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Sharper Bounds
for the Chebyshev Functions 0(x) and \p(x). II

By Lowell Schoenfeld

Abstract.     In this paper, bounds given in the first part of the paper are strengthened.

In addition, it is shown that the interval (x, x + x/16597) contains a prime for all

x > 2,010,760; and explicit bounds for the Chebyshev functions are given under the

assumption of the Riemann hypothesis.

We use the references and continue the paragraph numbering of the original paper
by Rosser and Schoenfeld [11] and adhere to the same notations except as noted in
Section 8 in the case of Tx.  New references are given below.

6. Estimates under the Riemann Hypothesis. The result below is of the same
strength as that given by von Koch [7] whose estimate used an unspecified constant
in place of 1/(8n).

Theorem 10. If the Riemann hypothesis holds, then

(6.1) \Hx)-x\,     \9(x) - x\< — v£ (log x - 2)log x   if   23-108<*,
87T

1        r ,(6.2) I'M*) - *l < — V* log2* if   73.2 < x,

(6.3) |0(*) -x\<— \fx log2* if   599 < x.
8ix

Also,

(6.4) - -L v£ log2* < Hx) -x if   59 <x,
8n

(6.5) 9(x) - x < — v*"log2* if   0<x.
Ö7T

Proof   To handle (6.1), (6.2) and (6.3), we suppose that x>\> 82,800.  By
the Riemann hypothesis and the definitions (3.9) and (3.10), we have S3(m, 8) = 0 =
S4(m, S).  Let

log *      log2*        1 ai
(6.6) g = _£_=_£_-<-  <a

■ny/x       ny/x      log*      log*

where

,     , log2? ai        log %
(6.7) a, = -^ ,      a2 =- = -^ < 0.0126.

zrVf log I      TrVf
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338 LOWELL SCHOENFELD

With 7\ defined by (4.2) and m = 1, we have Tx > D; and

Tl ,    (VS"        1+2Ô+S2) jv£    n,,J,,log — + 1 = log{-  •  ———- } + 1 < log<;- (1 + S,)i + 1
2tt (log* 2 + 6        | /log* j

<1/i{log*-21oglog* + 2(1 +Sj)} < fcflog * - a3),
where

a2(l + 0:2)
(6.8)    s       -   <0.00634,      a3 = 2 loglogf - 2(1 + 6.)> 2.841.

2 + a2
We now apply Lemmas 8 and 9 with m = 1 to get

1 1      / «i     \ I /      7-,        \2 i
Ï l^)^l<2^ (' +  2lo7*j| (l0g^+ V    + 1-038207}

+ 2^+i|l0g(27r)+^°g(1"i)|

<8^ {l+2^x) (^-^logx+o» +4.152828)

+ log* log(2ir)

27TV* *

«i« <-     ]       / ai     \ ,      logx (        8rrlog(27T)/(     } sTTT V+^~     Oog2* - «4log *) +-^   4 + —^—?[,
8zrV*   \       2log*/ 8ttV*  ( ^ log*)

where

(6.10) <*4 = 2cx3 - (a2 + 4.152828)/log £.

As cy3 < 2 log log | < log |, we see that a4 increases as a3 increases; and hence,

a4 > 2(2.841) - (2.8412 + 4.152828)/log £ > 0.

Consequently, (6.9) yields

i6-11) Mix) - x\lx < (log *)(log * - cv5)/(87rV*"),

where

(6-12) as = a4 - aj/2 - 4 - {87rlog(27r)}/(\/|log £).

From [10, (3.39)], we obtain for * > % > 82,800

(6.13)     l|flW-x|<I|^)-x|+-(i.02v5 + 3*1/3)<-^-(log*-cv6),
XXX 87TV*

where
8.167T 247T

<6-14) a6 = as"loI7"?^o7r
On letting £ = 23 • 108, we find that as > a6 > 2 so that (6.1) follows from

(6.11) and (6.13).
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CHEBYSHEV FUNCTIONS 6(x) AND i//(x). II 339

On letting £ = e16, we find that a5 > a6 > 0 so that (6.2) and (6.3) hold for all
* > e16. If 0 <* < e16, then [10, Theorem 18],gives 0(*) -* < 0; hence, (6.5) is
completely proved.   For 1400 <* < e16, the same theorem gives

(6.15) 9(x) -x > - 2.05282 V* > ~ 2.05282(V*log2*)/log21400;

hence, if 1400 < *, then

(6.16) 0(*) - * > - (V*~log2*)/(87r).

For 1200 <* < 1400, we use [10, Theorem 19] to replace 2.05282 by 2 in (6.15)
and, thereby, derive (6.16) once more.   Finally, for 599 <* < 1200 we deduce (6.16)
from the unpublished Rosser-Walker tables referred to in  [10, Section 5].  This
completes the proof of (6.3).

As i/>(*) - * > 6(x) - *, we see that (6.4) holds for * > 599 by (6.3); the
proof of (6.4) is completed by using Table VII of Gram  [6]   for 59 < * < 599.
Further, [10, Theorems 18 and 24] gives for 0<* < 108

(1 3 )
V/(*)-*<^)-ö(*)<V^ + 3*1/3=V^iog2*-|7^- +  1/6,   2   \

( log"**       *1/6log'!* \

from which we get for 1,075 < * < e16

(6.17) Hx) - * < (V^ log2*)/(8Tr).

On using Gram's table again, we verify (6.17) for 73.2 < * < 1,075.  This completes
the proof of (6.2).

Corollary 1. If the Riemann hypothesis holds, then

(6.18) |rr(*) - li(x)\ < (V* log *)/(8zr)   if 2,657 < *,

(6.19) tt(*) - li(x) < (V* log *)/(8tt)   if 3/2 <*.

Proof   Let* > 23 • 108 >% > 1.  Then [10, (4.17)] yields

(6.19a) Tl(x) - 7T(Ç) = •- +    I      —    j- "s       11   ,    ,
v log *     log ?       J ï  y \og2y J f  log2y

By [10,(7.6)] we get, on putting

(6.19b) ?' = [im - 7r(|)} -{%- 0(?)}/log %,
that for I > 599

|zr(*) - li(x)\ 9(x)-x        f*9(y)-yçxyiy   -y
j ir   , 2   dy~$log * J i y log y

<¿V^(log*-2) + ¿J^+in

¿v^iog* + in-|-
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340 LOWELL SCHOENFELD

as a result of (6.1) and (6.3).   Taking % = 108, we obtain |' = 88.26 so that (6.18)
results for* > 23 • 108.

It follows from Table 1 of Brent [4] that for all primes p < 50 ■ 108 we have [Hip)
+ 1/2] -7r(p)<4612. If 5 ■ 107 <*<49 • 108 andp is the smallest prime exceeding*,
then it is a consequence of Brent [3], [4] that

|zt(*) - //(*)! = {//(*) - 54} - jt(jc) + H < [liix) + fc] -ir(x) + H

< [li(p) + fc] - {nip) - 1} + XA < 4613.5 < (v5 log *)/(8tt).

Hence, (6.18) holds for all * > 5 • 107.  Moreover, the Appel-Rosser table [1961]
shows that

(6.20) 0<   {/z(*)-7r(*)}(log*)/V*"< 2.523

if 3,169 <*<5 ■ 107. From this, we get (6.18) for* > 3,169. For 2,659 <*<
3,169, the inequality (6.20) holds with 2.523 replaced by 2.444; hence, (6.18) holds
for * > 2,659.  A direct calculation shows that (6.18) holds for 2,657 < * < 2,659.

