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Sharper Bounds
for the Chebyshev Functions 6(x) and \f/(x)

By J. Barkley Rosser and Lowell Schoenfeld *

Abstract.   The authors demonstrate a wider zero-free region for the Riemann zeta func-

tion than has been given before.   They give improved methods for using this and a re-

cent determination that the first 3,502,500 zeros lie on the critical line to develop

better bounds for functions of primes.

0.   Introduction.  As this paper is dedicated to D. H. Lehmer on the occasion of
his 70th birthday, it is particularly appropriate to remark on Lehmer's long time interest
in the application of numerical computation to problems in number theory.  In particu-
lar, his papers [1956A, 1956B] reporting that the first 25,000 zeros of the Riemann func-
tion f(s) lie on the critical line led the way in the application of modern computing ma-
chinery to the study of the zeros of this function. In default of a proof of the Riemann hy-
pothesis, the best estimates for   i//(x)  and  dix),  and hence of tt(x), pn   and other
functions of the primes, depend on the current state of knowledge of the zeros of f(s).

The present paper is devoted to obtaining improved estimates for   4>{x),  the log-
arithm of the least common multiple of all integers not exceeding x,   and  0(x),  the
logarithm of the product of all primes not exceeding x.   We reserve for another paper
the application of these results to  tt(x)  and pn,  simply remarking here that they per-
mit the deduction of such inequalities as  7r(2x) < 27r(x)  for all x > 11   and  d{pn) >
«log«   for all « > 13.  We are also able to show  (px + p2 + ••• + pn)/n < xhpn
for n > 9,  as conjectured by Robert Mandl.

To a considerable extent, this paper represents an up-to-date version of part of
Rosser and Schoenfeld [1962], which will hereafter be cited as  R-S. We also make
considerable use of Rosser [1941].   We assume familiarity with these papers, and shall
use notation and results from them freely.

Rosser, Yohe and Schoenfeld [1969]** announced that the first 3,500,000 zeros
of f(s)  lie on the critical line.  By applying the stronger result contained in Theorem
4 of Lehman [1970], we are now able to show that the first 3,502,500 zeros are on
the line.  Our computations extended out to Gram No. 3,502,504; between here and
the smaller Gram No. 3,502,483,  f(s)  behaves very regularly so that all of the Gram
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244 J. BARKLEY ROSSER AND LOWELL SCHOENFELD

numbers in this interval separate the zeros of f(s).  Letting N{T)  be the number of
zeros p = ß + iy  of f(s)  such that  0 < y < T,   there is an approximation F{T)  to
N{T) given in Rosser [1941, p. 223].  We define A   as the unique solution of F{A) =
3,502,500; the calculations of Rosser, Yohe and Schoenfeld establish that N{A) =
3,502,500  so that N{A) = F{A).  We note

(0.1) log.4 = 14.45443 30529 858 •••,      A = 18 94438.51224

Throughout this paper, the inequality sign is used in the strict mathematical
sense; if A < B  is written, where A   and B  contain approximations, then with the
indicated approximations the inequality does indeed hold.  We have not always given
the very best bounding decimal approximation but have frequently given less strict (but
correct) bounds which are easier to verify.  We occasionally use the sign  =  to indicate
approximate equality with the approximations being accurate to 1 or 2 units in the
least significant digit shown. Finally, we use z   to denote the complex conjugate of
z,   Rz   to denote the real part of z,   and   lz   to denote the imaginary part of z.

It is our pleasure to express our thanks to John W. Wrench, Jr. of the U. S. Navy
Carderock Laboratory for the computations he performed for us.  We also wish to
thank Dianne Hollenbeck and Emerson Mitchell of the Mathematics Research Center
for their help with calculations.

1.  A Zero-Free Region for  f(s).  In this section we give such a region whose
form is essentially that of the classical one of de la Vallée-Poussin.  The result, stated
in Theorem 1, is substantially better than the corresponding result, Theorem 26 of
R—S.  The improvement is due primarily to the work of Stechkin [1970B] with other
improvements resulting from a better nonnegative cosine polynomial and from the
knowledge that all zeros  p = ß + iy  of f(s) for which 0<ry| <^4 lie on the critical
line.  Although better asymptotic zero-free regions are known from the work of Vino-
gradov and others, these regions only become wider at heights beyond the main interest
of this paper.

We begin with the following result suggested by the work of Stechkin [1970B].
Lemma 1.  Let s = a + it and s0 = a0 + it  where  a0 > a > 1.  Let

qo(ffo ~ 0 .      „       .s   .   (P      1     \P =-r">      \ = (2a-l)min <-,-:>,
(2a0- l)a \a 2a0-l)

and  0 < R6 < 1.   Then

(i.i) R(^+___L_UXR/_L_+__L\.
Vs ~b     s-l+b/ \so~b    s0-l+bJ

If, in addition,   lb = t,   then

(1.2) min¿R—^,R-1—= ) > P R ( —~h +-!-=V

Proof.   Let  a = Rb.   For (1.1), it suffices to deal with  0 < a < Vz,  since
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CHEBYSHEV FUNCTIONS   6(x)   AND   ii(x) 245

otherwise we consider  b' = I — b .  Let  Q  be the quotient of the left side of (1.1)
by the real part on the right side of (1.1).  Replacing  r  in the proof of Lemma 2 of
Stechkin [1970B] by  o0 > a, we find that

2a - 1   ^ 2a- 1 = 2a - 1
" Fía, t2) " max{F(a, 0), F(a, °°)}    max{0(a), 2a0 - 1} '

where  F(a, u)  and  0(a)  are as defined by Stechkin.  Inasmuch as

we see that  ß>X so that (1.1) holds.
To obtain (1.2), it suffices to prove it with the left side replaced by   Rl/{s - b) =

l/(a - a).  The quotient of this by the real part on the right side of (1.2) is   l/0j(a)
where

0,(a) =- +-r—— < 0,(0) = -.
1V        a0 - a     a0 - 1 + a       ' P

This completes the proof of (1.2), which is essentially Remark 2 of Lemma 2 of
Stechkin [1970B].

We define for  a > 1

(1.3) o0 = tt{y/8o2 - Ao + I + 1),

,. .s 2a-I        (I_J_)i/2
U   J K°     2o0 - 1       \ 2    4a - 1 + l/(4a - 1)/     '
Then

(1.5) X = p = k0 > l/y/s,      o0>a.

For 0 < x < 0.03  we easily verify that

y/~5 < V5 + 12x + 8x2 < V^ + 2.68847x;

putting x = a - 1   and assuming   1 < a < 1.03,  we get

(1.6) t < a0 = ^V5 + 12x + 8x2 + \h < t + 1.34424(a - 1) < 1.659,

where  r.= Yi{y/5 + 1)  is the golden ratio.  Also

(1.7) k0< 0.458    if   a < 1.03.

If 0 < x < 1, then

(5 + 12x + 8x2)(l+|x)2 (l-§x2)2

< 5 + 20x + 20x2 - 21x3 - 52x4 - 20xs + 23x6 + 23x7 + 6x8

< 5 + 20x + 20x2 = 5(1 + 2x)2.
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246 J. BARKLEY ROSSER AND   LOWELL SCHOENFELD

If  1 < a < 1.03   and x = a - 1,  then

1±2*- >^(l+ix\(l_262
V5 + 12x + 8x2      V5    V       5   / V       25'

(1.8)
>~r=r U +f(>- O" 1.06496(a- 1)4.

The following is the principal result needed for the proof of Theorem 1.
Lemma 2. Let P{d) = Z"k=0ak cos kO  be such that all ak>0 and P{d) > 0

for all real  d.  If ß + iy is a nontrivial zero of f(s) such that ß + \h. and  1 < a <
1.03, then

■¿ZJ--¿ZT\ <—^ ^olo8l7l +Ä +0.187 6352 a0(a- 1)_o
n - R r,  -   1   ^ ?

