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Abstract
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1. Introduction
Wilker in [1] proposed two open problems:

(a) Prove that if 0 <x <π/2, then

(
sin x
x

)2

+
tan x
x

> 2.

1

(1)

(b) Find the largest constant c such that

(
sin x
x

)2

+
tan x
x

> 2 + cx3 tan x

for 0 <x <π/2.

In [2], inequality (1) was proved, and the following inequality

2 +
(
2
π

)4

x3 tan x <

(
sin x
x

)2

+
tan x
x

< 2 +
8
45

x3 tan x for 0 < x <
π

2
, (2)

where the constants
(
2
π

)4

and
8
45

are best possible, was also established.

Wilker type inequalities (1) and (2) have attracted much interest of many mathemati-

cians and have motivated a large number of research papers involving different proofs

and various generalizations and improvements (cf. [2-13] and the references cited

therein). A brief survey of some old and new inequalities associated with trigonometric

functions can be found in [14]. These include (among other results) Wilker’s

inequality.
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Another inequality which is of interest to us is Huygens [15] inequality, which asserts

that

2
(
sin x
x

)
+
tan x
x

> 3 for all 0 < |x| <
π

2
. (3)

Neuman and Sándor [16] have pointed out that (3) implies (1). In [17], Zhu estab-

lished some new inequalities of the Huygens type for trigonometric and hyperbolic

functions. Baricz and Sándor [18] pointed out that inequalities (1) and (3) are simple

consequences of the arithmetic-geometric mean inequality together with the well-

known Lazarević-type inequality [[19], p. 238]

(cos x)1/3 <
sin x

x
for all 0 < |x| <

π

2
, (4)

or equivalently,

(
sin x
x

)2 tan x
x

> 1 for all 0 < |x| <
π

2
.

Wu and Srivastava [[7], Lemma 3] established another inequality

( x
sin

)2
+

x
tan x

> 2 for all 0 < |x| <
π

2
. (5)

In [20], Chen and Cheung showed that Wilker inequality (1), Huygens inequality (3),

Lazarević-type inequality (4) and Wu-Srivastava inequality (5) can be grouped into the

following inequality chain:

(sin x/x)2 + tan x/x
2

>
2(sin x/x) + tan x/x

3
>

3

√(
sin x

x

)2 tan x

x
> 1

>
2

1/(sin x/x)2 + 1/(tan x/x)
, 0 < |x| <

π

2
,

(6)

in terms of the arithmetic, geometric and harmonic means.

In this article, we present an elementary proof of Wilker’s inequality (2), and we

establish sharp Wilker and Huygens type inequalities.

The following elementary power series expansions are useful in our investigation.

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
, |x| < ∞, (7)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
, |x| < ∞, (8)

tan x =
∞∑
n=1

22n(22n − 1)(−1)n−1B2n

(2n)!
x2n−1, |x| <

π

2
, (9)

x cot x =
∞∑
n=0

(−1)nB2n
(2x)2n

(2n)!
, 0 < |x| < π . (10)
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where Bn (n = 0, 1,2,...) are Bernoulli numbers, defined by

t
et − 1

=
∞∑
n=0

Bn
tn

n!
.

The following lemma is also needed in the sequel.

Lemma 1. [21]Let an Î ℝ and bn > 0, n = 0,1, 2,... be real numbers with{
an
bn

}∞

n=1
being strictly increasing (respectively, decreasing). If the power series

B(x) :=
∑∞

n=0 bnx
nand B(x) :=

∑∞
n=0 bnx

nare convergent for |x| <R, then the function A

(x)/B(x) is strictly increasing (respectively, decreasing) on (0, R).

2. An elementary proof of Wilker’s inequality (2)
Proof of (2). Consider the function

f (x) :=

(
sin x
x

)2

+
tan x
x

− 2

x3 tan x
, 0 < x <

π

2
.

