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Abstract

We give an explicit construction of sharply 2-transitive groups with

fixed point free involutions and without nontrivial abelian normal sub-

group.

1 Introduction

The finite sharply 2-transitive groups were classified by Zassenhaus [Z] in the
1930’s. They were shown to always contain a regular abelian normal subgroup.
It remained an open question whether the same holds for infinite sharply 2-
transitive groups. The first examples of sharply 2-transitive groups without
abelian normal subgroup were recently constructed in [RST]. In these examples
involutions have no fixed points. We here give an alternative approach to such a
construction by using partially defined group actions as also suggested by Rips.
See [RST] for more background on the problem.

2 The construction

Theorem 2.1. Let G0 be a group containing an involution t. Suppose that G0

acts on a set X and satisfies the following:

1. no nontrivial element of G0 fixes more than one element of X (we say
that G0 is 2-sharp);

2. all involutions are conjugate to t;

3. t does not fix any element of X.

Let κ be an infinite cardinal ≥ |X|. Then we can extend G0 to a sharply 2-
transitive action of

G =
(

G0 ∗〈t〉 (〈t〉 × F (S))
)

∗ F (R)

on a suitable set Y ⊃ X, where F (R), F (S) are free groups on disjoint sets R,S
of size κ.
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Hence we obtain:

Corollary 2.2. Any group can be extended to a group acting sharply 2-transitively
on some appropriate set without nontrivial abelian normal subgroup.

Proof. By adding a direct factor of order 2 if necessary and iterated HNN-
extensions any group can be extended to a group with a unique nontrivial con-
jugacy class of involutions. Letting this group act regularly on itself by right
translation all assumptions of Theorem 2.1 are satisfied. Finally we note that
the existence of normal forms in free products easily implies that if H is non-
trivial and K contains a nontrivial element k of order different from 2, then
G = H ∗K cannot have a nontrivial abelian normal subgroup: indeed, consider
a nontrivial g ∈ G. If g belongs to K, it does not commute with gh for any
h ∈ H \ 1. Otherwise, g does not commute with gk.

Definition 2.3. A partial action of G on a set X consists of an action of G0

on X and (injective) partial actions of the generators in S ∪ R such that for
s ∈ S, x ∈ X if xs is defined, then so is (xt)s and we have (xt)s = (xs)t.

Any element of G can be written as a reduced word in elements of

P = (G0 \ 1) ∪R ∪R−1 ∪ S ∪ S−1,

where we say that a word is reduced if there are no subwords of the form g1g2,
rǫr−ǫ, sǫs−ǫ, ts±1

1 · · · s±1
n t or sǫts−ǫ for gi ∈ G0 \1, r ∈ R, s, si ∈ S, ǫ ∈ {1,−1}.

It is easy to see that two reduced words represent the same element of G if and
only if they can be transformed into each other by swapping adjacent letters t
and sǫ.

If w = p1 · · · pn is a word and x and element X we say that xw is defined if
for all initial segments of w the action on x is defined, i.e. all xp1, (xp1)p2,. . . ,
(. . . (xp1) . . .)pn are defined and we set xw = (. . . (xp1) . . .)pn. Notice that for
elements from G0 the action on X is defined everywhere. If xw is defined and
w′ is a reduced word which represents the same element of G as w, then xw′ is
also defined and we have xw = xw′. Thus the expression xg = y makes sense
for g ∈ G, x, y ∈ X. Furthermore X becomes a gruppoid with hom(x, y) = {g ∈
G | xg = y} under the natural map hom(x, y)× hom(y, z) → hom(x, z).

If G acts partially on X, then there is a canonical partial action on the set
of pairs

(X)2 = {(x, y) ∈ X2 | x 6= y}.

Notice that since t does not fix a point, we have (x, xt) ∈ (X)2 for all x ∈ X.
For a = (x, y) we denote by a the flip (y, x) of a. If ag is defined, then so is
ag = ag.

Definition 2.4. We call a partial action of G on X good if for all pairs a ∈
(X)2 and g ∈ G the following holds:

1. ag = a implies g = 1.