As zr(*) - //(*) < 0 for 2 < * < 2,657 by [10, (4.2)], we easily complete the
proof of (6.19).

In the next two corollaries, B, E and C are as defined in [10, Section 2].
Corollary 2. If the Riemann hypothesis holds, then

(6.21)

(6.22)

v  1¿, - - log log * - B
p<x "

Z  -^  -log * - £
p<x      y

< 3 log * + 4
8zrV*

if 13.5 <*,

< 3 (log2* + 2 log * + 4)     if 8.4 < *.
8ttV*

Proof.   By [10, (2.27)], we obtain for a suitable constant K that

X  I = f*     dy     +K+ njx) - lijx)   _  p njy) - lijy)
^    P       J 2   y log V * J x „2 y'p<x

By (6.18), we obtain for * > 2,657,

Z £ - (log log * + K - log log 2) < log* + J- f°° log-y
8zrV*      8tt  J X   y3/2

dy 3 log * + 4
8ttV*

As the right side tends to 0 as * —► °°, K - log log 2 must be the constant B appearing
in [10, Theorem 5].  Now [10, Theorem 20] gives

£ -   - (log log * + B)
p<x

<       2 < 3 log*+ 4
V* log* 87rV*

for 32.5 < * < 2,657.  It is then a simple matter to complete the verification of (6.21).
Similarly, [10, (2.27)] gives

X'Y  =/:   f  +K*+«£^à log* + /J   ̂ nL{7tiy)-Uiy)}dy.
By (6.18), we get for * > 2,657
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CHEBYSHEV FUNCTIONS d(x) AND \jj(x). II 341

Z  ^ -0og*+£) <^  + ±-  f  OW1)1«*? <*>.
p<*    P 8rts/x      8tt J x y3¡2

This yields (6.22) for * > 2,657.  For 16.1 < * < 2,657 we obtain the result by
using [10, Theorem 21].  Direct verification completes the proof of (6.22).

Corollary 3. // the Riemann hypothesis holds, then

(6.23) ec(log*)  n  (l - A - 1   < 3-^^     if 8.0 <*,
p<X   \ P/ 87TV*

(6.24)
«,-c n

log* ;ixp-
<31og* + 5

8zrV*
*.

Proof.   Let

so that this definition of 5 agrees with that below [10, (8.10)] where it is proved that
1.02

(6.26) 0>S>- (x-l)logjc' 5° if  1<*.

By (6.21), if * > 13.5 there is a fl = flx G (-1, 1) such that

log log * + fly =   Z - - B = - Z log ( 1 - - )- S - C
P<xP p<x       V       P)

as a result of [10, (2.7)].  Hence,

(6.27) ec(log *)
P<x\        P)

- \ = e-»y-s.

We easily verify that y + S0 < 2.4 • 10~4 if * > 108 so that

(6.28)    exp (- fly - S) < exp (y + S0) < 1 + (y + S0) + 0.501(y + 50)2 < 1 + z.

Hence, (6.27) gives for * > 108

(6.29) dog*) n (l-1-)
P<x\        P )

- <1 +

By [10, Theorem 23], we see that this holds for all * > 1.  As a result, for * > 1,

(6.30) ^ n > 1
los* p<xP~

> 1 -z.

(6.31)

Similarly, if x > 108 then (6.27) and (6.28) give

log *     „   p - 1°        p<x r

Also, [10, Theorem 23] gives
e'c n

Il -£-   =e»y+s<ey<ey+S°<l +

lo8*   p7xP- < 1 + < 1 +z,
V*log *

provided 28.4 < * < 108.  Moreover, the extreme inequality in (6.31) is easily seen to
hold for 13.1 < * < 28.4 as well; and this verifies (6.24) when use is made of (6.30).
As (6.31) holds for all * > 13.1, we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



342 LOWELL SCHOENFELD

ec(iog*)n(i-i)>n-z>i-z
p^x

for * > 13.1.  Again, the extreme inequality holds for 8.0 < * < 13.1 so that (6.23)
follows from (6.29).

7.   Bounds for Large *.  The following result improves both Theorems 2 and 3
Moreover, even better results are given by the Corollary to Theorem 11.

Theorem 11. Let X = V0og x)/R where R = 9.6459 08801, and let

(71) eo(*) = N/87Í77T^1/2e-x.
Then,
n2) \\p(x) -x\ < x eQ(x)    if 17<*,

(7.3) 1000 -x\<x e0(x)     if 101 < *,

(7.4) 8{x) -*<i//(*)-* e0(*)    if   1 < *.
Proof.   The main part of the proof is concerned with large * in which case the

proof is similar to that given for Theorem 3, but we ultimately take m-2 rather
than m = 1.  In place of (3.36), we let

(7.5) T2 = \levx,

where v will be specified later. We assume that v, m, X are such that

(7.6) A<T2,       l/y/m +1 <t;< 1,

from which we deduce X> log(Al 17) > 11.62 and Wm < T2 < W0 by (3.24).
In place of (3.37), we get

(7.7) S3{m, 8) < 2-^ fe   - «<Ji)}fA2 Wlog ¿ dy + e\ ,

where (3.2) gives

Et = {7V(r2) - F(r2) + R{T2)}<t>0iT2) - {N{A) - F{A) + R{A)}<I>0{A)

(7.8) <2i?(r2)0o(r2),
and R(T) = 0.137 log r + 0.443 log log T + 1.588 as in Rosser [1941].  Putting
K" = ^2/log(r2/17), we have

(7.9) v" = Xlv = X{2 - v + (1 - v)2/v} = Y + 2X - vX,

where

(7.10) Y=X(\ -v)2/v.

Proceeding as in (3.38) and (3.41) and using (7.8), we find

S3(m, 8) < 2-^  • f e-v'iX4^')-3 + X2d(V>T2} + H^ E,
° 1 Lit I

2 + m8
68tt

where d = log(17/27r) = 0.99533. . .    and

(7.11) < ^p G0e-YXe~2XT2 + (2 + m8)R(T2)<j>0(T2),
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(7.12) G0=v2(v + d/X).

As R(y)/\ogy decreases for y > ee, we have

R(T2)*o(W=^ 0o(r2)log T2 < gd) • ̂  e-v"

R(A)     o-Y„-2X
\l\ogA e-Ye-2X]og 7^

by (7.9).  Then (7.5) and (7.6) yield

log T2 = vX + log 17 < X + log 17 < 1.244JST;

hence,

(7.13) R(T2)<I>0(T2) < 0.0241e-yZe-2X.

In place of (3.42), we have

(7.14) S4(m,í)<A1I1(6r",({¿  +Q(T2)}fT24>m(y)log^dy+E0

where, by (3.2),
E0 = [R(T2) + F(T2) -W(T2)} <t>m(T2)

(7.15) < 2tf(T2)0m(r2) = 2R(T2)4>0(T2)T2m.
By (3.16),

(7-16)    j;2 0m(v)iog ¿ * = ¿^ {*A f ) + ^ *i<* ^} >

where we put z = 2X\Jm and

[/' = (2m/z)log(T2/17) = v y/m.

