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SHARPER BOUNDS IN ADAPTIVE GROUP TESTING

Laura Riccio and Charles J. Colbourn

Abstract. Adaptive group testing in the presence of a large percentage
of defectives is best done by individual testing rather than by pooling.
The fraction of items which must be defective to make individual testing
optimal remains unknown, and is conjectured to be 1/3. In this paper
it is shown that when the number of items is sufficiently large, and the
fraction of defective items is at least 1/ log3/2 3, individual testing is
optimal.

1. INTRODUCTION

Combinatorial group testing concerns itself with the identification of cer-
tain “defective” or “contaminated” samples distributed amongst a population.
One of the primary goals is to determine, for a given situation, what testing
algorithm minimizes the number of tests required in the worst case. An algo-
rithm that achieves this minimum is a minimax algorithm. A typical scenario
is as follows (see [2]). Suppose that one has n blood samples of which d are
contaminated. One can test any subset (pool) of the n samples simultaneously,
determining either that all samples in the subset are free of contamination, or
that at least one of the samples is contaminated. One can await the result of
the test for one pool before determining the membership of the next pool, so
the testing is adaptive. The goal is to design a testing algorithm such that the
largest possible number of tests to determine which samples are contaminated
is minimized. Denote this worst case time for the best algorithm by M(d, n).

The most obvious algorithm, that of individual testing, requires exactly
n − 1 tests, as the nature of the final sample can be determined from the
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nature of the others. A question arises: For which cases is this algorithm
minimax? It has been conjectured [2] that if n ≤ 3d, then individual testing is
minimax. Du and Hwang [1] prove that when n > 3d, one has M(d, n) < n−1.
Thus, if true, the conjecture is best possible.

Hu, Hwang, and Wang [3] prove

Theorem 1.1. M(d, n) ≥ min{n−1, 2q+dlog2

(
n−q
d−q

)e} for 0 < q ≤ d < n.

We are interested in the ratio of n/d. Let us define s = n/d and t = q/d.
Then 0 < t ≤ 1. For a given value of s, we attempt to find t ∈ (0, 1) ⊂ (0, 1]
such that 2td+dlog2

(
sd−td
d−td

)e ≥ sd− 1, at least for all sufficiently large d. This
condition is equivalent to

log2

(
sd− td

d− td

)
> sd− 2td− 2;

equivalently,
(

sd− td

d− td

)
· 22+2td−sd > 1.(1)

Du and Hwang [1] prove that when s = 21/8, statement (1) holds for all
d, for values of t given in their theorem. In this paper, we show that for all
sufficiently large d, we can do better. If n/d < log3/2 3 ≈ 2.70951129, then
individual testing is minimax. We further show that this is the best possible
result obtainable by Theorem 1.1.

2. MAIN RESULTS

Let us define Ψ(s, t) = (s− t)s−t22t/(1− t)1−t(s− 1)s−12s.

Theorem 2.1.
(
sd−td
d−td

) ·22+2td−sd > 1 for all sufficiently large d if and only
if Ψ(s, t) > 1.

Proof. Consider the asymptotic behavior of the function

R(d)=
(

sd− td

d− td

)
· 22+2td−sd

=
4((s− t)d)!

((1− t)d)!((s− 1)d)!
· 2(2t−s)d.

We use Stirling’s approximation, x! ≈ √
2πxx+1/2e−x. Recalling that the

ratio of x! to its approximation approaches unity as x → ∞, we may write
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this in the limit as

4 · √2π · ((s− t)d)(s−t)d+1/2 · e(t−s)d

2π · ((1− t)d)(1−t)d+1/2 · ((s− 1)d)(s−1)d+1/2 · e(t−1)d · e(1−s)d
· 22td

2sd

=
2
√

2π

π
· √s− t

√
1− t

√
s− 1 · 1√

d
· ((s− t)d)(s−t)d · 22td

((1− t)d)(1−t)d · ((s− 1)d)(s−1)d · 2sd

=
2
√

2π

π
·

√
s− t√

1− t
√

s− 1
· 1√

d
·
(

(s− t)s−t · 22t

(1− t)1−t(s− 1)s−12s

)d

.

The function in parentheses is precisely Ψ(s, t). The behavior of this func-
tion determines the behavior of R. Specifically,

lim
d→∞

R(d) =
{

0 if Ψ(s, t) ≤ 1
∞ if Ψ(s, t) > 1

and the result follows.

By the definitions of s and t, we need only consider values of t ∈ (0, 1),
and s > 21/8 > 2. Define φ = log3/2 3 and ξ = log3/2 (3 · 2−4/3).