2. If ag = a, then g is conjugate to t.
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3. t does not fix an element of X.

Consider the action of G0 on X as a partial action of G on X. Then our
assumptions on G0 in Theorem 2.1 translate exactly into saying that G acts
well on X.

A word in P is cyclically reduced if every cyclic permutation of w is reduced.
If a word is cyclically reduced, then every reduced word which represents the
same element of G is also cyclically reduced. Thus, to be cyclically reduced
is a property of elements of G. Clearly every element of G is conjugate to a
cyclically reduced one. This shows that in the definition of a good partial action
we can restrict ourselves to cyclically reduced elements. Note that the cyclically
reduced conjugates of t are the involutions of G0.

Lemma 2.5 (Extending s). Assume that G acts well on X and that for some
x ∈ X, s ∈ S and ǫ ∈ {1,−1} the expression xsǫ is not defined (and hence
neither is xtsǫ). Let x′G0 = {x′g0 | g0 ∈ G0} be a set of new elements on which
G0 acts regularly and extend the partial operation of G to X ′ = X ∪ x′G0 by
putting xsǫ = x′ and (xt)sǫ = x′t. Then G acts well on X ′.

Proof. Assume ǫ = 1, the other case being entirely similar. Let w be cyclically
reduced and aw = a for some pair a in X ′. Then the word w describes a cycle
in (X ′)2 containing a. If the cycle contains pairs from X only, we are done. If
there are two neighbouring pairs in the cycle which do not belong to X, they
must be connected by an element g0 ∈ G0\1. Thus the cycle contains a segment
b, c′1, d or a segment b, c′1, c

′
2, d where b, d ∈ X and c′i /∈ X. In the first case we

have bs = c′1, c
′
1s

−1 = d and in the second case bs = c′1, c
′
1t = c′2, c2s

−1 = d.
In the first case a cyclic permutation of w contains the subword s · s−1, in the
second case s · t · s−1. Thus w is not cyclically reduced, a contradiction.

The proof for aw = a is similar: instead of a cycle such an element w
describes a Moebius strip and we have the additional possibility that a = (x′, x′i)
and w = i for an involution i ∈ G.

Lemma 2.6 (Extending r). Assume that G acts well on X and that for some
x ∈ X, r ∈ R and ǫ ∈ {1,−1} the expression xrǫ is not defined. Choose a set
x′G0 = {x′g0 | g0 ∈ G0} of new elements on which G0 acts regularly. Extending
the partial operation of G on X ′ = X ∪ x′G0 by putting xrǫ = x′ yields again a
good action of G on X ′.

Proof. Consider a non-trivial cycle (or Moebius strip) in (X)2 described by a
cyclically reduced word w. It is easy to see that the cycle (Moebius strip) must
either be completely contained in (x′G0)

2 or completely contained in (X)2. In
the first case we have a Moebius strip of the form (x′, x′i)i = (x′i, x′) for an
involution i ∈ G0. The second case cannot occur since G acts well on X by
assumption.

Lemma 2.7 (Joining t-pairs). Assume that G acts well on X and let a = (x, xt)
and b = (y, yt) be pairs for which there is no g ∈ G with ag = b. Let s ∈ S be an
element which does not yet act anywhere. Extend the action by setting as = b.
Then this action of G on X is again good.
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Proof. Let w be a cyclically reduced word with cw = c for some pair c ∈ (X)2.
If s does not occur in w, then we have w = 1 since the previous action on X
was good. Hence we may assume that w contains s. By cyclically permuting w
and taking inverses we may also assume that w = s · w′ and aw = a and thus
bw′ = a. By assumption on a, b the subword w′ must contain s. Hence we may
write w′ = u · sǫv for some subword u not containing s. We distinguish two
cases:

1. ǫ = 1. Then we must have bu = a or bu = a as s is only defined on these
pairs. Since bu = a implies b(ut) = a both cases contradict the assumption
on a, b.