We strengthen part of (7.6) by assuming

(7.17) v > l/y/m

so that i/ > 1 ; also m > 2 since 1 > v by (7.6).
By Lemma 4 and the Corollary of Lemma 5,

K2(z, If) + ^2- AVz, £/') < (t/' + j + ^) 0,(2, If)

Now

| (u' + 77 ) = AVw "¡iVw + -^— \ = »wA" + (y + 1Y - uA)

by (7.9).  Hence,

(7.18) K2(z, 10 + 2f=- JT.fc 10 < G,«-y ¿7-^T) ^le"2X(^)_(m"}  -

where
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344 LOWELL SCHOENFELD

_       m- 1 U'2      (   ,  1 +dm \      (m- \)v2 I     ,  1 +dm\
(7.19) G>=— ■ í7r^(ü + ̂ ^j=^2-r(t; + ̂ rj-

Then (7.16) and (7.18) give

Ít2 KW* ¿ ¿y < í^T) A.-2-r2-e-).
We define

Ä   (S) ( n 4- xY" + 1 -i- i    )m
(7.20) G2 = -^-{1 + 2irq(T2)} = {1 + 2^(^)1   LL±^i_-li.        .

Then (7.14) yields

*>■ s> < â^j (|)"V^f<"-" ♦ *(!)-*.
Now 1 + wzô/2 <Rm(8)/2m < G2. Using (7.11) and (7.15), we obtain

G->e~Y ( G.     /■y\m J
S3(m, 8) + S Am, 8) < -^~- ■ Xe~2X j GJ2 + ̂ y ( f J    T^"1) J

+ 2G2tf(jT2)0o(T2)   1 + (^)M[-

If G0 and Gj were independent of v, and hence of T2, then the expression inside the
first braces would be minimized by choosing

(7.21) T2=(G1/Goy/">-2/8.

Postponing the reconciliation of this with (7.5), we obtain

S3im, 8)+S4(m, 5) + \m8 < ^ mG2 )t7¿-1/",G{/m  - Xe~2X8~1 + oí7rr(m - 1)

+ 2C72(1 + Go/C7,)Ä(r2)0o(r2).

The expression inside the last braces is minimized by choosing

(7.22) S = j G^Gy» ll^ï) T'VV*
so that (7.21) becomes

(7.23) T2 = (GjGn)1'2"1 {34n(m - l)eY/G0}1l2X~1l2ex.

Moreover, (7.13) gives

S3(m,8) + S¿m,8) + \m8 <G2\Gl-llmG\lm2ê^\il2_™-Xiße-x

+ 0.0482G2(1 + GjG1)e-YXe-2X.

The coefficient m/y/m - 1 in the next to the last term is minimized by choosing
m = 2.   For this value, we obtain from (7.22), (7.23) and (7.19),
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(7.24a) § = (G0Giyi4e-Yl2s/2ÂYWxll2e-x,

(7.24b) T2 =(GllGlfl4eYl2^/34irX-ll2ex,

(7.25) Gx = v2 {v + (1 + 2d)/(2X)}l(2v2 - 1).

Also,
53(2, S) + 5 (2,8) + 5 < G2(G0G1)1/4e-y/2yfilYNX1'*e~x

(7.26)
+ 0.0482G2(1 + G0/G1)e-YXe-2X

provided the choice of T2 in (7.24b) is consistent with (7.5) and provided both (7.6)
and (7.17) hold when m = 2.

We readily see that the T2 of (7.24b) satisfies (7.5) if and only if v is such that
k(v) = 1 where

(7.27) m=l^(^J,2e-2X(x-v)e.Xil-v)^

and (7.10) has been used.  If \¡\¡2 < v < \/3/2, it is not hard to see that Gj decreases
as v increases.  By (7.12), it then follows that k(v) is strictly increasing for increasing
v £ (1/V2, 1].  Now k(v) —♦ 0 as v —* l/\/2 from the right; and we easily see that
k(l) > 1 (for û\X > 1).  As a result, there is a unique v E (l/>/2,1) such that k(v) = 1.
Henceforth, let v be this number so that t> depends on X; then G0, G1, Y and T2
are defined in terms of v by (7.12), (7.25), (7.10), and (7.5), (7.24b).  Of course, (7.17)
holds since m = 2.  Hence, (7.26) will be fully established once it is shown that T2 > A.

We have, for 1/V5 <u< 1,

„,      Go      4„2    „       (v + dIX)3      \<iv + d/X)2
(7.28) Hiv) = - = v4(2v2 - 1) v + \1+^m j > v6(2v2 _ 1}

If we define, for / = 0 and 1.,

,      !     ,        17A
(7-29) ü/=1-2Fl0g(y+lör7'

then H(v0) <IHX> 17/(2zr); also, H(vx) > 0.22318 if X > 8.579.  Inasmuch as

*<"/>-H^ ^^ exp{"4lyf log2(2+W} '
we see that k(v0) < 1 = k(v) ifX> 17/(2ff); also ¿(u,) > 1 = k(v) i£X> 8.579.  So

(7-30) u0<u   if log* > 71;       u<i;1   if log x> 710.

Of course, u0 < v1 in all cases.   For log* > 1737, we now get from (7.5) and (7.29)

thatr2>17e,;oJr>/l.

Hence, (7.26) is completely established when log* > 1737; for these *, we have v0 >
0.8661 > N/3/4.  It is a simple matter to use (7.12), (7.25), (7.10), (7.30) and (7.29)
to verify that

(7.31) G0/G,<2i;2-l<l,     Y < X(\ - v0)2/vQ < 0.278,
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346 LOWELL SCHOENFELD

(732)  G G   m-j£-(1+±.\(l + l±M)   <0 + 1/^(1+3/2^
01     2u2-l   \      vX )\        2vX J\>v6l(2v2-l)>0.843

d_\ /,  , 1 + 2d\ j < 0 + ^(1 + 3/2üA) < 1.227

for log x> 1737.  Then (7.26) yields

(7.33)  S3(2,8) + S4(2,8) + 8<G2(G0G1)1l4e-Yl2\J^ X1l2e~x + 0.1 UTe"2-*"[.

Taking 7\ = 0 in (3.7) and (3.8) and using Lemma 17 of Rosser [1941], we
obtain

^r{S1(2)«) + 52(2>5)}<   ^.^Z^<JLG/2\yv
^ v^       Ô2       7 |T|3       ^     2\8)   14.13   7 72

< TT G* lïîf < OMG^G^e-^X^e2^'2,
52V*

by (7.24a), (7.31) and (7.32). Putting

Í2 = {5j(2, 5) + 52(2, 5)} ls/x + 53(2, 5) + 54(2, 8) + 8,

we obtain from (7.33) that for log * > 1737

i2<G2(G0G1)1/Vy/2jv^rJf1/2^

(7.34)
+ 0.11 Xe~2X + 0.61 X~ W/2

By Lemma 8

i |<K*) - x|< i |log(2ir) + ¿log(l - *"2) j- + a < a +î2g^-.

Now [10, Theorem 13] gives

I|0(jc)_x|<í2 + loáM+L43.

< Í2 + 0.01 G^G^)1'^-*'2 • JrW2.

Hence, (7.34) and (7.1) give

(7.35) l-\Hx)-x\,     l-\6(x)-xl<G3J^7X1l2e-x = G3e0(x)

for log * > 1737, where

G3 = G2(G0G,)1/Vir/2 il +ßB- (0.11A'1/2e-x + 0.62jr3/W/2)j

< G2(G0G1)1/4e-y/2 {1 + 0.29 A-1/V*}

(7.36) < G2(G0G1)1/4e-y/2exp(0.29X1/2e-x).

Also, by the definition of ?(y), (7.24b) and (7.28)
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i+2zTz?(r2)=i+^-0-137,+^:°^7
log(r2/27r)

Further,

V5) (l+5)3 + l
»2      " ) 2

< , +  Í^I^\'\-YI2 0.137+0.443/log^l     1/2   x
\fn\Gj \og(A/27r) X

C 1 + 0.01 X1/2e~x < exp(0.01 Xll2e~x).