+ 372   fcf, fc2

where  C is the Euler-Mascheroni constant, and

+ —   t^1^2     ¿-   7.2 '

A0=ax+a2 + ■•• +an,      B = a0 [k0 -^—r - C\ —^S. £   akl°g — .

/Voo/   Using the series for  f'(s)/?(s) we get

t   akRÍK0t{o0+ikt)-tio + ikt)}
k

(U0) Mm)   / K
«za°

From Landau [1909, pp. 316-317], we get

(i.ii) ££) = ft—L. _I£.'/!+ A + wj)
f(s) s-i   2r(,2    V

where
(1.12) 6 =log(27T)-l-&C,

(u« nS)=z(^^).
where  p  runs over the nontrivial zeros of £"(s).

For real s = a,  we see from (1.11) that   T{a)  is real and hence is given by

(■■H)        7w=cR(jVt^)+cr>VFJ.
As   1 - p   runs through all the nontrivial zeros of f(s)  exactly once when  p = ß + iy
does, we obtain from Rosser [1939, p. 29]

o-iflE^-^rrrir^-pi-Ç: '   -2 + c-<4'>1-p     ¿T     l-(l-p)     f-     P     ^/32+T2'
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CHEBYSHEV FUNCTIONS   6(x)   AND   ii(x) 247

Moreover, for   1 < a < 1.03,  a typical term  C7(p)  of the first sum in (1.14) is

o-ß_l-ß      _ {o- l){y2-{o-ß){l-ß)}
W     (a - ß)2 +y2    (1 - ß)2 + y2     {(a - ß)2 + y2} {(1 - ß)2 + y2}

>       a-l T2 -(1.03-/3)(1 -/?)
^y2+{l-ß)2'      72 + (1.03 - (3)2

If ß = Vi,  then since   \y\ > 14.13 4725  we easily get

G(p)>0.997 27lA^l-(i1_ß)2 = 0.997 2714(a- 1)rQ +y^).

If j3 # të,  then   I7I > A;  as  72R{l/p + 1/(1 - p )} < 1   always holds, we have

rin^ta     uv(l  4-      l    \        T2(T2 - 1-03)G(p)>(a-l)R(-+rr^j.(72 + i)(T2 + io32)

>0.9973(a-l)R(i + r^:).

Hence the first sum in (1.14) exceeds

0.997 2714(o- 1) • 2 £ R - > 0.0460 6537(a - 1)
p      p

by (1.15).  Consequently, (1.11), (1.14), (1.15) and (1.12) yield

(U6)      "7^<^l + ^(2+1)~1_2C + log2-aO4606537(a_1)'

where   0(s) = r'(s)/r(s).  By the law of the mean, there is a  £ S (3/2, Ma + 1)  such
that

*04o + O - *(3/2) = H (a - 1)0'(|) = tt(o - 1) £ („ + | - i)"2
n=l

CO

< V2{a -1) Z{n + V2)"2 = {(tt2/4) - 2}(a - 1),
n= X

as a result of a standard formula for   0(s); cf. Whittaker and Watson [1940, p. 241].
Using   0(3/2) = 2 - C- log4  from Rosser [1939, p. 29] and (1.16), we obtain

(1.17) - f'(o)/f(o) < l/(o- 1)-C+0.187 6352(c-l).

Next, putting s0 = a0 + it  and  s = a + z'i,  (1.11) yields

r{k0 y (<>o+'')-jr(<>+ ''')}•

0-18) ^-^.-R^-^-^R^+l)

2    v\2       J     ^   \s0-p    s-p        p     )

For   |i|>l,  we have by (1.5) and (1.6)
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248 J. BARKLEY ROSSER AND LOWELL SCHOENFELD

«/Jía_LkR-L.U-liL,<ao-1)2 + '2)
K\s0-l    s-l)^Ks0-\\y/5    a0-l      ia-l)2+t2f

(U9) >z—AAr -^-^}>o.so _ ! W5     T ~ l l '

By (4) on p. 113 of Edwards [1974], we obtain for  a > 0 ¥= t,

1_+Y(°°_¿ZL_<-i-
\s\2     6 Jo   {io + x)2 + r2}3/2 ^At2 't—+ ¿ 121

Hence, if 2 > a > 0 ± t,   there is a  0O G (- 5/9,1)  such that   R0(s) = log 11 \ +
9dJ{At2).  As a result, if  1 < a < 1.03   and   t^O, then for suitable  01,62 G
(- 5/9, 1)

1 _ Ko       ií i      9 1 _ Ko       in     5 65
= —— log|-|+^(02-ÖlKo)<-y-   log|-|+ —

by (1.7).  Using (1.18) and (1.19), we see that for   \t\> I

(1.20)
<^-^-log|i|-(l-(c0){o +

where

<^^iogki-(i-K0){¿ + ZR¿+¿iog2} + ^+í/,

(1.21)

u = z{^7^o-R7=-}i^T.H{p) =\Zh{p) + \Zh{i-p)p   \ so      P 4      P)       p L  p ¿  p

2p   (   °   \s0-P      s0-l+py        Vs-P    s-l+pyJ

By (1.1), every term in the last sum is nonpositive.  As a result of (1.12) and (1.15),
(1.20)becomes for   \kt\ > 1

if'                     f'               1      1 _ «n               1 ~ «o ,    27T ,    17(1.22) R h0 j (o0 + ífcí) - ^ (o + ifcOJ < -J"2 log W - 1-loS T    áPí* •

Now let p0 = 0O + iyQ  be a nontrivial zero of f(s) such that j30 =h xh.  In
(1.21) set  t = y0   and consider the two terms arising from the distinct values p = p0,
PÓ   where  p0 = 1 - p0;  in both cases   Ip = y0.  By (1.2) the summand for  p0   does
not exceed  -Rl/(s-p0),  namely - l/(a - ß0);  likewise, the summand for p0   does
not exceed - Rl/(s - 1 + p'0 ),  namely  - l/(a - |30)  also.  As a result, we get   U <
- l/(a - ß0).  Consequently, (1.20) becomes
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CHEBYSHEV FUNCTIONS   0(x)   AND   \p(x) 249

R{Ko^(°o +iy0)--ç{a + Í'T0)|

(1.23)
1 - Kn 1 - K0 17 1< -T-9 log lT0l - —T"2 loë(27r) +'"

2       -"0'        2 —     372     ""0o '
We now obtain (1.9) with ß0, y0   in place of j3, 7 by using (1.10) with  t = y0,
(1.17), (1.22) with  t = 70   and  2<k<n,   and finally (1.23).  This completes the
proof.

We note that by the law of the mean there is a  % G (t, a0)  such that for
1 <a<1.03.

^o)-^{r) = {o0-r){i^)}^

(0° " T) {I" f (S)},=r < 3-33493<ö " *>'

(1-24)

as a result of (1.6) and the value

= 2.48089 75061{ihL
supplied to us by John W. Wrench, Jr., who has computed this quantity to more than
40 decimals.  Wrench has also given more than 40 decimals for

f'(r)/f(T) = -1.13991 58683 •••,
which, taken in conjunction with (1.24), yields for   1 < a < 1.03

(1.25) ?'(a0)/f(ao) < - L139 9158 + 3.33493(a - 1).

Wrench computed these values by using the power series expansions about  s = 1
of (s - l)f(s)  and its first two derivatives.  His values have been confirmed by an inde-
pendent calculation by Herman Robinson.  In addition, the values appearing in (1.25)
have been again confirmed by a less extensive, and independent, calculation by Emerson
Mitchell of the Mathematics Research Center, based on a table of values of f (a)   sup-
plied by Livermore Laboratories.

