

activation and photoconversion8, photoswitching9,10, or

transient binding11, with subsequent determination of the

single fluorophores’ position and image reconstruction.

Thus, SMLM is able to push the resolution to ~20 nm in

the lateral direction without further tweaks and tricks.

The crucial parameter that determines the final resolution

is the localization precision, which mainly depends on the

number of fluorescence photons detected per localization

event12. Several attempts to improve the localization

precision have been reported, including optimized fluor-

escent dyes13, additives14, cryo-methods15, and 4Pi-

microscopy16. Unfortunately, most approaches

lack remarkable improvements or result in further lim-

itations concerning complexity or compatibility with live

cells.

As we show here, quenching and enhancement effects

in the vicinity of metal-dielectric nanocoatings can be

used to enhance contrast by suppressing background

noise and improving the photon yield of the fluorophores.

Easy-to-fabricate biocompatible metal-dielectric nano-

coatings on glass coverslips can substantially improve the

localization precision of direct stochastic optical recon-

struction microscopy (dSTORM) by a factor of two using

a standard epifluorescence setup, which still exceeds the

performance of dSTORM using total internal reflection

microscopy (TIRFM).
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First, mirror-enhanced dSTORM is demonstrated for

the nuclear pore complex (NPC), which plays a key role in

the regulation of molecular traffic between the cytoplasm

and the nucleus17. Various superresolution microscopy

studies have demonstrated their capability to resolve the

eightfold symmetry of the NPC18,19. To identify the ideal

layer design for mirror-enhanced dSTORM of NPCs and

to match the enhancement range to the fluorophore’s

height range above the coverslip, we performed finite

element method simulations of the distance-dependent

excitation and emission enhancement for the fluorophore

of choice (Fig. 1a), Alexa Fluor 647 (A647). Labeling the
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Fig. 1 Resolving the NPC. a Optimized metal-dielectric substrate designed to exhibit the strongest enhancement field for emission (solid line) and

excitation (dashed line) of the red emitting dye A647 at the axial position of the NPC ring structure labeling the pore anchoring protein gp210.

b Simulated conventional (localization precision: 20 nm, left) and mirror-enhanced dSTORM (12 nm, right) images; respective experimental image of a

single NPC ring and overview images. c Fourier ring correlation (FRC) resolution estimation of sunny-side-down (gray solid line, see Supplementary

Fig. S1), TIRF- (gray dashed line) and mirror-enhanced dSTORM (blue line) images of b. d–h Statistical analysis. d Principle of TRABI22. Histograms of

e intensity distribution, f standard deviation, g background variance, and h resulting localization uncertainty of the localization events for coated

coverslips (blue) with half (filled bars) and the same (open bars) excitation power as in the experiments on uncoated coverslips (gray) in the sunny-

side-down (filled bars) and TIRF configurations. The inset in h highlights the increased number of events with a localization uncertainty below 10 nm

for coated (blue) versus uncoated coverslips in the sunny-side-down (gray filled bars) and TIRF (gray open bars) configurations. Scale bars: 50 nm

(single rings) and 1 µm (overview)

Heil et al. Light: Science & Applications            (2018) 7:99 Page 2 of 8



pore anchoring protein gp210 by classical immunolabel-

ing, the fluorophores are expected at a distance of ~50 nm

above the coverslip. To selectively enhance the emission

in this height region, the optimal coating design features a

2 nm germanium (Ge) layer, followed by a 50 nm

silver (Ag) layer covered by 10 nm of silicon nitride

(Si3N4) (Fig. 1a). The maximum axial extension of

the enhancement window (~120 nm) is wavelengths-

dependent20, comparable to those reached by other eva-

nescent techniques such as TIRFM, and thus powerful

for selective imaging of membrane proteins in adherent

cells.

Assuming that the eight gp210 proteins per NPC would

be labeled with a single A647 and a localization precision

of σ ≈ 20 nm, the eight elements of the NPC ring would

appear as spatially overlapping signals in a simulated

dSTORM image (Fig. 1b). With a predicted two-fold

fluorescence enhancement by metal-dielectric coatings

(Fig. 1a), the resolution could be substantially improved

(Fig. 1b). To test this enhancement experimentally, we

performed mirror-enhanced dSTORM experiments with

nuclear envelopes spread on the metal-dielectric substrate

and on a bare glass coverslip as a control sample. For the

mirror-enhanced dSTORM experiments, the nanocoating

with the specimen faces the front lens of the water

objective (NA 1.15) in a “sunny-side-down” (SSD) con-

figuration. Control experiments on uncoated glass were

performed in both the SSD (NA 1.15) and TIRF (oil

objective, NA 1.46, see Supplementary Fig. S1) config-

urations. The acquisition conditions were the same for all

experiments mentioned above except for the applied laser

intensity. The excitation enhancement in mirror-

enhanced dSTORM by the mirror effect of the metal

coating and the increased excitation intensity of the eva-

nescent field in TIRF illumination allowed a 50% reduc-

tion of the laser intensity for both configurations, which

still matches the photoswitching conditions of A647. The

SSD dSTORM image appears blurrier than the corre-

sponding mirror-enhanced dSTORM image, where the

eight gp210 elements can be distinguished (Fig. 1b). An

overall resolution enhancement of 150% was derived from

Fourier ring correlation (FRC) analysis21 (Fig. 1c) based

on the overview images (Fig. 1b). Importantly, the reso-

lution of the mirror-enhanced dSTORM image also

exceeds that which can be achieved with TIRF dSTORM

by 25%.