2. ǫ = −1. Then we have bu = b or bu = b. If bu = b, then u = 1 and w
is not reduced. If bu = b = bt, then u = t and w contains the subword
s · t · s−1, contradicting the assumption that w be reduced.

Next we assume that w is cyclically reduced with cw = c for some pair c ∈ (X)2.
If w does not contain s, then w is conjugate to t since the previous action on
X was good. So we may assume that w = s · w′ and aw = a, i.e. bw′ = a.
By choice of a, b we must have w′ containing s and we see as before that this is
impossible.

Lemma 2.8 (Joining other pairs). Assume that G acts well on X and let a and
b be pairs in (X)2 such that there is no g ∈ G with ag = b or ag = b. Assume
furthermore that there is no g in G flipping b and that the action of r ∈ R is
not yet defined anywhere. Extending the partial action by setting ar = b yields
again a good action of G on X.

Note that a may or may not be a t-pair.

Proof. Let w be cyclically reduced and cw = c for some pair c ∈ (X)2. If r does
not appear in w, then we have w = 1 since the previous action on X is good.
Hence we may assume again as before that we have w = r · w′ and aw = a.
Hence bw′ = a. By assumption on a, b, the word w′ must contain r. Write
w′ = u · rǫv for some subword u not containing r. We distinguish two cases

1. ǫ = 1. Then bu = a or bu = a as r is only defined there. But this
contradicts our choice of a, b ∈ (X)2.

2. ǫ = −1. Then we have bu = b or bu = b. If bu = b, then we have u = 1 by
assumption on the previous action and w is not reduced. Hence bu = b,
contradicting the assumption that no element of G flips b.

Now assume that there is some pair c with cw = c. If w does not contain r, then
w is conjugate to t since the previous action is good. Hence we may again assume
that we have w = r · w′ and aw = a, hence bw′ = a. By assumption on a and
b, the word w′ must contain r and as before we see that this is impossible.
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Corollary 2.9. Let X, G0, t, κ, R, S and G as in Theorem 2.1. Assume
furthermore that the action of G0 has been extended to a good partial action of
G on X and that both R and S contain κ-many elements whose action is still
not defined anywhere. Then we can extend the partial action of G to a sharply
2-transitive action of G on some appropriate Y ⊃ X.

Proof. Choose partitions R =
⋃∞

i=0
Ri and S =

⋃∞
i=0

Si in disjoint sets of size κ,
such that for j > 0, the elements of Rj and Sj are nowhere defined. Fix a t-pair
a in X. We construct a sequence of sets X = X0 ⊂ X1 ⊂ · · · together with
extensions of the good action of G, in such a way that for j > i, the elements
of Rj and Sj are nowhere defined on Xi.

Assume that Xi is already defined. In a first step we use Lemmas 2.7 and
2.8 to define a partial action of the elements of Si+1 and Ri+1 on Xi such that:

1. all t-pairs in Xi are connected to a;

2. any pair in Xi can be flipped by an element of G.

The last property can be achieved as follows: if b cannot be flipped before,
Lemma 2.8 tells us how to connect a and b by an element of Ri+1. After this
b can be flipped since a can. In a second step we us Lemmas 2.5 and 2.6 to
extend the partial action of G to a superset Xi+1 such that for all j ≤ i+1, the
elements of Sj and Rj are defined on the whole of Xi.

Let Y be the union of the Xi. Then G acts well and therefore 2-sharply on
Y , and we have that all t-pairs in Y are connected to a and that all pairs can
be flipped. This implies that the action of G on Y is 2-transitive: It is enough
to show that all pairs are connected to a. Let b be a pair and g ∈ G so that
bg = b. Then t = hgh−1 for some h ∈ G. This implies (bh)t = bh, so bh is a
t-pair and whence connected to a

This concludes the proof of Theorem 2.1 and its corollary. Note that our con-
struction yields a group action for which no involution has a fixed point.

While the construction given in [RST] yields an explicit description of the
point stabilizers, the construction described here can be extended to yield
sharply 3-transitive groups, in which the point stabilizers - so sharply 2-transitive
groups - have no abelian normal subgroups, see [T].
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