In Theorem 1 below, we apply these results and Lemma 2 to establish a zero-free
region for  f(s), which is of the kind  ß > 1 -1¡{R1 log I7Q, by choosing the  a  of
Lemma 2 to be about   1 + y/log It I  where

ix ia\ 2V^o(V^i - V^o)       B ¿o _       /,       1   \ _
<L26)"= (1-1/V5M.   '   "•-*&-W   *'=('-vT)R»
provided al > a0> 0.  It can be shown that this value of v  is optimal, and it is
therefore important to select F(5)  so that R0  is minimal,  For fourth-degree polyno-
mials, R0   appears to be minimal for F(0) = 8{a + cos d)2 {b + cos d)2   where (ac-
cording to calculations by Dianne Hollenbeck of the Mathematics Research Center)

a = 0.9126 08743,      b = 0.2766 14921.
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250 J. BARKLEY ROSSER AND LOWELL SCHOENFELD

For the choices
a = 0.9126 0875,        b = 0.2766 1490,

we obtained a value RQ = 17.449 61294 38363 ••• .  An extensive computer search by
Emerson Mitchell of the Mathematics Research Center failed to find a fifth-or sixth-de-
gree cosine polynomial giving a smaller value for R0.  Further, the work of French
[1966] shows that, regardless of the degree of F(0), R0 > 16.2568; for other results
concerning F(0)  see also Stechkin [1970A], who essentially shows, for example, that
for fourth-degree polynomials R0 > 17.174 8395.

To simplify the calculations, we choose  a = 0.9126  and  b = 0.2766,  which
yield

a0 = 11.185 93553 12082 048,      a. = 19.073 34400 4352,
a2 = 11.676 18784, a3 = 4.7568, a4 = I,

A0 = 36.506 33184 4352, R0 = 17.449 61294 58 ••• ,
4 4
Z aklog{2n/k) > 52.38865,       Z aJk2 < 22-584.

fc=i fc=i

The preceding value of R0  is smaller by about  0.00014  than a value given by Stech-
kin [1970B].  Prior to this work of Stechkin, zero-free regions of the present kind had
F-j   replaced by the larger R0.  The result below improves Stechkin's Theorem 2 not
only by having a smaller value for R   but also by the presence of the denominator 17.

Theorem 1.  There are no zeros of f(s) in the region

(1.27) o>l-l/(Rlog|r/17|),     \t\>2l,

where R =9.6459 08801.
Proof.   First, suppose  ß + iy  is a nontrivial zero of f(s)  such that  ß + Vi;

then   \y\> A.   We assume that   1 < a < 1.03   so that by (1.7) the coefficient of
2^=1 ak \og{2v/k)  in the expression for B  is negative; hence this sum can be replaced
by its lower bound   52.38865.  We also replace  f'(a0)/f(a0)  by its upper bound given
in (1.25).  As the resulting total coefficient of k0   in (1.9) is negative, we may replace
k0   by the right side of (1.8).  With  v  defined by (1.26), we set

x = a - 1 = i>/logl7/17 I
and observe that  0<x< 0.029172  since   l7l>.4; hence   l<a<1.03.  On noting
that  (a - l)log \y\ = v + xlog 17,  a calculation shows that (1.9) yields

<\(l- -^-)i40logl7l - 28.85290 + 8.0365x + 31.574x2 - 17.76x3
ß    a- 1

<5(i--t)
Hence

^<ïl0g|nl + K1"^)^l0glnl = Al(^"vS°)v^l08ln
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CHEBYSHEV FUNCTIONS   6(x)   AND   ii(x) 251

From this we easily get

(1.28) ß<\- 1/iR. log 17/171).

Second, if ß = Vi  and   l7l>21,  then (1.28) clearly holds.  Finally, as RX<R,   the
proof is complete.

2.   Estimates for Certain Integrals Related to the Bessel Functions.   In subsequent
sections, there appear integrals of the form

(2.1) Kv{z,x) = \fx   f-'lF{t)dt
where  z > 0, x > 0  and

(2.2) Hz{t) = {Hit)Y = exp{- Mz {t + Hi)}.

The substitution  t = ew   shows that

(2.3) Kviz,0)=Kv{z)

in accordance with a standard notation for the modified Bessel functions of the second
kind; see [NBS #55, p. 376, 9.6.24].  Tabulations for some values of v  and other
means of calculation for Kv{z)  are given in Chapter 9 of NBS #55.

Note that Kv{z, x)  has the form of (24) on p. 600 of Rosser [1955].  The tech-
niques of that paper can be used to derive estimates for Kv{z, x)  for large z.

Lemma 3. Kv{z, x) + K_v{z, 1/x) = Kv{z).
Proof.  Put  t = l/u  in the definition of K_v{z, 1/x).
Lemma 4. //  1 > v, 0 < z,  and   1 < x,   we have

{2A) (l + 2{U+Zl^2~_(¡)2l)x3y1 Qp(z, x) < Kv{z, x) < Qv{z, x),

where

(2.5) Qviz, x) = xv+ lH*ix)/{zix2 - 1)}.

Proof.  Integration by parts yields

(2.6, KÁ, „ - QA, „ - If ('+%y"«-M ä,
We have

jv+ l)t-jv- l)t3 _       2f jv - l)t
it2 - l)2 ~ {t2 -I)2     t2 - 1   '

which is positive and decreasing, since   1 > v  and   1 < x < t.   By referring to (2.1)
we establish our lemma.

If  |(x - l)2z/x(iv - 1)|  is large, this gives quite satisfactory bounds for Kv{z, x).
When  v = 1,  we get satisfactory bounds if  |(x - l)2xz/4|  is large.

Lemma 5. // 0<z and 0<x,   then
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252 J. BARKLEY ROSSER AND LOWELL SCHOENFELD

(2 {x - l)Ô,(z, x) + (1 + 2/2 - 2/z(l + x)2)/:^, x)

< A:2(z, x) < (x - 1)0!(z, x) + (1 + 2/z)K.{z, x).

Proof.   By (2.1)

K2(z, x) - *,(z, x) = |J~ (i - i)^(i) dr.
Integrating by parts gives

K2(z, x) - K.{z, x) = (x - l)ßi(z, x) + ±£° A -—^W(r) A.

Then our lemma follows.
Corollary.   If 0 <z and   1 < x,  #ie«

(2.8) K2{z,x)<ix + 2/z)Q.{z,x).

Proof.  Combine Lemmas 4 and 5.
Lemma 6. // 1 > v, 0 < z,  a«6?   1 < x,  we fozve

/ (3-^)x2 +i»- 1 V1 /     ,     N     2(v-l) ,     A
1+2      zx(x2-l)2      )      (o-fc^+V2-^-^^)

<2-9) 2(,-l)
< tf„(z, x) < ß„(z, x) +   l  z    '*„-!& X).

Froo/.  By (2.6) and (2.1)
2iv-l) if» (3- v)tv+ ' + (iv- l)iy_1

Mi, x) =Qv{z,x)+^T^Kv_l{x,z)-\¡x   K      J   f(?2 _ 1)2   )        ¡Fit)*.

We have
(3 - v)t2 +v-l 2t v- 1

t{t2 - l)2      ~ it2 - l)2   r(r2 - 1)'

which is positive and decreasing.   So our lemma follows.
Corollary.   // 1 > v, 0 < z,  and   1 < x,   then

<M,*)<{.+^(>-^)>M>.
Froo/.  Combine Lemmas 4 and 6, and use (2.5).
We will be mainly interested in the cases  v = 1   and  v = 2.  If x   is appreciably

greater than unity, Lemma 4 with  v = 1   and Lemma 5 will serve nicely.   If   1/x  is
appreciably greater than unity, we can use Lemma 3 to write

Ka(z,x) = K.(z)-K_.(z, 1/x),

and similarly for K2.  By use of NBS #55, we can evaluate  K,{z).  The term
K_x{z, 1/x) will be small compared to K.{z)  if z   is of appreciable size.   So a rough
approximation for K_.{z, 1/x) will suffice, and this is available by (2.10).
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We still have the matter of dealing with K.{z, x)  and  K2{z, x) when x  is
near unity.  We first consider the case where  z   is small or of moderate size.   For this,
with the computing facilities now widely available, numerical quadrature seems the best
procedure.  In the present situation, it suffices to use the trapezoid rule and the mid-
point formula, which are (A2) and (A3), respectively, on p. 446 of Rosser [1967].