To understand in more detail why mirror-enhanced

dSTORM provides sharper images, we analyzed the

localization data by temporal, radial-aperture-based

intensity estimation (TRABI)22. This photometric

method determines the signal and noise levels indepen-

dently of the data fitting model (Fig. 1d). Here, TRABI

reveals that the intensity of a single localization event is

increased two- to three-fold compared to that in the TIRF

and SSD configurations (Fig. 1e). For all three config-

urations, the signal width is comparable (Fig. 1f), and the

noise represented by the background variance is sig-

nificantly reduced in the case of mirror-enhanced

dSTORM (Fig. 1g). Note that, in a typical dSTORM

experiment, the fluorophore is already excited at or close

to the saturation level to ensure maximal photon emission

during each on-event (Supplementary Fig. S2). Thus, a

further increase in excitation intensity cannot result in

brighter emission, but it can result in optical sectioning

due to the height-dependent modulation of the

enhancement field. Importantly, this optical sectioning

excludes the first nanometers adjacent to the surface

coating (Fig. 1a, peak at 60 nm) so that background noise

is substantially reduced. This effective background sup-

pression is induced by both the sectioning itself and the

lower laser intensity, while the latter is fully sufficient to

reach the optimal excitation rate.

Detailed analysis of each localization event revealed

nearly identical reoccurrence numbers for dSTORM

versus mirror-enhanced dSTORM, while the on-time

duration and photon counts were increased for the latter

(Supplementary Fig. S3). Consequently, the resolution

benefit of mirror-enhanced dSTORM originates from

both the increased signal of each localization event and

the increased on-time of the fluorophore in the on-state.

Taken together, “more photons” and “less noise” even-

tually improve the localization uncertainty12 and thus the

localization precision to <10 nm (Fig. 1h, inset graph).

This effect was reproduced in independent experiments

(Supplementary Fig. S1b–d). As the sample fabrication is

very controllable and reproducible, the variation has to be

attributed to the variation in the preparation of the

nuclear membrane. Note that the enhancement can also

be achieved for structures closer to the surface when the

metal-dielectric layer thicknesses are adjusted accord-

ingly. Imaging isolated microtubules represents a typical

example that requires such low-distance surface imaging

(Supplementary Fig. S4).

The option to selectively boost fluorescence at different

heights makes mirror-enhanced dSTORM highly suitable

for tailored and improved investigations of membrane

receptors or other cell membrane components. To

experimentally show cell compatibility as well as spectral

tunability of mirror-enhanced dSTORM, we performed

dual-color experiments on Jurkat T-cells to visualize the

distribution of CD45 receptors. Cells were labeled with a

50:50 mixture of Alexa Fluor 532 (A532) and A647 anti-

CD45 antibodies and imaged on metal-dielectric coated

and non/coated glass coverslips (Fig. 2). Note that each

CD45 (monomeric) receptor-linked protein tyrosine

phosphatase molecule23 is labeled by only a single primary

antibody carrying either A647 or A532 so that they cannot

colocalize (Supplementary Fig. S5).
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Simulations on fluorescence enhancement for the two

fluorophores of choice suggest that, while the excitation

enhancement field is slightly shifted in height for the two

fluorophores (Fig. 3a, b), the increase in detectability is

comparable for both with a dominant contribution from

the parallel dipole contributions (Fig. 3c, d). The resulting

emission enhancement profile shows a slight shift in

amplitude along the height axis as the quantum yield

enhancement differs greatly due to the difference in

intrinsic quantum yield of A532 (η0= 0.61) and A647 (η0
= 0.33) (Fig. 3e, f).

Nevertheless, both fluorophores can share an operating

window. Thus, the simultaneous enhancement of spec-

trally distinct fluorophores with the same metal-dielectric

coating design is feasible (Fig. 2b). Dual-color imaging

confirms the spectral tunability and spatial selectivity of

mirror-enhanced dSTORM: false-color images indicate

the localization uncertainty of events detected for each

color on coated and uncoated glass coverslips for com-

parison with white spots, indicating higher localization

precision (Fig. 2c, d). On coated coverslips, high-precision

events are increased for both colors, resulting in improved

image resolution. The histograms show the corresponding

distributions of localization uncertainty, intensity and

background variance for A647 and A532 (Fig. 2, left and

right) on coated and uncoated coverslips. The graph

insets (Fig. 2) depict events with localization uncertainties

below 10 and 20 nm. For both colors, the occurrence of

these localizations is increased by a factor of 1.5 due to

higher brightness and background suppression.