By using power series expansions (7) and (8), we obtain

−x6sin2xf ′(x) = −3x2sin(2x) + 5sin3x cos x + 5x − 2x3 + 2xcos4x − 7xcos2x

=
(

−3x2 +
5
4

)
sin(2x) − 5

8
sin(4x) − 2x3 +

9
4
x +

1
4
x cos(4x) − 5

2
x cos(2x)

=
∞∑
n=4

(−1)nun(x)

=
16
945

x9 − 16
1575

x11 +
16

7425
x13 − 11072

42567525
x15 +

∞∑
n=8

(−1)nun(x),

where

un(x) :=
((2n − 9)4n−1 + 6n2 − 2n)4n

(2n + 1)!
x2n+1.

Elementary calculations reveal that, for 0 <x <π/2 and n ≥ 8,

un+1(x)
un(x)

= 8x2
6n2 + 10n + 4 + (2n − 7)4n

(n + 1)(2n + 3)(24n2 − 8n + (2n − 9)4n)

< 8
(π

2

)2 6n2 + 10n + 4 + (2n − 7)4n

(n + 1)(2n + 3)(24n2 − 8n + (2n − 9)4n)

=
π2

2n + 3
12n2 + 20n + 8 + 2(2n − 7)4n

(n + 1)(24n2 − 8n + (2n − 9)4n)
.

Write

αn :=
π2

2n + 3
12n2 + 20n + 8 + 2(2n − 7)4n

(n + 1)(24n2 − 8n + (2n − 9)4n)
.

It is easy to see that for n ≥ 8,

12n2 + 20n + 8 + 2(2n − 7)4n

(n + 1)(24n2 − 8n + (2n − 9)4n)
< 1.
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Hence for all 0 <x <π/2 and n ≥ 8,

un+1(x)
un(x)

< αn <
π2

2n + 3
< 1.

Therefore, for fixed x Î (0, π/2), the sequence n ↦ un(x) is strictly decreasing with

regard to n ≥ 8. Hence, for 0 <x <π/2,

−x6sin2xf ′(x) >
16
945

x9 − 16
1575

x11 +
16

7425
x13 − 11072

42567525
x15

= x9
(

16
945

− 16
1575

x2 +
16

7425
x4 − 11072

42567525
x6

)
> 0.

Hence f(x) is strictly decreasing on (0, π/2). Noting that lim
t→0+

f (t) =
8
45

, we have

16
π4

= lim
t→(π/2)−

f (t) < f (x) =

(
sin x
x

)2

+
tan x
x

− 2

x3 tan x
< lim

t→0+
f (t) =

8
45

for all x ∈
(
0,

π

2

)
, with the constants

16
π4

and
8
45

being best possible. This com-

pletes the proof of (2).

3. Sharp Wilker’s inequality
By using power series expansions (8) and (9), we have, for 0 <x <π/2,

(
sin x
x

)2

+
tan x
x

=
1
2x2

= − 1
2x2

cos(2x) +
tan x
x

= 2 +
∞∑
k=3

(2(22k − 1) |B2k| − (−1)k)22k−1

(2k)!
x2k−2.

It is well known [[22], p. 805] that

2(2k)!

(2π)2k
< |B2k| <

2(2k)!

(2π)2k(1 − 21−2k)
, k ≥ 1. (11)

By (11), we find that

2(22k − 1) |B2k| > 2(22k − 1)
2(2k)!

(2π)2k
> 1, k ≥ 3.

Hence, we have

(
sin x

x

)2

+
tan x

x
> 2 +

n∑
k=3

(2(22k − 1) |B2k| − (−1)k)22k−1

(2k)!
x2k−2

= 2 +
8
45

x4 +
16
315

x6 +
104
4725

x8 +
592

66825
x10

+ · · · + (2(22n − 1) |B2n| − (−1)n)22n−1

(2n)!
x2n−2.