We observe that by (2.1)

Kv{z, x) = Kv{z, y) + \\yx f- '//z(f) dt.

We take y  large enough so that Kv{z, y)  can be estimated with adequate accuracy
by Lemmas 4 and 5; note that a high order of accuracy for Kv{z, y)  itself is not
needed, since it is usually much smaller than the other term on the right.   So we desire
to estimate

(2.11) \\Sxmdt
by numerical quadrature.  When  v=l,  we have

(2.12) f{t)=Hzit),

(2.13) f'it) = -zf2{t2-l)Hz{tY

(2.14) f'{t) = ^ {z{t2 - I)2 - At}H\t).

By Descartes' rule of signs, the polynomial on the right of (2.14) has at most
two positive roots.  As the polynomial is positive at  t = 0,  negative at   r = 1,  and
positive for large  t,   it must have exactly two positive roots,  t.   and  t2,  with  t. <
1 < f2.   For z   not too small, the values of f,   and  t2   are approximately

If we take   1 + q  to be   t,   or  t2,  then the recursion

(2.16) qn+, = ± 2y/l + qnIWz{2 + qn)}

will converge fairly rapidly to  q.
To get an upper bound for (2.11), we use the midpoint formula for  tt < t < t2,

and the trapezoid rule for the rest of the range of integration.  For a lower bound, we
interchange the midpoint formula and trapezoid rule.  If the bounds are not as close
together as desired, use shorter intervals in the quadrature formula.

When  v = 2, we have

(2.17) f{t) = tH*it),
±
It(2-18) f{t) = - ¿{z(r2 - 1) - 2iWz(f),

(2.19) fit) = ¿j {z(f2 - l)2 - At3}Hz{t).
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Clearly we proceed in exact analogy with the case  v = 1.  Note that the two
positive zeros of f\t)  are the reciprocals of the  t.   and  t2   obtained above.

We now consider the case for large  z.   Define

(2.20) w = i-Jt- 1/VÖ/V2.
Then

(2.24) K.iz,x)=ÇS~e—2£dw,

(2.21) t = 1 +w2 +wy/2 +w2,

(2.22) dt/dw = 2w + 2(1 + w2)/y/2 + w2,

(2.23) tdt/dw = Aw{l + w2) + 2(1 + 4w2 + 2w*)/y/2 + w2

= Aw2y¡2 + w2 + Aw{l + w2) + 2\y¡2 + w2.

We have of course

,2 dte  "*'y

(2.25) K2{z,x)=ÇS~e— 2 t£dw,

where

(2.26) y = (yß-UyjX~)ly/2.
By squaring both sides, we verify that for  w2 > 0

(2-27) L^l<(l+^)A/2,

1 + 4w2 + 2w4     . (.   ,   ISw2   .  35w4 \
(2-28) -,—^r       < [l + -Z-+^r   M"y/T+w- 32

Integration by parts gives

,n-X

]y 2z 2z    J y
Using the relations above gives

(2.29) f °° w"e~zw2 dw = ^~ e~zy2 +n^~ f ~ w"~2e^zw2 dw.
J v 2z 2z    J v

(2.30) K,(2. *,<Ç[(l +*&-Y~"' + ( I + z) Afy" '-""' *"} ■

(2     ** *> <^{P§rV + »' + (rf ♦ £)>* ♦ * ♦ l] -"

The integrals appearing in the formulas above are the complementary error func-
tion.  Means for calculating or bounding it are well known; see particularly 7.1.5, 7.1.6,
7.1.13, and 7.1.23 of NBS #55.
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To get lower bounds, we first verify that for  w2 > 0

(2.32) ^=>(,--)/V2,

whence
1 +w2

V2"+
r)M-

With this and (2.22), we can get a lower bound for Kx{z, x).  Integration by parts
gives

If»     1 + w2    _zw2  ,e dw.(2.34) rw2JÏ+^2e-™2dw=y-^^e^y2+\ï
Jy 2z ziy  0 + vv2

With this, (2.23), (2.32), and (2.33), we can get a lower bound for K2{z, x).
If we let x  go to  0  in (2.30) and (2.31), we get the known results

(2.35) K,iz)<Jfze-z(l+l^,      K2{z) < J% e" (l + % +^

3.   Bounds for   0(x) - x  for Large Values of x.
Lemma 7. ¿ei   1 < <7 < V,  and let  4>(y)  be nonnegative and differentiable

for  U<y<V.   Let  {W -y)$>'(y) > 0 for U<y<V,   where   W need not lie in
[U, V]. Let  Y be one of U, V, W which is neither greater than both the others nor
less than both the others.   Choose j = 0  or   1   so that  (- 1)'{V - W)> 0.   Then

Z     *(7)<¿  r*0)log¿<r>
U<y<V 2n  Ju 2n

(3.1) .( 0 443 ) Cv 4>(V)4-i--iV?nn7 4- u-**ù | (    -ZZZ1
log Y ) J u    y

where the error term EAU, V) is given by

E,{U, V) = {1 + (- \)'}RiY)<i>iY)

(3'2) + {N{V) - F{V) - (- l)>RiV)}<S>iV) - {N{U) - F{U) + *(í/)}*(ü).

Proof.   By the result of Ingham [1932, p. 18], we have

(3-3) Z     *(7) = - C N(y)&(y)dy + N(V)Q(V) - A(t/)4>(t/).
U<y<V U

Case 1. / = 1.  We take   Y = min(K, W).  On the right of (3.3), we replace
N(y)  by Fiy) - Riy),  and integrate by parts, deducing (3.1) by the observation that

-J>'00*00* <(- iy {0.137 +^}SVu ~ ay,
since j'F'O) > 0.137 + 0.443/log F for   1 < y < V.

Case 2. / = 0.  We take   Y = max {U, W).  In (3.3), we split the integral at   Y.
In the first part, we replace  Niy)  by   F(y) - R{y),  and in the second part we replace

+ e>)<{o..37 + W^+W
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N(y)  by  F{y) + Riy).  Integration by parts gives

Z $(7) <¿ Su ̂^g ídy+íl *'oo*oody
-{*R'(y)*(y)dy+E0(U, V).

We discard the third integral, and use the result

/;^)^)^<(-iy{o.i37+^}/;^-) *

<(-!)/ Í 0.137 +M43_)r*öi^v   M log r)J^ 7

Corollary. //, in addition,   2tr < U,   then

(3.4) £    4X7) < { ¿ + (- O7'q{Y)} \l 4>0) log £ dy + E, {U, V),
U<y<V

where
0.137 logj + 0.443

q{y) = - y log y log(y/2tr)

Proof.   Proceed as in the proof of the lemma, using

(- I)'R'iy)llogiy/2n) < (- l)> q{Y)

for y  in the range of integration.
Define, for x > 1,

(3.5) X = y/(Jogx)/R,

where  R = 9.6459 08801,   as in Theorem 1.   Also, for positive   u,   positive integer
«2,   and nonnegative real   7",   and   F2,  define

(3.6) Rmiv) = {{l+v)m + l +l}m,

(3.7) S.{m,v) = 2 Z Hff>

(3.8) S2{m, v) = 2        Z
ß<'/2;77J<7 vm\p{p+ I)--- ip+m)\ '

(2 + wu)exp{-X2/log(7/17)}
Vi<0;O<y<T2

(3.9) S3{m,v) = 2        Z

nuXi „,       ,     ,       y        *m(U)exp{-*2/log(7/17)}(3.10) S4im, v) = 2       2-
'/a<(3;T2<7      V™ \P{P +  O •" (P+™)\

Lemma 8. Let  T,   and  T2   be nonnegative real numbers.  Let m  be a posi-
tive integer.  Let x > 1   and  0 < 5 < (x - l)/(xm).   77ie«
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i I 0(X) - {X - log (27T) - \h l0g(l - X"2)} I
(3.11)

< {Sxirn, Ô) + S2im, 5)}¡y/x + 53(m, 5) + S4(m, 5) + mô/2.