Up to this point, all sample structures exhibited a planar

architecture placing the features of interest directly in the
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enhancement region. In contrast, a three-dimensional

(3D) sample will partly exceed the enhancement region so

that features located in and outside the enhancement

maximum can be distinguished within a very sharp height

region. To deduce absolute height information based on

the mirror-enhancement effect, we used 15 µm micro-

spheres labeled with A647 as described by Cabriel et al.24.

Based on the bead radius and center position, the axial

position of each localization can be calculated (Fig. 4a).

On the nanocoating (2 nm Ge, 50 nm Ag, and 10 nm

Si3N4), the intensity and localization uncertainty show a

clear height dependence with a broad maximum of the

intensity at a height of 100 nm that translates to a mini-

mum of localization uncertainty (Fig. 4b). The experi-

mental axial intensity profile agrees well with the expected

excitation and emission enhancement based on simula-

tions (Fig. 4c). Notably, the simulated emission

enhancement for higher distances of ~350 nm is fully

compensated by a minimum of the excitation profile

preventing an effective enhancement in this height region.

This height-dependent profile can be translated into

axial distances. Here, we demonstrate this for a 3D

microtubule network of Cos7 cells where the average

localization uncertainty serves as the axial ruler to pin-

point the height of single filaments (Fig. 5). For a con-

ventional dSTORM experiment, the localization

uncertainty is consistent within a wide axial range

(Fig. 5a), while there is a strong height dependence for

mirror-enhanced dSTORM. Filaments close to the sur-

face, below ~130 nm, display the lowest localization

uncertainty (Fig. 5b, green filaments) with a gradual

increase in the localization uncertainty for filaments fur-

ther above. This provides uncertainty-based image con-

trast that allows clear height distinction of crossing

microtubules (Fig. 5b, c, crossing points marked by white

arrows).

To summarize, metal-dielectric coatings are a versatile

biophotonics tool that enable straightforward control of

the axial fluorescence enhancement distribution by

adjusting the distance of the fluorescent sample to the

nanocoating or vice versa. The simple three-ply design of

our coatings grants a straightforward one-step fabrication

and allows tailoring the shape of the resulting enhance-

ment field to the sample geometry and fluorescent label at

hand. Coated coverslips can, in principle, be fabricated in

tabletop thin-film deposition systems and be used in any

(see figure on previous page)

Fig. 3 Simulation of the excitation and emission enhancement based on finite element method calculations. a Scheme of the sample

geometry. b Excitation intensity enhancement in the vicinity of a silver nanocoating (dm= 50 nm, dd = 10 nm) for two different excitation

wavelengths (λex). c, d Far-field radiation patterns for parallel (II) and perpendicular (⊥.) dipole orientations in the vicinity of a glass coverslip (gray)

and the silver nanocoating (blue) at a height of 10 nm (solid), 50 nm (doted), 100 nm (dashed), and 150 nm (dash-doted) for A532 (c) and A647 (d). e,

f The combination of quantum yield enhancement (dotted) and detectability enhancement (dashed) leads to a tailored height-dependent emission

enhancement profile (solid) for A532 (e) and A647 (f)
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SMLM setup without further training or caution and

without the requirement of implementing TIRF illumi-

nation and a high NA objective. Furthermore, in contrast

to TIRF approaches, mirror-enhanced SMLM allows

highly controlled sectioning. For TIRF-based illumination,

the penetration depth dramatically depends on the illu-

mination angle, which is difficult to control in most

common setups.

As experimentally demonstrated, the scope of applica-

tions for mirror-enhanced SMLM is comparable to tradi-

tional SMLM techniques enabling dual-color imaging of

cells. Of course, the enhancement field of mirror-enhanced

SMLM is bound to the surface and currently extends to

160 nm above the substrate interface. Moreover, single-

molecule localization is still feasible without the boosting

effect, as demonstrated here by interrogating the 3D

microtubule architecture, and thus promotes mirror-

enhanced SMLM as a 3D imaging tool. This is important

as axial resolution is a bottleneck in SMLM, which often

limits 3D nanoscopy. Distance-dependent shifts in the

fluorescence spectrum20 and lifetime25,26 can serve as cru-

cial readouts providing an axial ruler with nanometer pre-

cision. However, these methods are based on a confocal

approach with all its limitations. Here, mirror-enhanced

dSTORM can provide an essential tweak to improve the

spatial resolution of 3D-SMLM. Mirror-enhanced

dSTORM holds another unique asset with respect to 3D-

SMLM: it not only boosts resolution but also reduces the

required laser power to 50% while preserving the desirable

blinking behavior. Importantly, for our two-dimensional

nanocoating, there are no localization artifacts that arise

from emitter-nanostructure coupling. This is in contrast to

the well-known situation for zero-dimensional and one-

dimensional nanostructures27–29, where the emitter-

nanostructure “asymmetry” induces signal distortions due

to coupling between the emitter’s electromagnetic field and

the nanostructure.

Beyond SMLM, the method can be used to enhance the

performance of various established fluorescence techni-

ques30. With respect to high-content imaging and lab-on-

the-chip approaches, mirror-enhanced SMLM outper-

forms TIRF-based illumination schemes, where realizing

homogeneous illumination over a large field of view is still

challenging31,32.
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