(12)

Motivated by (12), we are now in a position to establish our first main result.
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Theorem 1. (i) For 0 <x <π/2, we have

2 +
8
45

x4 +
16
315

x5 tan x <

(
sin x
x

)2

+
tan x
x

< 2 +
8
45

x4 +
(
2
π

)6

x5 tan x. (13)

The constants
16
315

and
(
2
π

)6

are best possible.

(ii) For 0 <x <π/2, we have

2 +
8
45

x4 +
16
315

x6 +
104
4725

x7 tan x <

(
sin x
x

)2

+
tan x
x

< 2 +
8
45

x4 +
16
315

x6 +
(
2
π

)8

x7 tan x.

(14)

The constants
104
4725

and
(
2
π

)8

are best possible.

Proof. We only prove inequality (13). The proof of (14) is analogous.

Consider the function

g(x) : =

(
sin x
x

)2

+
tan x
x

− 2 − 8
45

x4

x5 tan x

=
sin(2x)
2x7

+
1
x6

− 2 cot x
x5

− 8 cot x
45x

, 0 < x <
π

2
.

By using power series expansions (7) and (10), we find that

g(x) =
∞∑
n=3

βn22n−1x2n−6,

where

βn :=
4 · |B2n|
(2n)!

+

∣∣B2(n−2)
∣∣

45 · (2n − 4)!
+ (−1)n

2
(2n + 1)!

, n ≥ 3.

By (11), we obtain

4 · |B2n|
(2n)!

+

∣∣B2(n−2)
∣∣

45 · (2n − 4)!
>

4
(2n)!

2(2n)!

(2π)2n
+

1
45 · (2n − 4)!

2(2n − 4)!

(2π)2n−4

=
180 + 2 · (2π)4

45 · (2π)2n
.

By induction on n, it is easy to see that

180 + 2 · (2π)4

45 · (2π)2n
>

2
(2n + 1)!

for all n ≥ 3.

Chen and Cheung Journal of Inequalities and Applications 2012, 2012:72
http://www.journalofinequalitiesandapplications.com/content/2012/1/72

Page 5 of 11



Hence bn > 0 for n ≥ 3, and we have

g′(x) =
∞∑
n=4

bn22n−1(2n − 6)x2n−7 > 0, 0 < x <
π

2
.

Therefore, g(x) is strictly increasing on (0, π/2). Noting that lim
t→(π/2)−

g(t) =
(
2
π

)6

, we

have

16
315

= lim
t→0+

g(t) < g(x) =

(
sin x
x

)2

+
tan x
x

− 2 − 8
45

x4

x5 tan x
< lim

t→(π/2)−
g(t) =

(
2
π

)6

for all x ∈
(
0,

π

2

)
, with the constants

16
315

and
(
2
π

)6

being best possible. This

completes the proof of (13).

Remark 1. Inequality (14) is sharper than (13). On the other hand, there is no strict

comparison between inequalities (2) and (13). There is no strict comparison between

inequalities (2) and (14) either.

In view of inequalities (13) and (14), we propose the following conjecture.

Conjecture 1. For 0 <x <π/2 and n ≥ 3, we have

2 +
n∑

k=3

(2(22k − 1) |B2k| − (−1)k)22k−1

(2k)!
x2k−2

+
(2(22n+2 − 1) |B2n+2| − (−1)n+1)22n+1

(2n + 2)!
x2n−1 tan x

<

(
sin x

x

)2

+
tan x

x

< 2 +
n∑

k=3

(2(22k − 1) |B2k| − (−1)k)22k−1

(2k)!
x2k−2 +

(
2
π

)2n

x2n−1 tan x.

4. Sharp the Wu-Srivastava inequality
By using power series expansion (10), we obtain for 0 <x <π/2,

csc2x = −(cot x)′ =
1
x2

+
∞∑
k=1

22k(2k − 1 |B2k|)
(2k)!

x2k−2. (15)

Hence for 0 <x <π/2,

( x
sin x

)2
+

x
tan x

= x2csc2x + x cot x

= 2 +
∞∑
k=2

22k+1(k − 1) |B2k|
(2k)!

x2k

= 2 +
2
45

x4 +
8

945
x6 +

2
1575

x8 +
16

93555
x10 + · · · .