Proof.   Split the sum on the right of Theorem 13 of Rosser [1941] into four
sums over the regions:   I, ß < Vi,   0<l7l<7,;  II, ß < lA,  T, < \y\;  III, ]á < ß,
0 < I7I < F2;  IV, lA< ß,  T2 < I7I.  In regions I and III, write the summand in the
equivalent form

(3.12) --jlix + zYdz.

If we now integrate term-by-term  m - 1   times, we will get a result similar to Theo-
rem 14 of Rosser [1941], except that the sum is split into four sums over the four
regions.  (Note that the quantity on the left of Theorem 14 of Rosser [1941] is NOT
the function of our Section 2.)  In regions I and III, as we integrated (3.12) m - I
times, we see that an alternative form for the summand is

xp + m   /• + & r±S r±8
(3.13) --p—j0   dy1j0   dy2-]o   {i+yx+y2 + -+ym)pdym,

If we use + 5   as the upper limit, we can bound the absolute value of (3.13) by

xß+m   rs rs rs
^-Jo   *Jo   dy2   "io   (J  + '.  +?2 + •■' +ym)dym,

which equals
C3 14-1 xP+mom  2+mo

\p\ 2
If we use  - S   as the upper limit, the integrand of (3.13) is bounded in absolute value
by unity, so that in this case also (3.14) is an absolute bound for (3.13).

In regions II and IV, we get bounds by the reasoning for Theorem 15 of Rosser
[1941].  By symmetry, we replace sums over all  p  by twice the sums for positive  7.
If ß < V¡,  we have  xß+m <xm + l/y/x,   while if  Vi < ß  we can use Theorem 1 to
conclude that

xß + m <xm + lexp {_^2/log(7/17)}.

Finally, we use the reasoning for the proof of Theorem 12 of Rosser [1941].
As   l/lp(p + 1) ••• (p + m)\ < y-m~l   for positive  7,  we can use Lemma 7

to write bounds for S Am, 5)  in terms of integrals for suitable  $>(y).  We note that
for m±0

(3 151 fF v~m- ' In, y  .iv -l+m lot(.Uß*)     l + m log(TO)
v'    ' Juy *2ir   y~ m^um m2Vm

Í,ly-m~l exp{-X2llog(y/n)}log^dy

(3J6) - ^ *,fc u->-M, V» +=«(*,fe «x -*,(, O,,
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where  z = 2Xy/m, U' = (2m/z)log(t//17), V = {2m/z) log(F/17); we get (3.16) by
putting y = 17 exp(zí/2m).   Also we get

\Vvy~X^V {-X2/log(y/17)}log £ dy

(3.17)
= Xa{T{- 2, v") - r(- 2, {/")} + x2{iogni2n) {r(- 1, v") - T{- i, u")}

with   U" = X2llog{U/l7),   V" = X2/log{V/n)  by putting y = 17exp(X2/í).
Theorem 2. // log x > 105,  then

(3.18) I0(x)-x|, |0(x)-x|<xe(x),

where one may take either

(3.19) e(x) = 0.257 634 {l + M^42 J x3/4g-x

or, with  R = 9.6459 08801,

(3.20) e(x) = 0.110 123 il + 3-^M ) (logx)3/8 exp{-V(logx)/F}.
I       Vlog x )

Proof.  Take  m = 1   and   Tx = T2 = 0  in (3.6) through (3.11).   By Lemma 17
of Rosser [1941],

(3.21) S, {l, Ô) + S2(l, S) < (0.0463) (2 + 25 + 52)/5.

Also, as  ß = V2  for   I7I < A,   and the zeros off the critical line occur in pairs which
are symmetrical with respect to this line, we have

(3.22) S3{l,o) + S4{l,8)<2 + 2l+S2    Z   0,(7),6 A<y

where

(3.23) 0m(y)=7-'"-1exp{-X2/log(y/17)}.

We appeal to Lemma 7, Corollary with  4>(v) = 0,(y), / = 0, U = A, V = °°,  and
W = If,,  where for m > - I

(3.24) Wm = nexp{X/y/m + 1).

Note that  q{Y) <q{A).  Also, as N{A) = F{A),  we have

(3.25) F0 = 2F(y)0,(F) - R{A)<p.{A).
Further, by Lemma 3 and (3.16), we have

Í00 y 2XA 0,(y)log £.<&< — i**2(2*) + ^(17/270^(2*)}.

Then, by (2.35), we conclude

(3.26) Z 0,(7) < 0.01659 38121 ( 1 + ^?^ +-^^)x3/2e"2^ + E0.
A<7 V ^ XL      )

If  W, <X,   then   Y - A.   Then by (3.25)
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F0 = R{A)4>,{A) = %jP {exp{- X2llog{A/l7)}X*e2X}X-\-2X.

As the expression in the large braces takes its maximum at

_     1 .      A  ,  if.    2 A  ,,     A\*^ = 2 log T7 + 2 Il0g   17 + l0g 17 j   '

we conclude

(3.27) F0 < lO-6X-1/2e~2X.

If  Wl>A,   then   Y = W.   and  Ar>16.  As R(y)/logy  is decreasing for
y>ee,  (3.25) gives

E0 < 2R{Y)<p.{Y) < ^J0i(Wi)log h7.

ÄW + iognh-2^*,
172log>l(V2 J■logi4 IV2

so that we conclude (3.27) for this case also.  Then by (3.26)

(3.28) Z 0i(7) < 0.01659 38121 {l + ^f8^ +^^-)x^2e-2X.
A<y ' % X        J

As  log x > 105,

(3.29) 0.0463/VÎ = 0.0463 exp(-FJT2/2) < 10~21 X~'h e~2X.

Choose

(3.30) 5 = 2(0.01659 38121)* fl +^~^\tke~x.

As  log x> 105, we see that  bX2   is a decreasing function of X; hence  8X2 <
0.3277  and  0 < 5 < 1 - 1/x.   Hence

(3.31) 2+ 25 +02<2U +^3J3-j.

Combining (3.21), (3.22), (3.28), (3.29), and (3.31) gives

{5j(l, 5) + S2{1, 5)}/y/x + S3{1, 5) + 54(1, 5)

< S"12(0.01659 38121) ¡1 +^^YX3>2e~2X.

Using the value of 5   from (3.30) with Lemma 8 substantiates (3.19).   From it, we
can get (3.20) by (3.5).

This establishes the stated inequality for   0(x).  By Theorem 13 of R-S,

|0(x)-0(x)|< l.A3y/x.

Thus, it would appear that for  0(x) we should increase  e(x) by   1 A3/y/x.   However,
we can treat it as in (3.29) to show it is absorbed when we round up some of the co-
efficients.

Theorem 3. // logx> 105,  then
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(3.32) |0(x)-x|,|0(x)-x|<xe*(x),
where a

(3.33) e*(x) = &_l 3logX +L43811
V2   (       2V7r(4J5r-31ogX)     r{x) y/Xj

here we take  e(x) as in (3.19)  or (3.20), and

(3.34) r(x) = 1 + 0.966A2IX.