= |l+|o(3 + 35+ô2)|2<(l+^Sy

< jexp(^- 5Jj exp(3.015) < exp(0.62X1/2iT*).

Then (7.36) and (7.20) give

G3 < (G0G1)1/4e-y/2exp(0.92X1/2e-x) =   {G0G1e-2yexp(3.68X1/2e-x)}1/4-

By (7.12), we obtain for log * > 1737,

4" Capaos*1'2*"*) < X(v +d/X)(l + 3.69Xl'2e-x)
v

= Xv + d + (Xv + d)3.69X1/2e-x

<Xv+d + 0.0003 < X(v + IIX).
Hence, (7.25) yields

«3<f!K>.-r<!^(^x»^) -2 Y 1/4

As a result of (7.35), we deduce for log * > 1737,

(7.37) IlKx) - *l,    |0(*) - *|< jte0(je)Af(u)C(u),

where

(7.38) L(v)= {v6/(2v2 -l)}1/4,

(7.39) Jf(„) = {(l + \/vX)(l + 3/2uA>-2X(1"u)2/u}1/4.

The function L(v) is real-valued for u > 1/V2 and, as is easily seen, has a mini-
mum value at y = \/3/4 .  If log * > 164, then v > u0 > l/\/2 by (7.29).  Also, if
log * > 448, then v > v0 > 0.78617 by (7.29).  Hence,

(7.40) ¿(ü)>(27/32)!/4    if  x>e164;      L(v) < 1    if  *>e448.

In addition, (7.30) and (7.29) yield for log * > 710

M(v) < exp I f-L + A. _ 2A (l _    )2\
4 \vx    2vX      v   U     u»' /

(7.41) e^yX^2l¥- ~5)}<E^
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where

(7.42) Eix) - exp J^- (log2^ -s) j - exp¿- {¿- - 22(1 - ut)2}.

It is clear from the first part of (7.42) that E(x) < 1 if log * > 721. By (7.37), (7.40)
and (7.41), it follows that (7.2) and (7.3) hold for all * > e1737.

Next, we prove the following strengthened form of (7.2) and (7.3) for 108 <
*<e1737:

(7.43) Mix) - *l,     |0(*) - *l< 0.802*e0(*).
By [10, (3.36)], we have

0 < \p(x) - 9(x) < 1.427 V*" < 0.00015*    if   108 < *.

The table in Section 5 then shows that for 108 < *,

|0(*) - *| < |i//(*) - *| + i//(*) - 9(x) < 0.00121* + 0.00015* = 0.00136*.

As a result, if 108 < * < e350 then

|0(*) - *|,    |^(*) - *|< 0.00136* ~^~ < |^i||. xeo(x) < 0.594*e0(*).
eo'e     )

Simüarly, if * > e3s0 then <p(x) - 9(x) < 10~75* so that for e3S0 < * < e1200 the
table yields

1 42 • 10_s
|0(*) - *|,      \Hx) -x\< xe0(x) < 0.768*e0(*).1.85 • 10_s

We continue in this way using the table in Section 5 for b = 1200,1400, 1500, 1600 and
the table below for b = 1650 and b = 1700; we thereby prove (7.43), and, hence, (7.2)
and (7.3) for 108 <*<e1737.

For smaller *, we proceed as in the proof of Theorem 9.* Inasmuch as e0(*) in-
creases for 0 < X < 1/2 and decreases for X > 1/2, we have that

(7.44) e0(*)>min{e0(2), e0(108)} > 0.11    if    2<*<108.

Now [10, Theorem 10] gives

0(*) > 0.89* > * - *e0(*)   if    227 < * < 108.

If 149 < * < 227 then e0(*) > 0.15, and if 101 < * < 139 then e0(*) > 0.16; apply-
ing [10, Theorem 10], we obtain

(7.45) 0(*) - * > -*e0(*)    if    * > 101

except for 139 < * < 149.   For these *, we have e0(*) > 0.159 and 0(*) > 126 >
0.845* > * - *e0(*) so that (7.45) is completely proved.  As a consequence of this
and an easy verification for 17 < * < 101, we get

♦Note that in (5.10), the correct range for x is given by 1 < x, but in (5.11) the correct
range is 41 < x.
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(7.46) Hx) >x- xe0(x)   for     * > 17.

Moreover, [10, (3.35)] and (7.44) give

Six) < Hx) < 1.04* < * + *e0(*)   if   2 < * < 108.

For 1 < * < 2, we have \p(x) = 0 < * + *e0(*).  On using (7.46) and (7.45), we
obtain the complete proof of (7.4), (7.2) and (7.3).

Corollary. Ifvl is defined by (7.29) and v € (l/\/2, 1) is the unique solu-
tion of k(v) = 1, then

(7.47) \Hx)-x\,    \9(x)-x\<xe0(x)E(x)L(vl)   if   e710<*,

(7.48) \Hx) - x\,    |0(*) - *|< xe0(x)M(v)L(v)    if    e687 < *.

Proof.   If log * > 687, then (7.39), (7.30) and (7.29) give

\X(l-v0)2) l_, il7X
M(v) > exp exp-i log2^   > 0.837.

|     2v0        \     ~r|8i/0A-    ö   j*

For arbitrary i/ > l/\/2 and 687 < log * < 1737, we obtain from (7.43) and (7.40)

IlKx) - *l,      I0(*) - *l< 0.802 xe0(x){M(v)l0.837] {L(v'\21l32)~ll4 }

(7.49) < xe0(x)M(v)L(v).
We use (7.41) and v1 > 1/V2  to get (7.47) for 710 < log * < 1737; the proof is
completed by using (7.37), (7.41) and (7.30) which imply \/3/4 <v<v1.  As v > v0
> 1/V2 for log * > I (6VL)(130), we deduce (7.48) from (7.49) and (7.37).

Thus, apart from tne most easily computed bound *e0(*) given by (7.2) and
(7.3), we have the more precise bounds of (7.47) and (7.48).  Of the latter two, (7.48)
provides a tighter bound, but it is more difficult to compute because of the effort
required to solve k(v) = 1 for v.  In the next section, we make further remarks on
these bounds.

We also note that the range for * can be extended in (7.47) and (7.48), but
there is no point in doing so because (7.43) is better as is the table,  Also, by a more
careful treatment of the estimates for T(-2, V"), T(- 1, V"), K2(z, U'), K^z, U') in
the work leading to (7.11) and (7.18), we could derive a version of (7.37) with a
slightly smaller M(v).

This Theorem 11 provides better results than both Theorems 2 and 3. For, e0(x) <
e(*) if 1 < * as a consequence of the fact that

e(*)/e0(*) = 0.257634(8/177r)-1/2(AH/4 + 0.96642Jr3/4)> 1,

as we see by evaluating the expression in the middle for X = 3(0.96642) where it
assumes its minimum value.  It follows from a remark just below (3.35) that e0(*) <
e(*) < e*(x) for 0 < X < 59; and if X > 59, then

e0(*) = V87T7¥ X-1'4 ■ X3>4e-X < 0.14^3/4e^ < e*(*).

Thus, e0(*) < e*(x) for all * > 1.
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It is clear from the proof of Theorem 11 that, with the present methods of
estimating the various sums and integrals, the choice m = 2 is optimal although the
main portion of the paper contains statements that might appear to suggest that m = 1
is the best choice.

It is interesting to note that for large * each of the terms S3(2, 8) and S4(2, 8)
contributes about xh8 ~ lAe0(x); the remaining contribution comes from lAm8 = 8 ~
Ví60(x) so that the three terms indicated contribute a total of about e0(*).  We also
note that 8 —» 0 as * —► °° and that 8T2 —► 2.