(16)

Motivated by (16), we establish our second main result:
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Theorem 2. (i) For 0 <x <π/2, we have

( x
sin x

)2
+

x
tan x

< 2 +
2
45

x3 tan x. (17)

The constant
2
45

is best possible.

(ii) For 0 <x <π/2, we have

( x
sin x

)2
+

x
tan x

< 2 +
2
45

x4 +
8

945
x5 tan x. (18)

The constant
8

945
is best possible.

Proof. We only prove inequality (18). The proof of (17) is analogous.

Consider the function

G(x) :=

( x
sin x

)2
+

x
tan x

− 2 − 2
45

x4

x5 tan x
=
A(x)
B(x)

,

where

A(x) : =
( x
sin x

)2
+

x
tan x

− 2 − 2
45

x4

=
∞∑
n=1

22n+5(n + 1)
∣∣B2(n+2)

∣∣
(2n + 4)!

x2n+4 =
∞∑
n=1

anx2n+4

with

an :=
22n+5(n + 1)

∣∣B2(n+2)
∣∣

(2n + 4)!
,

and

B(x) := x5 tan x =
∞∑
n=1

22n(22n − 1) |B2n|
(2n)!

x2n+4 =
∞∑
n=1

bnx
2n+4

with

bn :=
22n(22n − 1) |B2n|

(2n)!
.

We claim that the function G(x) is strictly decreasing on (0, π/2). By Lemma 1, it

suffices to show that

an
bn

>
an+1
bn+1

, n ≥ 1. (19)

It is known [[23], p. 96] that

2 · (2n)!
(2π)2n

< |B2n| <
π2(2n)!

3(2π)2n
, n ≥ 1. (20)
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By using (20), we obtain

an
bn

=
25(n + 1)

∣∣B2(n+2)
∣∣

(2n + 4)!
· (2n)!
(22n − 1) |B2n| >

192(n + 1)

π2(2π)4(4n − 1)

and

an+1
bn+1

=
25(n + 2)

∣∣B2(n+3)
∣∣

(2n + 6)!
· (2n + 2)!

(22n+2 − 1)
∣∣B2(n+1)

∣∣ <
16π2(n + 2)

3(2π)4(4n+1 − 1)
.

So (19) is a consequence of the elementary inequality

192(n + 1)

π2(2π)4(4n − 1)
>

16π2(n + 2)

3(2π)4(4n+1 − 1)
,

which is equivalent to

36(n + 1)
4n − 1

>
π4(n + 2)
4n+1 − 1

, n ≥ 1. (21)

The proof of the inequality (21) is not difficult, and is left with the readers. This

proves the claim.

Noting that lim
t→0+

G(t) =
8

945
, we have

G(x) < lim
t→0+

G(t) =
8

945
for all x ∈

(
0,

π

2

)

with the constant
8

945
being best possible. This completes the proof of (18).

In view of inequalities (17) and (18), we propose the following conjecture.

Conjecture 2. For 0 <x <π/2 and n ≥ 1,

( x

sin x

)2
+

x

tan x
< 2 +

n∑
k=2

(k − 1) · 22k+1 |B2k|
(2k)!

x2k +
n · 22n+3 ∣∣B2(n+1)

∣∣
(2n + 2)!

x2n+1 tan x. (22)

5. Skarp Huygens inequality
By using power series expansions (7) and (9), for 0 <x <π/2, we have

2
(
sin x
x

)
+
tan x
x

= 3 +
∞∑
k=3

(
22k(22k − 1) |B2k|

4k
− (−1)k

)
2x2k−2

(2k − 1)!
.

By (11), we find that

22k(22k − 1) |B2k|
4k

>
22k(22k − 1)

4k
2(2k)!

(2π)2k
=
(22k − 1) · (2k − 1)!