Proof.   Take

(3.35) 5 = -\=r (0.2576 33942)r(x)X3/4e_x.
\/2

We may assume  X > 59,  since otherwise   e*(x) > e(x)  and we can appeal to
Theorem 2.  In (3.6) through (3.11), we take  m = 1,  T, = 0,  and

(3.36) T2 = l7X~%ex.

As X > 59,  we have A< T2 < W0   and   If, < F2.
We can treat {5,(1, 5) + S2(l, b)}/y/x  and the error terms Ej{U, V)  arising

from the use of Lemma 7, Corollary, as we did in the proof of Theorem 2.  Thus, we
can proceed as though

(3.37) s3{i, ô) <l±l{i--i(r2)}/J2 0o(v)log ¿ ¿y.

If v < 1   and x > 0,  then

Tiv, x)<xv~l J"°° e^'df = *p_1<r*.

Hence, by (3.17), we have in effect

(3.38) 53(l,5)<£^e-K {X4(F"r3 +X2d{V"f2},

where  d = log (17/27r)  and

Y2 4X2
(3 39) K" =- =-—- .
^       } log(F2/17)      4X-31ogX
Then

(3.40) V" > X + (3/4) log X,     e~ v" < X~'A e'x.

Also

x4{v")-3 + x2d{v"y2 = (i -^r)2 (x-3J^Ä+d) <x.

So, effectively,

(3.41) S3{l,8)<^XlAe-x.

Similarly, we can proceed as though

(3.42) 54(l,5)<2 + 2g5+52{¿+g(F2))f;2 0I(y)log¿dy.
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By (3.16)

(3.43) J~ çt.iy) log ¿ dy = -| {X2/:2(2X, [/') + ^,(2*, £/')},

where

Write temporarily

(3.45) q = 3-^,      y = {y/ÏÏ- Uy/Û')/y/2.

Then y  is negative, and y2 = AifJ' + \¡U') - 1 =q2/{2{l -q)}.   So, by splitting
the integral at  w = 0,  we get

(3.46) V2Te-2^2¿w<^ + -=-
■^ 2>/y    Vl - q

Hence, by (2.30) we get

(3.47) XdK.{2X, l/)<^-X3l2ey/n , [-A-+L+ *& )(±+^-)\
(VttX^/2      V       yfitTTji/KX      \6X2)[

As   l+zy2 < ezy ,  we have  (2y2 + 2\z)e~zy   < 2/z = l/X.   Hence, by (2.31) we
get

X2K2{2X,U')<^-X3'2e-2X

<3-48) (  Z + ̂ i_ + (1+4*^,U+-!U-!°MI'v^n/F     v^X3/2     \       y/nil-q)J \       16*    512X2/
Combining with (3.43) and (3.47) gives

. y/ñ
9x V) »og ̂ z ay -^

2

where

I" 0,(y)iog¿^<^-^/2e-2^,-

ßl=_i-+-i^J1+-^UsfisfX       yfYtX^I2       \ y/YkT^q))   \
.   (  1.93284  | 0.3918

So finally by (3.42) and (3.35)

(3.49) S4{l,S) < -^(0.2576 33942)r(x)X3/4e-x<22,
\/8

where

rt,m n   - i -i     2^X     , 2 + 25 + 52 I 0.56419     0.5629
13 0)       Ô2      \/í(T^)       M*)}2    {   VF       *3/2
As X > 59,  5   is extremely small, so that our theorem follows by (3.11) and (3.41).

4.  Numerical Bounds for   0(x) - x  for Moderate Values of x.   In our main
table (at the end of the paper) we tabulate values of  e   against  b.  These have been
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determined so that if x > eb,  then

(4.1) |0(x)-x|<ex.

If a value of b is chosen, it is clear from (3.5) through (3.11) that a value can be de-
termined for  e,  so as to satisfy (4.1), which will depend not only on  b  but on the
four parameters  5, m, F,,  and   T2,  as well as a parameter D  which will be intro-
duced.  It was not practical in the majority of cases to minimize   e  by determining
the optimum values of all five of 5, m, T., T2,  and D.   An effort was made, espec-
ially in crucial regions for  b,   to make reasonably good choices for  5, m, F,, F2,
and D;  the values chosen for  5   and  m  are listed in the table, and the choices for
F,, T2,  and D  will be described in the text.   For the chosen  5, m, Tx, T2,   and
D,   computations were made which ensured that the values listed in the table for  e
are upper bounds for what would be given by (3.11).  To keep the computations
reasonable in extent, they were usually terminated before the best possible upper bound
for  e  had been determined.  Thus, for most entries in the table, (3.11) would give a
slightly smaller value of e  than that listed.  However, great pains were taken to ensure
that the values listed for  e  are indeed upper bounds.  The two authors made quite in-
dependent calculations, on different computers, with different programs, and commonly
with different schemes of computation, one of which was that described in Section 2.
Each scheme of computation provided both upper and lower bounds.  When these had
been brought fairly close together, and were consistent as between the two independent
calculations, the larger of the two computed   e's was rounded up and entered in the
table.

In the main,  T2   was taken to be  0.  Uniformly we took

since an analysis showed that for a given  m   and   5   this was reasonably close to its
optimum.  We chose also

(4.3) D = 158.8 4998.
The zeros for which 0 < y <D are exactly 57 in number, and have been calculated to
high accuracy by Lehman as stated in his paper [1966, p. 408]. Using Lehman's values,
two independent calculations verified

(4.4) S=     Z     Ipl"1 =    Z     (72 +1/4)"'/2 < 0.811 3925.
0<y<D 0<7«D

Lemma 9.   With   Tl   and D given by (4.2) and (4.3), if T, > D,  S > 0, and
m  is a positive integer, then

(4.5) S.(m, 5) + SJm, 5) <^ {(log ̂  + 1 T + 0.038207 + \ ~~^À-K     '   1V       '       2V       ' An     |V    6 2tt     ml m2    («1+1)7,1

Proof.   By (3.7) and (4.4)
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S,{m, b)<{2 + m8)is+     Z       7~l\
\ D<y<Tl )

Taking 4>(y) = y    ,j = Q,U = D,V=Tl, and   W = 0 in Lemma 7 gives

Then (4.4) together with 7V(D) = 57 gives

S Am, 5)        i        , F,
'       -    < j- log2 x1 + 0.003 04042 + mö        An 2n

(4-6) l( 0 443 )
-jr\F{Tl)-N{T1)+R(T.) + 0.137 + ^äj-

Taking  <ï>(y) =j"m~',/= 0, f7 = F,, K = °°,  and   W = 0  in Lemma 7, and
using (3.15) gives

5"-y2(m, 5) ^ w   i       r,      !
2Fm(5)     ~^Tm \2nm  °g 2n     2nm2

Using (4.2) and combining with (4.6) gives

SM,b) + S2{m,b)^^\{logT^+'-)\^+j\

where
471 / 0 443 \    4tt / 0 443

/ = 4tt(0.003 0404) + ,      \      (0.137 + f~T )- — (0.137 + f^K '     (m + 1)7-, V log Tj    F, V log D

< An{0.003 0404) - — fo.137 + r^r) ( 1-7 ,7\ \ log D / \       m + \,

Our lemma follows from this.
Theorem 4. Let  T1>D.  Let m  be a positive integer, let  £2,   denote the

right side of (4.5) and let

(0.159155)/? m(5)z
Í2, = \zK2iz, A') + 2«i (log ^)K.{z, A')}2 2m2l7m

(4.7)
+ Fm(5) { 2F(F)0m(y) - F(^)0m(^l)},

where z = 2Xy/m = 2y/mb/R, A' = (2«i/z)log(4/17), Y= max{A, 17expy/b/{m + l)R}.
If b>Vi and  0 < 5 < (1 - e~b)\m,   then (4.1) holds for all x > eb,   where

(4.8) e = Í2,e-ft/2 + ft2Ô-m + «zô/2 + e~b log 2tt.