We remark that incomplete Bessel functions have been studied in the book of
Agrest and Maksimov [1].  Our function Kv(z, *) of (2.1) does not appear in this work
which assigns a different meaning to this symbol on page 26 of the English translation.
See Binet [2], where K1,2(z, x) is expressed as the sum of two terms involving the
complementary error function; cf. the work above beginning at (2.20).  Also, Faxen
[5] gives series expansions in ascending powers of z (which are not useful for our
purposes).

8.  Numerical Bounds for Moderate Values of*.  In this section, we show how
the results of Section 4 can be improved.  One source of improvement is through the
replacement of the D of (4.3) by a larger value.  Another results from using closer
approximations to r(v, x) in Theorem 5 than those given in (4.12) and (4.13).  A third
source stems from the selection of m = 2, rather than m = 1, for large b, coupled with
the proper choice of T2 rather than that given by (3.36).

To facilitate the discussion of the latter point, let us define

(8.1) r_ltaV/W

earlier, in (4.2), the quantity on the right was called Tt, but we now leave T1 unspeci-
fied for the moment.  It is clear from (7.7), (7.14), (7.8), (7.15) and (7.5) that

(8-2) S3(m, 8) + S4(m, 8) < h3(T2)/(2n) + e3(T2),

where

h3(T) = l^fï J^oOOlog ¿ dy + RmiSy¡-m /"«»log ¿ dy,

e3(T) = qiT)   - 2-^ J^0(y)log ¿ dy + Rm(8)8~">$~<t>m(y)\og ¿ dy\

+ R(T)4>0(T){2 + m8+ 2Rm(8)i8T)-m}.

As e3(T2) corresponds to the last term in (7.26), it is easy to see that it is small com-
pared to h3(T2) so that we can approximately minimize the right side of (8.2) by
minimizing h3(T2).  (If, in place of (7.6), we only assumed that A < T2 < W0 as in
Theorem 5, then the form of e3(T) changes, but it is still small compared with h3(T))
We have
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ti3(T) = 2-±f^ *o(r)log¿ -JRm(6)S-'"0m(Dlog¿

(8.3) = <t>0(T)\og £  • j 2Jy^ -Rm(8){8T)-m\f

and this is clearly negative, zero or positive for T > 2ir according as T < T0, T = T0
or T> TQ.  Consequently, h3(T) is minimal for T = TQ.  Hence, in Theorem 5, we
should choose T2 = T0 provided T0> A. If the last condition is not satisfied, then
Theorem 4, corresponding to T0 = 0 (or, equivalently, T0 = A), should be used.

We note from (7.21) that in Theorem 11 we had defined T2 and 5 in such a
way that T2 = (G1/G0)1lm • 2/6 which does not exactly coincide with the optimal
choice T0 of (8.1).  The reason for this is that T2 essentially minimizes an upper bound
for h3(T) whereas TQ minimizes h3(T) itself.  Nevertheless, (8.1) and (3.6) show that
8T0 —► 2 as ô —► 0 so that T0 ~ 2/8 ~ T2 as 8 —► 0; this confirms that the choice of
T2 in Theorem 11 is asymptotically best.  However, for the § and T2 of (3.35) and
(3.36), we have T2 ~ c0/8 where c0 is just about (17/v^r)1'2 = 3.097; hence, the T2
of (3.36) is about 50% too large and should not have been used in calculating
the last three entries in the table on page 267 of the main part of this paper.

The situation for S^m, 8) + S2(m, 8) is entirely similar.  If we leave Tx and D
unspecified but subject to 2 < D < A and T1 > D, then, proceeding as in the proof of
Lemma 9, we get

(8-4) Syim, 8) + S2(m, 8) < h^T^/tt + ^(T,),

where

KiT) = ^ j^log ¿ dy + Rm(8)8- fTy—\0gl-dy

+ (2 + mS> \g(D) + ¿ log2^ j-,

<*>- = G**ir-i|M-0'*'|0<y<D " ( x ' )

(8'5) / \ \
+ ¿- <0.137 log D + 0.443 (log log D + j^ j + 2.6 - N(D)> .

ei(T) = ̂ i2_±^i+0^\_     *„(«) (o.i37 + ̂ f)}lW      r i   2    \ log/)/   (m + i)(ôr)mV        logr/j

+ y j2-^ ~ Äm(8X«7)"'"} W7) - TO - *(r» •

Here, also, e^T^ is small compared with /ZjiJTj).  Furthermore,

h\(T) = 2-±f^ T-Hog £ - Rm(8)8-mT-m-Hog £

r-1iog|-{2-^-i?m(S)(6r)-'»}.= T-l
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(8.6) C(D) = 4irK).137 + 0.443 \
log D / '

Referring to (8.3), we see that for T > 2u, h x (T) is minimal for T = T0.
Let us put

0<y<D x /

If we apply (8.4) with T1 = T0 and replace the term 0.443/log T1 appearing in
eAT\) by 0.443/log D, then we immediately obtain the following generalized version
of Lemma 9 where D is no longer specified by (4.3).

Lemma 9*. Let T0 be defined by (8.1) and satisfy T0 > D, where 2<D<A.
Let m be a positive integer and let 5 > 0.   77zezz Sx(m, 8) + S2(m, 8) < Í2J where

\2
(8.7) Í2* = 2 + m8

4zr 2tt m
log ̂  + - I   + 4nG(D) + 1 mC(D)

m'     (w+1)7-0j'

and G(D), C(D) are defined by (8.5) and (8.6).
The early zeros pn = H + iyn of f(s) have been calculated for 1 < n < 12,556

to an accuracy better than 2 ■ 10-7 by R. Sherman Lehman as stated in his paper
[1966].   From these zeros, the following information was calculated; we note, in
passing, that G(D) can be shown to have a limit as D —> °°.

D
7,436.76651
8,929.80867

12,030.00896

N(D) S(D) 4nG(D) <      C(D) >
7,192
8,896

12,555

3.9674 2351
4.1761 6893
4.5275 6275

-0.210075 2.34
-0.211150 2.33
-0.212544        2.31

(This may be compared with our earlier choice D = 158.84998 which yields N(D) =
57, 4ttG(D) < 0.038207 and C(D) > 2.82.)  This table was extracted from calculations
performed by Professors Lehman and de Vogelaere of the University of California at
Berkeley to whom we express our indebtedness and thanks. The computations were
done in double precision with fifty-six bits or to more than sixteen significant decimal
digits, and due allowance was made for the precision with which Lehman's values of
yn were computed.  The values selected for/) were slightly below some yn + 1 so that
N(D) = n and S(D) = S(yn).  The effect of using the above values of D rather than that
in (4.3) is to lower the value of £l1 in Theorems 4 and 5 thereby obtaining a smaller
value of e in (4.1).  Of course, in Theorems 4 and 5, S2j is to be replaced by Í2J, and
Tx is to be replaced by TQ.

We also note that (4.12) and (4.13) can be strengthened considerably by integrat-
ing by parts k + 1 times.  If * > 0 we get

(8.8)        r>, *) = Gk(v, x) + (v~\\v-2)---(v-k- \)Y(v -k-l,x),

where

(8.9)

For v < 1, the last term in (8.8) has the same sign as (-1)* + 1.  As a result, if * > 0
and v < l,then
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(8.10) G2,-M x) < I>, *) < G2k(v, X)

for all positive integers / and k.  The most advantageous choice of / and k is such that
2/ - 1 and 2k are close to * + v — 1.