π2k
> 1, k ≥ 3.
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Hence we have

2
(
sin x

x

)
+
tan x

x
> 3 +

n∑
k=3

(
22k(22k − 1) |B2k|

4k
− (−1)k

)
2x2k−2

(2k − 1)!

= 3 +
3
20

x4 +
3
56

x6 +
7

320
x8 +

3931
443520

x10

+ · · · +
(
(22n(22n − 1) |B2n|)

4n
− (−1)n

)
2x2n−2

(2n − 1)!
.

(23)

Motivated by (23), we establish our third main result:

Theorem 3. (i) For 0 <x <π/2, we have

3 +
3
20

x3 tan x < 2
(
sin x
x

)
+
tan x
x

< 3 +
(
2
π

)4

x3 tan x. (24)

The constants
3
20

and
(
2
π

)4

are best possible.

(ii) For 0 <x <π/2, we have

3 +
3
20

x4 +
3
56

x5 tan x < 2
(
sin x
x

)
+
tan x
x

< 3 +
3
20

x4 +
(
2
π

)6

x5 tan x. (25)

The constants
3
56

and
(
2
π

)6

are best possible.

Proof. We only prove inequality (25). The proof of (24) is analogous.

Consider the function

h(x) : =
2

(
sin x
x

)
+
tan x
x

− 3 − 3
20

x4

x5 tan x

=
2 cos x
x6

+
1
x6

− 3 cot x
x5

− 3 cot x
20x

, 0 < x <
π

2
.

By using power series expansions (8) and (10), we find that

h(x) =
∞∑
n=3

cnx
2n−6,

where

cn :=
3 · 22n |B2n|

(2n)!
+
3 · 22n−4

∣∣B2(n−2)
∣∣

20 · (2n − 4)!
+ (−1)n

2
(2n)!

, n ≥ 3.

By (11), we obtain

3 · 22n |B2n|
(2n)!

+
3 · 22n−4

∣∣B2(n−2)
∣∣

20 · (2n − 4)!
>

3 · 22n
(2n)!

2(2n)!

(2π)2n
+

3 · 22n−4

20 · (2n − 4)!
2(2n − 4)!

(2π)2n−4

=
60 + 3 · π4

10 · π2n
.
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By induction on n, it is easy to show that

60 + 3 · π4

10 · π2n
>

2
(2n)!

for all n ≥ 3.

Hence cn > 0 for n ≥ 3, and we have

h′(x) =
∞∑
n=4

cn(2n − 6)x2n−7 > 0 for all 0 < x <
π

2
.

Therefore, h(x) is strictly increasing on (0, π/2). Noting that lim
t→0+

h(t) =
3
56

and

lim
t→(π/2)−

h(t) =
(
2
π

)6

, we have

3
56

= lim
t→0+

h(t) < h(x) =
2

(
sin x
x

)
+
tan x
x

− 3 − 3
20

x4

x5 tan x
< lim

t→(π/2)−
h(t) =

(
2
π

)6

for all x ∈
(
0,

π

2

)
with the constants

3
56

and
(
2
π

)6

being possible. This completes

the proof of (25).

Remark 2. There is no strict comparison between inequalities (24) and (25).

In view of inequalities (24) and (25), we propose the following conjecture.

Conjecture 3. For 0 <x <π/2 and n ≥ 2, we have

3 +
n∑

k=3

(
22k(22k − 1) |B2k|

4k
− (−1)k

)
2

(2k − 1)!
x2k−2

+
(
22n+2(22n+2 − 1) |B2n+2|

4(n + 1)
− (−1)n+1

)
2

(2n + 1)!
x2n−1 tan x

< 2
(
sin x
x

)
+
tan x
x

< 3 +
n∑

k=3

(
22k(22k − 1) |B2k|

4k
− (−1)k

)
2

(2k − 1)!
x2k−2 +

(
2
π

)2n

x2n−1 tan x.

(26)
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