Proof.   Take   F2 = 0.  Then by Lemma 7, Corollary and (3.16),
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S3{m, 5) + S4{m, 5) < Í225_m.

So we use Lemmas 8 and 9.
Theorem 5.  Let  Ty>D and A<T2<\7 exp y/bJR.  Let m   be a posi-

tive integer and let

ïl3=^[x*{Ti-2,T")-Ti-2,A")}

(4.9) + *2(log^){r(- 1, T") - r(- 1,A")}]

+ 2J_mb l2RiT2)çb0iT2)-R{A)<p0iA)]  + ü*28~m,

where A" = b/{R log (.4/17)}, T" = b/{R log(F2/17)},  and  Í2*  is obtained from
£22  by deleting the term  - R{A)<pm{A)  in {A.7) and then replacing A   by   T2   in
the definitions of A'  and   Y.   If b > Vi and  0 < 5 < (1 - e~b)\m,   then (4.1)
holds for all x > eb,   where

(4.10) e = n.e~b/2 + Í23 + mô 12 + e~b log 2?r.

Froo/   Like those of Theorems 3 and 4.
We note that, with a slightly different notation, tabulations and other means of

calculation for  T{v, x) with nonpositive integer  v  are given in Chapter 5 of NBS #55.
For many values of x,   one can get quite accurate approximations by means of Airey's
converging factor; see Rosser [1955, pp. 603—611].  Actually, integration by parts gives
for x > 0

(4.11) H>, x) = xv~le~x +{v- 1)H>- l,x),

whence for   v < 1   we get

(4.12) Tiv, x)<xu-3e'x {x2 + (v - l)x + (i> - 1) {v - 2)}.

We note also for x > 0  and  v < 1

,..,,   „      ,       „        (■<»    e~xwdw   ^   v        r°° e~xwdw       xve~x
(4.13) H>, x) = x e  x-— > x e  x \n   -r.-:— = ——;- .v      '     v     ' Jo  t\+wy-v Jo  e(\-v)w     x+i-v

Using these bounds, the entries in the table for  b > 3000  were calculated by (4.10),
using  F2   given by (3.36).   For large  b  it appears that (4.10), with m = 1   and
F2   given by (3.36), gives a better bound than those given by any of Theorems 2,3, or 4;
and a similar statement can be made for   T2 = F,   where   F,   is given by (4.2).

Addendum

By Lowell Schoenfeld

5.   Some Inequalities for   0(x)  and  0(x).  In this section I give a few applica-
tions of the results of the preceding sections, with a more complete treatment reserved
for another paper.  In particular, I have not yet determined the exact point at which
some inequalities, like (5.2), become false.
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Theorem 6.   We have

(5.1) 0(x)< 1.001 102x if 0<x,

(5.2) 0.998 684x < 0(x) if 1,319,007 < x,

(5.3) 0(x) - 0(x) < 1.001 102V* + 3x1/3 ;/ 0 < x,

(5.4) 0.998 684Vx < 0(x) - 0(x) if  121 < x.

Froo/   If  108 < x < e1843,  then (4.11) of R-S and the first entry of our
table give

dix) < 0(x) - y/x < 1.001 2015x - y/x
< 1.001 2015x-e_18-43/2x< 1.001 102x.

By handling the intervals  [e1843, el 8'44), etc., similarly, we derive the same inequality.
And for x > e18/7 we use the table and 0(x) < 0(x). This proves (5.1) for all x > 108;
for x < 108, it follows from (4.5) of R—S. Then (5.3) is an immediate consequence of
(3.38) of R-S.

If  108 < x < 1016,  then (4.12) of R-S and the first entry of the table yield

d{x)> 0(x)-V*-3x1/3
> (1 - 0.001 2015)x - 10"4x - 3 • 10_16/3x > 0.998 684x.

If x > 1016,  then we use (5.3) and the table.  If 2,309,661 <x < 108,  then (4.6)
of R-S gives

0(x) > x - 2VÏ > x - 0.001 316x,

so that (5.2) follows.   By using the Appel-Rosser tables [1961] and D. N. Lehmer's
well-known table of primes, we then verify (5.2) for   1,319,007 < x.   We also discover
that (5.2) fails for x   slightly below   1,090,697.  This leaves a region in which I have
not yet resolved the status of (5.2).

From (2.24) and (4.11) of R^S and (5.2), we deduce (5.4).
Corollary.   We have  0(x) > 0.998x  if x > 487,381;  0(x) > 0.995x  if

x > 89,387;  ö(x) > 0.990x  if x > 32,057;  ö(x) > 0.985x if x > 11,927.
Proof.   These follow from (5.2) above, from (4.6) of R—S and from the Appel-

Rosser tables [1961].
This corollary supplements Theorem 10 of R—S, and the lower bounds given for

x  cannot be replaced by smaller ones.
Theorem 7. If x > 108,  then

(5.5) |0(x) - x |,| 0(x) - x | < 0.024 2269x/log x.

Proof.   If   108 <x<e18'43,  then (4.12) of R-S and our table give

0(X) - X > {0(X) - X} - y/x - 3X1 /3

>-{0.0012 0116 1ogx + ^+3^}^-.
K xll¿       x1'5    ) log x
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As the material in the braces increases for the x  specified, it does not exceed its value
at x = e18'43   which value is less than  0.024 2269.  We continue to use the table in
this way until we have dealt with the range  e29<x<e30.  In place of (4.12) of
R—S, we then use the slightly weaker (5.3) above and continue to use the table up to
x = e1300.   For x>e1300,  we apply Theorem 2 and note that  e(x) log x < 0.021
so that

0(x) - x > - {e(x)log x}x/log x > - 0.021x/log x.

This completes the proof of the lower bound for  0(x)  and hence for   0(x).  The
proof for the upper bound for   0(x)  is easier since the extra terms y/x  and  3X1'3
do not appear.

Corollary 1. If x > 525,752,  then

dix) -x< 0(x) -x < 0.024 2334x/log x.

Proof.   We apply (4.12) and (4.5) of R-S.
This result may hold for smaller values of x  as well.  However, in the next corol-

lary, the bounds for x  cannot be lowered.
Corollary 2.   We have

(5.6) |0(x) - x|< 0.024 2334x/log x    if 758,699 < x,

(5.7) 10(x) - x |< x/(40 log x) if 678,407 < x.

Proof. The previous corollary takes care of the upper bounds for 0(x). The
lower bounds are handled by using (4.6) of R-S as well as the Appel-Rosser tables

[1961].
Theorem 8. If x> 1,  then

(5.8) |0(x)-x|, \sb{x)-x\<nkx/logkx,

where

(5.9) r?2 = 8.6853,      r?3 = 11762,      t?4 = 1.8559 - 107.