It may also be remarked that the proofs of Theorems 4 and 5 are facilitated by the
observation that the definitions (3.7)—(3.10) show that the S(m, 8) decrease as *
increases.  Hence, one first applies Lemma 8 using * and then replaces * by eb in all
Sj(m, 8); finally, the resulting S(m, 8) are estimated.

Using the various devices mentioned, we have recalculated the table in Section 5
of this paper to get the one given below. We have used Lemma 9* with the first D
given in the small table for b < 18.7; the second value of D was used for 19.0 < b <
19.5; and the third value of D was used for b > 20 although this did not produce any
decrease in e for b > 40. We have added entries for b = 25.32843, b = 28.78 and b =
550 (100) 1050 (200) 1450 (100) 1650, 1950. For b > 1750 we have used Theorem 5
and (8.10) with T2 = T0 and m = 2 thereby getting smaller values of e. In addition, we
have adjusted the old values of e downward by 1 or 2 units for 6 of the values of b
satisfying 800 < b < 1350; as a result, the value of e given in the table below probably
does not exceed the value stipulated by Theorems 4 and 5 by more than 2 units
throughout the table.

If it is not convenient to use Theorems 4 and 5, then the table will give better
bounds for |i//(*) - x\/x than Theorem 11, provided log * < 2000.  Also, the table
gives better results than (7.47) if log * < 1900; and if log * < 1850, then the table
is better than (7.48).   For larger values of* and depending on how near log * is to the
next largest entry b in the table, any one of (7.48), (7.47) or Theorem 11 may provide
better results than the table.

We can illustrate the degree of precision of the various bounds by the following
small table:

log*
e

(table)
eo00
(7.1)

value

e0(x)E(x)L(v1)

(7-47)
value %

e0(x)M(v)L(v)
(7.48)

value %

7.6998(-7)
2.3507(-9)
2.1575Í-14)

2000    6.6880(- 8.1913(-7)
2.5021 (-9)

10000    2.0331(-14)  2.2817(-14)     12.2

Thus, the last entry shows that for log * =
10-14 is 4.2% in excess of the tabulated value of e = 2.0331
ing figures for log * = 100,000 are about 6%, 3%, 2%.

15.1
8.9
6.1

7.5719(-7) 13.2
2.3071 (-9) 6.8
2.1183(-14)      4.2

10,000 the value e0(x)M(v)L(v) = 2.1183 •
10-14.  The correspond-

9.  Applications.  Apart from proving the new Theorem 12, we strengthen the
results of Section 5. We need the following result which is an improved version of a
result communicated to us by Robert Mandl and included here by his kind permission;
this result will be applied with h(x) = * and a = 1. To Mandl is also due the idea, occur-
ring in Theorem 12, of using numerical information on the gaps between primes. In
what follows, pn is the «th prime so that p1 = 2.
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Lemma 10. Let 77 > 0, let h(x) > 0 be continuous and monotone increasing for
x > a, and let P\ P be consecutive primes such that a + r¡h(á) < P' <P.  Let Q be
real and suppose that ip„ + 1 - P„)/h(pn) < r\ for all n such that P<pn<Q.  Let x'0
> a be the unique solution ofx+ r¡h(x) = P' and *0 > *'0 be the unique solution of
x + ij/z(*) = P.   Then *0 < P, and the open interval (*, * + r,h(x)) contains a prime for
all x such that *0 < * < Q.  If P' > x0, then the interval (*, * + r¡h(x)) contains a
prime for all * in the wider range x'0 < * < Q; but if P' < * < *0, then (*, * + r)h(x))
does not contain a prime.

Proof   Clearly, g(x) = * + r¡h(x) is continuous and strictly increasing for * > a.
As g(a) < />' <P and g(x) —► °° as * —► °°, we see that the equations g(x) = P', P have
unique solutions *'0,*0 satisfying a <*'0 <*0. Also,g(P) >P = g(x0) so that P>*0.

First, suppose that P < * < Q.   Let pn be the largest prime not exceeding *; then
Pn + i ^ x and, as * > P, we have pn > P as well as pn < Q.  Hence

* < Pn +1 < Pn + ^(PB) = S(P„) < SÍ*)

so that (*, g(x)) contains the prime pn + l-  Second, if *0 < * < P, then

* < P = g(x0) < g(x);

hence (*, g(x)) contains the prime P for * G (*0, P).  Therefore, (*, g(x)) contains some
prime for all * S (*0, Q].  If P' > *0 and *'0 < * < P', then the same argument shows
that (*, g(x)) contains the prime P'\ as P' > *0, it follows that (*, g(x)) contains a
prime for all * satisfying *'0 < * < Q. But, if P' < * < *0, then

P'<x<g(x)<g(x0) = P

so that, since P' and P are consecutive primes, the interval (*, g(x)) contains no prime.
Theorem 12.   77ze open interval (*, * + */16597) contains a prime for all x >

2,010,759.9.
Proof.   Let

00

\(x) = Ux) - 9(x) - 0(*1/2) - 0(*1/3) =  Z 0(*1/fc).
k=4

If*<242=e29-11218-,then0(*1/fc) = OforA:>42. Let v0 = 617 = e28-77611-,

v = 3.155 • 1012 = e28-78000-, and i>, = 14094 = e2900254- ; then v0 < v < v,.
For t>0 <* <^ < t>j and k > 4, we have

O<0(y1/fc)-0(*1/fc)= Z logP< Z logp = 0,
x1lk<p<y1l'C vyk<p<v\lk

except for k = 4, 5, 8,18 where, summing over five consecutive primes when k = 4,

I log 1361 + • • • + log 1399 < 36.136    if it = 4

log 317, log 37, log 5    if k = 5, 8, 18.
Hence, if i>0 < * < j> < v1

(9.1) X(y) - X(x) < 36.136 + log 317 + log 37 + log 5 < 47.12.
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For * > v, the table below as well as (5.2), the Corollary of Theorem 6, and (5.1) give
9(x) = \p(x) ~ 0(*1/2) - 0(*1/3) - X(*)

< (1 + 3.01242 • 10_s)* - 0.998684*1/2 - 0.985*1/3 - X(x)

>(1 -3.01242 • 10"5)*- 1.001102Í*1/2 + *1/3)-X(*).

Putting rj0 = 6.025179 • 10_s, we obtain for v < * < e29, as a result of (9.1),

0(* + t?0*) - 0(*) > (1 - 3.01242 • 10_5)(1 + rj0)* - (1 + 3.01242 • 10"5)*

- {1.001102(1 + T)0)112 -0.998684}*1/2

- {1.001102(1 + tj0)1/3 - 0.985}*1/3 - {X(* + t?0*) - X(*)}

> {1.5749 • 10-9 -2.4482 • 10~3*-1/2 - 1.6123 • 10_V2/3 -48*-1}*

= f(x)x,

say. Clearly, /(*) is increasing; as we easily check that f(v) > 0, it follows that /(*)
> 0 for all * > v. Hence, 0(* + 7j0*) - 0(*) > 0 for v < * < e29. If * > e29, then
[10, (3.36)] gives, similar to the above,

0(* + t?0*) - 9(x) > \jj(x + 7j0*) - 1.43V0 +n0)x- Hx)

> (1 - 2.8856 ■ 10_5)(1 + t?0)* - (1 + 2.8856 • 10_s)x - 1.44V*

> (2.53 • 10_6V* - 1.44)^ > 0.
As 0(* + t?0*) - 0(*) > 0 for all * > v, it follows that the half-open interval
(*, * + T50*] contains a prime. Putting r? = 6.02518 • 10-5 > r?0, we see that
(*, * + Tj*) contains a prime for each * > v.