We shall show that for all s < φ, one can choose t ∈ (0, 1) such that
Ψ(s, t) > 1. Hence statement (1) holds for all sufficiently large d, and individ-
ual testing is minimax. Further, for all s ≥ φ and for all t ∈ (0, 1), we obtain
Ψ(s, t) ≤ 1. In this case, statement (1) holds for no sufficiently large d, and
we cannot deduce that individual testing is minimax.

Lemma 2.2. Ψ(φ, ξ) = 1.

Proof. Let τ = log3/2 21/3. Then

Ψ(φ, ξ)=
(log3/2 24/3)(log3/2 24/3) · 2(log3/2(9·2−8/3))

(log3/2 21/3)(log3/2 21/3)(log3/2 2)(log3/2 2)2(log3/2 3)

=
(4τ)4τ · 22−2τ

τ τ · (3τ)3τ · 21+3τ
=

τ4τ · 44τ

τ4τ · 33τ
· 21−5τ =

28τ

33τ
· 21−5τ = 2 · (2/3)3τ

= 2 · (3/2)− log3/2 2 = 2 · 1
2

= 1.

Lemma 2.3. ∂Ψ/∂s < 0 for all s > 2.

Proof. Rewrite Ψ(s, t) as

exp{(s− t) log(s− t)+2t log 2+(t−1) log(1− t)+ (1− s) log (s− 1)− s log 2}.
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Then

∂Ψ
∂s

= Ψ(s, t) · [log(s− t) + 1− log(s− 1)− 1− log 2]

= Ψ(s, t) · log
(

s− t

2s− 2

)
.

Since s > 2 and 0 < t < 1, we have 0 < s − t < 2s − 2, and hence
(s − t)/(2s − 2) is less than one. Thus the logarithm is negative, while Ψ is
always positive, and hence ∂Ψ/∂s < 0.

Lemma 2.4. Assume s = φ. Then ∂Ψ/∂t > 0 for t < ξ, ∂Ψ/∂t < 0 for
t > ξ, and ∂Ψ/∂t = 0 at t = ξ.

Proof. As in Lemma 2.3,

∂Ψ
∂t

= Ψ(s, t) · [− log (s− t)− 1 + 2 log 2 + log (1− t) + 1]

= Ψ(s, t) ·
[
2 log 2 + log

(
1− t

s− t

)]
.

The term in brackets is strictly decreasing with t, while Ψ is always positive.
Further, when we evaluate this term at (s, t) = (φ, ξ), we obtain [log 4 +
log(τ/4τ)] = [log 4 + log (1/4)] = 0. Together with the monotonicity of the
bracketed term, this gives us the desired result.

Corollary 2.5. Taking t = ξ maximizes Ψ(φ, t), and this maximum is 1.

We now establish a final corollary prior to deducing our main result.

Corollary 2.6. (a) For s ≥ φ,Ψ(s, t) ≤ 1 for all t ∈ (0, 1).
(b) For s < φ, there is a neighborhood (ξ′, ξ′′) of ξ such that Ψ(s, t) > 1 for
all

t ∈ (ξ′, ξ′′).

Proof. Statement (a) simply recapitulates the monotonicity of Ψ with s.
Statement (b) follows directly from the concavity of Ψ in the neighborhood of
ξ.

For statement (1) to be applicable, we need t = q/d to be a rational number
with d as its denominator. However, for sufficiently large d, we may choose
q to be an integer sufficiently close to d · ξ (that is, q/d ∈ (ξ′, ξ′′)) so that
Ψ(s, t) > 1. This completes the proof of the main theorem:
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Theorem 2.7. If c < φ ≈ 2.70951129, then for sufficiently large d, the
(cd, d) problem has individual testing as its minimax algorithm. By the mono-
tonicity of M(d, n), if n ≤ cd, then the (n, d) problem has individual testing
as its minimax algorithm.

3. CONCLUSION

The value of φ = log3/2 3 that plays a central role here was discovered
empirically in our research. Examining the methods of Du and Hwang [1],
we determined that essentially the same proof guarantees that statement (1)
holds for s = 58/22, 140/53, and 251/95, among other values, as well as the
value of 21/8. For these values of s, in fact, the statement holds not just for
all sufficiently large d, but for all d. Considering cases when d is sufficiently
large, we found that statement (1) holds for s = 59/22, 62/23, 89/33, 116/43,
197/73, 311/115, and 1971/728. Indeed, the value of φ = log3/2 3 was initially
‘guessed’ as the apparent limit of this sequence, and then verified. The value
φ achieved here appears to be the best result possible via this line of attack.
However, we believe that this is more a limitation of Theorem 1.1 than a
reason to doubt the conjecture that individual testing is minimax for n/d ≤ 3.
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