Proof.   We proceed as in the proof of the previous theorem.   For  k = 2,  we
use the table up to x = e1750   and then apply Theorem 2.   For  k = 3  and 4, the
table is used up to x = e2000.  This establishes the results for x > 108.   For   1 < x
< 108   we use (4.12) and (4.5) of R-S to get

0(x)-x<0(x)-x+Vi + 3x>/3<|l^ + 31^|-^F
y/x X2'3 \   log^X

AQk)*    AW)    x _x_
4e* e*     ) log*x     Vk log*logfcx

for  k = 2, 3, 4.   Also, (4.5) of R-S gives for   1 < x < 108
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m
2

2
2

2

2
2

2

2

3

3

3
4
5
6
8

9
11

11
12

12

12

12
12
12

12

11

11
10

10
10

2.69(-4)
2.68 (-4)
2.67(-4)
2.66(-4)
2.61(-4)
2.45(-4)
2.24(-4)
1.97(-4)
8.47(-5)

5.88(-5)
4.61(-5)
2.11(-5)
1.18(-5)
7.75(-6)
4.69(-6)
3.90(-6)
3.05(-6)
3.02(-6)
2.76(-6)

2.73(-6)
2.72(-6)
2.70(-6)
2.66(-6)
2.61(-6)
2.53(-6)
2.64(-6)
2.54(-6)
2.67(-6)
2.56(-6)
2.46(-6)

1.2015(-3)
1.1969(-3)
1.1924(-3)
1.1878(-3)
1.1653(-3)
1.0800(-3)
9.6459(-4)
8.0243(-4)
6.594K-4)
4.4170C-4)
3.0007(-4)
2.021K-4)
1.3730(-4)
9.408K-5)
6.5642(-5)
4.7407(-5)
3.5960(-5)
2.8876(-5)
2.4539(-5)
1.8315(-5)
1.7748(-5)
1.7583C-5)
1.7285(-5)
1.6993(-5)
1.6424(-5)
1.5830(-5)
1.5257(-5)
1.4682(-5)
1.4104(-5)
1.3548(-5)

4 50

500
600

700
800
900

1000
1100
1150
1200
1300
1350
1400
1500
1600
1700
1750
1800
1850
1900
2000
2100
2200
2 300
2400
2500
2700
3000
3500
4000

m

9
9
8
7

7
6
5

5
4
4
3
3

3

3
2

2

2

2
2

2

2

2
2

2

2

2
2

1

1
1

2.59(-6)
2.48(-6)
2.5K-6)
2.55(-6)
2.28(-6)
2.30(-6)
2.35(-6)
2.03(-6)
2.24(-6)
2.06(-6)
2.16(-6)
1.94(-6)
1.74(-6)
1.4K-6)
1.48(-6)
1.13C-6)
9.82C-7)
8.56(-7)
7.47(-7)
6.52(-7)
4.97(-7)
3.80(-7)
2.90C-7)
2.22(-7)

1.70(-7)

1.3K-7)
7.75C-8)
4.77(-8)
1.22(-8)
3.42(-9)

With b = 18.42068, m = 2, and 5 = 2.6855(-4), one gets e< 1.20116(- 3).
Most entries were calculated by (4.8).  The last three were calculated by (4.10).

0(x) - x > - 2.06Vx = - 2.06 ̂ =^ • -^-r-
y/x       logfcX

> - 2.06 {2k)K
>- vk-ek log^X logfcX

for k - 2, 3, 4.
Theorem 9. If e(x) is defined by (3.19) or (3.20), then

(5.10) 0(x) - x < 0(x) - x < xe(x)        for  0 < x,

(5.11) 0(x)-x> 0(x) - x > - xe(x)    for  39.4 <x.

Proof.   As a result of Theorem 2, we need only verify (5.10) and (5.11) for
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x < e105.  As  e(x) decreases for x > 1, we have  e(x) > 0.03  if x < e105.  From
the table and (5.2), we deduce (5.10) and (5.11) for   108<x<e105.   For   l<x
< 108,  we have   e(x) > 0.14.  Hence (3.35) of R-S gives for  0 < x < 108

0(x)< 1.04x<x +xe(x).

And Theorem 10 of R-S implies that for   149 < x < 108

0(x) > 0.86x > x - xe(x).

For   1 < x < 149, e(x) > 0.23   so that Theorem 10 of R-S yields  0(x) > x - xe(x)
for   101 < x < 149.  We readily complete the proof of (5.11) for  39.4 < x < 101.

Mathematics Research Center
University of Wisconsin
Madison, Wisconsin 53706

Department of Mathematics
State University of New York at Buffalo
Amherst, New York 14226

MILTON ABRAMOWITZ & IRENE A. STEGUN (Editors), Handbook of Mathematical Func-
tions, With Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, 55,
Superintendent of Documents, U. S. Government Printing Office, Washington, D. C, 1964; reprinted,
Dover, New York, 1964. [Cited as NBS #55.]     MR 29 #4914; 34 #8606.

KENNETH I. APPEL & J. BARKLEY ROSSER, Table for Estimating Functions of Primes,
Communications Research Division Technical Report No. 4, Institute for Defense Analyses, Prince-
ton, N. J., 1961.

H. M. EDWARDS, Riemann's Zeta Function, Academic Press, New York and London, 1974.
STEVEN H. FRENCH, "Trigonometric polynomials in prime number theory," Illinois J.

Math., v. 10,1966, pp. 240-248.     MR 35 #5404.
A. E. INGHAM, The Distribution of Prime Numbers, Cambridge Tracts in Math, and Math.

Phys., no. 30, Cambridge Univ. Press, London, 1932.
E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, 2 vols., Teubner,

Leipzig, 1909; reprint, Chelsea, New York, 1953.
R. SHERMAN LEHMAN, "On the difference   tt(x) - li(*),"  Acta Arith., v.  11, 1966, pp.

397-410.     MR 34 #2546.
R. SHERMAN LEHMAN, "On the distribution of zeros of the Riemann zeta-function,"

Proc. London Math. Soc. (3), v. 20, 1970, pp. 303-320.     MR 41 #3414.
D. H. LEHMER, "On the roots of the Riemann zeta-function," Acta Math., v. 95, 1956, pp.

291-298. [Cited as 1956 A.]     MR 19, 121; 1431.
D. H. LEHMER, "Extended computation of the Riemann zeta-function," Mathematika, v. 3,

1956, pp. 102-108. [Cited as 1956 B.)     MR 19, 121; 1431.
NBS #5 5, see Abramowitz and Stegun of this Bibliography.
BARKLEY ROSSER,   "The   n-th prime is greater than   n log n," Proc. London Math. Soc.

(2), v. 45, 1939, pp. 21-44.
BARKLEY ROSSER,   "Explicit bounds for some functions of prime numbers," Amer. J.

Math., v. 63, 1941, pp. 211-232.     MR 2, 150.
J. BARKLEY ROSSER, "Explicit remainder terms for some asymptotic series," /. Rational

Mech. Anal., v. 4, 1955, pp. 595-626.     MR 17, 360.
J. BARKLEY ROSSER, "A Runge-Kutta for all seasons," SIAM Rev., v. 9, 1967, pp. 417-

452.     MR 36 #2325.
R—S.   See next entry.
J. BARKLEY ROSSER & LOWELL SCHOENFELD, "Approximate formulas for some func-

tions of prime numbers," Illinois J. Math., v. 6, 1962, pp. 64-94. [Cited as R-S.]   MR 25 #1139.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CHEBYSHEV FUNCTIONS   d(x)   AND   i|/(x) 269

J. BARKLEY ROSSER, J. M. YOHE & LOWELL SCHOENFELD, "Rigorous computation
and the zeros of the Riemann zeta function," Proc. IFIP (Edinburgh), Vol. I: Mathematics, Soft-
ware, North-Holland, Amsterdam, 1969, pp. 70-76.     MR 41 #2892.

S. B. STECHKIN (S. B. STECKIN), "Some extremal properties of positive trigonometric
polynomials," Mat. Zametki, v. 7, 1970, pp. 411-422 = Math. Notes, v. 7, 1970, pp. 248-255.
[Cited as 1970 A.]      MR 41 #8355.

S. B. STECHKIN (S. B. STECKIN), "Zeros of the Riemann zeta-function," Mat. Zametki,
v. 8, 1970, pp. 419-429 = Math. Notes, v. 8, 1970, pp. 706-711. [Cited as 1970 B.]  MR 43
#6168.

E. T. WHITTAKER & G. N. WATSON, A Course of Modern Analysis, 4th ed., Cambridge
Univ. Press, New York, 1962.    MR 31 #2375.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