Now Brent [3] has shown that pn+1 - pn < 652 for all pn < 2.686 ■ 1012; in
a private communication, he has informed me that pn+1 - pn < 652 is valid for all
pn < v.  Let P = 11,622,911 ; then, for all n such that P < pn < v, we have

(Pn+1 - Pn)/Pn < 652/P < 5.61 • 10-5 < T?.

Hence, (*, * + tj*) contains a prime for all * > P as a result of Lemma 10.  The
Appel-Rosser table [1961], or the table in Lander and Parkin [8], shows that the
largest prime gap up to P does not exceed 154.   If Pt = 2,745,209 and Px <pn<:P,
then (pn+1 - Pn)lpn < 5.61 • 10_s so that (*, * + tz*) contains a prime for all * >
P1.  Putting^ = 2,010,881, the D. N. Lehmer [9] and Appel-Rosser tables show
that pn+1 -pn < 112 for P0 <pn < Pt ; for these n, (pn+1 - pn)/pn < 5.57 • 10~s
< tz.  Lemma 10 now shows that (*, * + r¡x) contains a prime for all x > P0/( 1 + tj)
and hence for * > 2,010,759.9.  As tj < 1/16597, this completes the proof.

We observe that if x1 = 2,010,759.8, then xl > 2,010,733 = P149689 and
*! +*j/16597 <*j + 121.2 = 2,010,881 = p149690; thus, (xv *j + x,/16597)
does not contain a prime.  Hence, the stated lower bound 2,010,759.9 for * is

I
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essentially best possible. We remark that Mandl has worked out a comprehensive set
of alternative versions of Theorem 12 which are valid in wider regions for * but have
16,597 replaced by correspondingly smaller values.

We now indicate how to modify the proofs in Section 5 to obtain stronger
inequalities.  In place of Theorem 6, there is the following result which, however,
yields no improvement of the Corollary to Theorem 6.

Theorem 6*.  We have

(5.1*) 0(*)< 1.001 093* if    0<x,

(5.2*) 0.998697* <0(*) if    1,155,901 <*,

(5.3*) Hx) - 9(x) < 1.001 093 V* + 3*1'3    if    0 < x,

(5.4*) 0.998697 V* < Hx) ~ #(*) if    121 < *.
Proof.   As in Section 5, it suffices to establish (5.1*) and (5.2*).  Putting c =

616.78 72256... we note that
26

(9.2) Hx) - 0(x) - 9(x1'2) = Z  0(*1/k) = c,
fc = 3

for all * satisfying 108 < * < 4673 = ei8-43898••-.  if 108 < * < 100072 then i//(*)
- 9(x) = 0(9973) + c > 1.04980 • 10"4*.  By examining each of the intervals
[100072, 100092), [100092, 100372), [100372, 100392), [100392, e18-43), we get

(9.3) Hx) -0(*)> 1-04517 • 10"4*    if    108 <*<e18-43.

Using  \Hx)-x\ < 1.19721 • 10-3* from the table,  we obtain (5.1*) for 108 <*
<e18-43.  Ife18-43 <*<e18-45, we have i//(*)-0(*)-0(V*)> c.  Using [10,
Theorem 10], we get

Hx) - 9(x) > 0.98 V* + c> 1.02563 • 10~4*

and this leads to (5.1*) fore18-43 <*<e18-45.  If * > el8AS, then [10, Theorem
10] gives

Hx) - 9(x) > 0(V*) + c + log 467 > 0.98 V*" + c + log 467.

Applying the table to the intervals [e18AS, e18-5) and [e18-5, e18-7), yields (5.1*)
fore18-45 <*<e18-7.  For * > e18-1, we use 0(*) < i//(*) and the table to deduce
(5.1*). As (5.1*) holds for 0 < * < 108 by [10, (4.5)], it has now been proved for
all * > 0.

By the same reasoning as that which established (9.3), we can prove Hx) ~ 9(x)
< 1.05128 ■ 10-4* for 108 < * < e18-43.  For these *, we then deduce (5.2*).  If
ei8.43 <x<e18-45, we have i//(*)-0(*)-0(v^)<c + log467;we then apply [10,
(4.5)] and the table to obtain (5.2*) for the * mentioned.  If * > e18AS, then [10,
(3.39)] gives

Hx) - 9(x) < 1.02*1'2 + 3*1'3 < 1.14171 • 10-4*;

an application of the table again yields (5.2*) which has therefore been established for
all * > 108.  We use [10, (4.6)] for 2,370,000 <* < 108 and then the Appel-Rosser
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table to prove (5.2*) for * > 1,346,533.   The proof of (5.2*) is completed by a tedious
use of the Lehmer table which also shows that (5.2*) is false for * just a bit below
1,155,901.

Theorem 7*.   We have

(5.5a*) \Hx) -x\< 0.022 0646*/log*      if     161,971 <*,

(5.5b*)      - 0.022 0646*/log * < Hx) ~ * if     89,909 < *,

(5.6*) |0(*) - *|< 0.023 9922*/log *     if     758,711 < *,

(5.6a*) 0ix) - x < 0.020 1384*/log *     if     1< *,

(5.6b*) \Hx) - *l,    I0(*) - *l< 0.007 7629*/log*   if e22 < *.

Proof.   We first prove (5.6b*).   If e22 < * < e23, we apply the table to get

\Hx) -x\< 2.9941 • 10-4* < 0.00689*/log *.

By [10, (3 36)], we have

0 < Hx) - Six) < 1.43V* < 0.00053*/log *

so that (5.6b*) follows for e22 < * < <?23.  We continue to use the table for b = 23,
35, 400, 550, 650(50)1050, 1150, 1350 and thereby get the result for e22 < * <
e1950.   For * > f?I9s0, we apply Theorem 11 to complete the proof of (5.6b*).

Next, we apply the table for b = 19, 19.5 and use (5.6b*) to get

(9.4) \Hx) -*l< 0.018 7514*/log*   if ei9<x.

By applying the table for b = 18.45, 18.5, 18.7 and using (9.4), we obtain

(9.5) |i//(*)-*|< 0.021 9022*/log*    if    e1845<*.

Finally, we use the table with b = 18.42068 and 18.43, thereby establishing (5.5a*) for
108 <*.

If 643,000 <* < 108, then [10, (4.12) and (4.5)] yields

(9.6) Hx) - * < 0.022 0646*/log*.

We then use [10, (4.12)] and the Appel-Rosser table to verify (9.6) for 205,950 <
* < 108.  By using the value for 0(205553) in this table and considering each of the
intervals [205553,205721), [205721, 205951), we easily see that {* - 0(*)VV* >
0.866 throughout [205553, 205951); from [10, (4.12)] we get (9.6) for 205,553 <
* < 108.   Additional applications of [10, (4.12)] and the Appel-Rosser table give a
verification of (9.6) for 161,971 <* < 108.

We use [10, (4.11) and (4.6)] to obtain (5.5b*) for 332,000 <*< 108. An
application of [10, (4.11)] and the Appel-Rosser table gives (5.5b*) for 89,909 < *
< 108.  This completes the proof of (5.5b*) and, hence, of (5.5a*).

To prove (5.6a*), we first note that i//(*) - 9(x) has the constant value c = c +
0(9973) if 108 < * < 100072 where c is given by (9.2).  On using the table below, as
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18.42
18.43
18.44
Í8.45
18.5
18.7
19.0
19.5
20

21

22

23

24
25

26
27

28
29

30
35
40
50
75

100
150
200
250

300
350

400
450
500
550
600
650
700

2
2
2

2

2
2
2

2
3

3
3
4
5
6
8
9

11
11
12
12

12
12

12

12

12
11
11
10

10
10

9
9
8

2.69
2.68
2.67
2.66
2.61
2.45
2.24
1.97
8.47
5.88
4.61
2.11
1.18

7.75
4.69
3.90
3.05
3.02
2.76
2.73
2.72
2.70
2.66
2.61
2.53
2.64
2.54
2.67

2.56
2.46
2.59
2.48
2.63
2.51

2.39
2.55

(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-5)
(-5)

(-5)
(-5)
(-5)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)

(-6)
(-6)
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b

.1976

.1930

.1885

.1839

.1615

.0765
9.6161
8.0011
6.5759
4.4060
2.9941
2.0171
1.3706
9.3932
6.5552
4.7352
3.5927
2.8856
2.4527
1.8314
1.7748
1.7583
1.7285
1.6993
1.6424
1.5830
1.5257
1.4682
1.4104
1.3548
1.2968
1.2407
1.1854
1.1288
1.0748
1.0196

(-3)
(-3)
(-3)
(-3)
(-3)

(-3)

(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-4)
(-5)

(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)
(-5)

730

800
SiO

900
950

1000

1050
1100
1150
1200
1250
1300
1350
1400

1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2100
2200

2300

2400
2500
2700
3000

3500
4000

10000

m

2.41
2.28
2.45
2.30
2.16
2.35
2.18
2.03
2.24
2.06

1.88
2.16
1.94
1.74
1.56
1.41
1.26
1.48
1.29
1.13
9.56
7.96
6.64
5.55
4.65
3.90
2.77
1.98
1.42

1.03
7.54
4.09
1.70
4.30
1.19
1.09

(-6)
(-6)
(-6)

(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)

(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-7)
(-7)
(-7)
(-7)
(-7)
(-7)
(-7)
(-7)
(-7)
(-7)
(-8)
(-8)
(-8)
(-9)
(-9)
(-14)

9.6493
9.1328
8.5876
8.0655
7.5754
7.0481
6.5529
6.0923
5.6055
5.1392
4.7118
4.3179
3.8789
3.4850
3.1312
2.8135
2.5283
2.2220
1.9368
1.6887
1.4701
1.2680
1.0861
9.2613
7.8760
6.6880
4.8169
3.4752
2.5169
1.8319
1.3405
7.2946
3.0427
7.7413
2.1591
2.0331

(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-6)
(-7)

(-7)
(-7)
(-7)
(-7)
(-7)
(-7)
(-7)
(-8)
(-8)
(-9)
(-9)
(-14)

For b = 18.42068, m = 2 and 6-2.69(-4), one gets f < 1.19721(-3).

For b = 25.32843, m=7 and ô = 5.90(-6), one gets € < 8.32458(-5).
For b = 28.78, m=ll and Ö = 3.03(-6), one gets f < 3.01242(-5).

well as the Rosser-Walker table, we obtain for these *

9(x)-x = Hx)-x-c' < 11.19721 ■ 10-3log *-1.0512 7785-lO4^!,—
/ *    [ log .

< 0.020 1212*/log*.
We continue in this way with the intervals [100072, 100092), [100092, 100372),
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[100372, 100392), [100392, e18-43) thereby proving (5.6a*) for 108 <* <e18-43.
For x>e18A3, we have Hx) - 9(x) - 0(V*) > c so that we obtain from [10,(3.37)]

0(*) - * < {Hx) - *} - 0.98 V* - c.

Using the table for b = 18.43, 18.45, 18.5, 18.7, we obtain (5.6a*) for 108 <* <e19.
Also, if * > e19, then 9(x) -x < <//(*) _* and (9.4) establish (5.6a*) for all * > 108.
Finally, (5.6a*) holds for 1 <* < 108 by [10, (4.5)].

Proceeding as above, we find that for 10   <* < 10007

0(*)-*>-|l.19721 •10-3log* + c'1^|1^7  >-0. 023 9900 log*

inasmuch as the expression inside the braces is a decreasing function of * in the stipu-
lated range of*.  Continuing as above, we obtain

(9.7) 0(*)-*>-0.023 9922*/log*   if     108 < * < e18'43.

If e18-43 < * < e18AS, then !/>(*) - 9{x) - 0(V*) < c + log 467; we apply the table
above and [10, (4.5)] to obtain (9.7).  If e1845 <* < e19, we use [10, (4.12)] and
(9.5) to obtain (9.7).  If e19 < *, we use [10, (3.36)] and (9.4) to obtain (9.7)
which has now been proved for all * > 108.  We extend the range of * to * >
1,400,000 by using [10, (4.6)].  Finally, the Appel-Rosser and Lehmer tables are used
to extend (9.7) to * > 758,711. On using (5.6a*), we see that (5.6*) has been
completely proved.

Of these results, only (5.5a*) and (5.5b*) concerning i//(*) may hold in a wider
range for *. In place of the earlier Corollary 2 of Theorem 7, we have the following
result which is proved by using the tables of Appel-Rosser, D. N. Lehmer and Rosser-
Walker.

Corollary 2*. For d < *, we have

(9.8) x-x/ic log*)<0(*)

for each of the following pairs of values of c and d:

41 40 39 37 35 29 25

ci II 758,231   | 678,407    |644,123    1486,377 |   468,577  | 315,437 |   302,969

23       |       19       |      18

d II 181,889  | 120,557

9

89,513    | 70,877 I    48,751    |  40,813 32,353

9/2     |

20,873

7/2

19,421

10/3

11,923

3

8,623

5/2

5,407

7/3

3,527

2

3,301

9/5

2,657

5/3

227

1,973

7/5

149

1,429

9/7

101

809

7/6

67

599

8/7

59

563

1

41

347

4/5
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We conclude with the following strengthened and modified form of Theorem 8.
Its proof, apart from using |* - [*] | < 1, is similar to the proof of Theorem 8 and is
therefore omitted.  By introducing additional values for b in the range 900 < b <
1950, it might be possible to reduce the listed values of tj2, t?3 and t?4 to 7.4133,
9562.9 and 1.4594 • 107, respectively.

Theorem 8*. //* > 1, then

(5.8*)       |0(*)-*l,    |0(*)-[*]l,    \Hx)~x\,    \Hx)~ [x]\  < Vkxl\ogkx,

where

(5.9*) t?2 = 8.0720,    t)3 = 10644,    n4 = 1.6570 ■ 107.

With regard to the bounds (5.6*), (5.8*) and (7.3) for |0(*) - x\, we note that
0.023 9922      , 8.0720 10644 1.6570 • 107 ^       , *
—;-* < —:      *   <   -*   <-x   <   eJxpc

l0§* log2* log3* log4*
if log * does not exceed 336, 1318, 1556, 1839, respectively.

Note Added in Proof.   From Table 1 of Brent [4], the extended version of this
in UMT File 4, Math. Comp., v. 29, 1975, p. 331, and the updated version of this in
UMT File 21, Math. Comp., v. 30, 1976, p. 379, as well as the more detailed copy in
Brent's possession, it is possible to improve a number of the results in the present
paper.  Thus, one can show that 9{x) < * for 0 < * < 1011 ; from this one can im-
prove (5.1*) to get 0(*) < 1.000 081* for all * > 0.   Also, (5.6b*) holds for all * >
1.04 • 107.  These and other improvements will be dealt with in a subsequent paper.
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