
Shattering and Compressing Networks for Centrality Analysis

Ahmet Erdem Sarıyüce1,2, Erik Saule1, Kamer Kaya1, Ümit V. Çatalyürek1,3

1 Dept. Biomedical Informatics, The Ohio State University
2 Dept. Computer Science and Engineering, The Ohio State University

3 Dept. Electrical and Computer Engineering, The Ohio State University

Email: {aerdem,esaule,kamer,umit}@bmi.osu.edu

September 27, 2012

(Previously submitted to ICDM on June 18, 2012)

Abstract

Who is more important in a network? Who controls the flow between the nodes or
whose contribution is significant for connections? Centrality metrics play an important role
while answering these questions. The betweenness metric is useful for network analysis and
implemented in various tools. Since it is one of the most computationally expensive kernels
in graph mining, several techniques have been proposed for fast computation of betweenness
centrality. In this work, we propose and investigate techniques which compress a network
and shatter it into pieces so that the rest of the computation can be handled independently
for each piece. Although we designed and tuned the shattering process for betweenness,
it can be adapted for other centrality metrics in a straightforward manner. Experimental
results show that the proposed techniques can be a great arsenal to reduce the centrality
computation time for various types of networks.
Keywords: Betweenness centrality; network analysis; graph mining; connected components

1 Introduction

Centrality metrics play an important role to successfully detect the central nodes in various types
of networks such as social networks [1, 2], biological networks [3, 4], power networks [5], covert
networks [6] and decision/action networks [7]. Among these metrics, betweenness has always
been an intriguing one and it has been implemented in several tools which are widely used in
practice for analyzing networks and graphs [8, 9]. In short, the betweenness centrality (BC)
score of a node is the sum of the fractions of shortest paths between node pairs that pass through
the node of interest [10]. Hence, it is a measure for the contribution/load/influence/effectiveness
of a node while disseminating information through a network.

Although betweenness centrality has been proved to be successful for network analysis,
computing betweenness centrality scores of all the nodes in a network is expensive. The first
trivial algorithms for BC have Θ(n3) and Θ(n2) time and space complexity, respectively, where n
is the number of nodes in the network. Considering the size of today’s networks, these algorithms
are not practical. Brandes proposed a faster algorithm which has O(nm) and O(nm+n2 log n)
time complexity for unweighted and weighted networks, respectively, where m is the number of
node-node interactions in the network [11]. Since the networks in real life are usually sparse,
m ≈ kn for a small k, O(nm) is much better than O(n3). Brandes’ algorithm also has a better,
O(n+m), space complexity and currently, it is the best algorithm for BC computations. Yet, it

1

ar
X

iv
:1

20
9.

60
07

v1
 [

cs
.D

S]
 2

6
Se

p
20

12

is not fast enough to handle almost 1 billion users of Facebook or 150 million users of Twitter.
Several techniques have been proposed to alleviate the complexity of BC computation for large
networks. A set of works propose using estimated values instead of exact BC scores [12, 13],
and others parallelize BC computations on distributed memory architectures [14], multicore
CPUs [3, 15, 16], and GPUs [17, 18, 19].

In this work, we propose a set of techniques which compress a network and break it into pieces
such that the BC scores of two nodes in two different pieces can be computed independently,
and hence, in a more efficient manner. Although we designed and tuned these techniques for
standard, shortest-path vertex-betweenness centrality, they can be modified for other path-based
centrality metrics such as closeness or other BC variants such as edge betweenness and group
betweenness [20]. Similarly, although we are interested in unweighted undirected networks in this
paper, our shattering techniques are valid also for weighted directed networks. Experimental
results show that proposed techniques are very effective and they can be a great arsenal to
reduce the computation in practice.

The rest of the paper is organized as follows: In Section 2, an algorithmic background
for betweenness centrality is given. The proposed shattering and compression techniques are
explained in Section 3. Section 4 gives experimental results on various kinds of networks, and
Section 5 concludes the paper.

2 Background

Let G = (V,E) be a network modeled as a graph with n vertices and m edges where each
node in the network is represented by a vertex in V , and an interaction between two nodes is
represented by an edge in E. We assume that {v, v} /∈ E for any v ∈ V , i.e., G is loop free. Let
Γ(v) be the set of vertices which are connected to v.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A path is a vertex sequence
such that there exists an edge between consecutive vertices. A path between two vertices s and
t is denoted by s t. Two vertices u and v in V are connected if there is a path from u to
v. If u and v are connected for all u, v ∈ V we say G is connected. If G is not connected, then
it is disconnected and each maximal connected subgraph of G is a connected component, or a
component, of G.

Given a graph G = (V,E), an edge e ∈ E is a bridge if G−e has more connected components
than G where G − e is obtained by removing e from E. Similarly, a vertex v ∈ V is called an
articulation vertex if G − v has more connected components than G where G − v is obtained
by removing v and its edges from V and E, respectively. If G is connected and it does not
contain an articulation vertex we say G is biconnected. A maximal biconnected subgraph of G
is a biconnected component. Hence, if G is biconnected it has only one biconnected component
which is G itself.

G = (V,E) is a clique if and only if ∀u, v ∈ V, {u, v} ∈ E. The subgraph induced by a subset
of vertices V ′ ⊆ V is G′ = (V ′, E′ = {V ′×V ′}∩E). A vertex v ∈ V is a side vertex of G if and
only if the subgraph of G induced by Γ(v) is a clique. Two vertices u and v are identical if and
only if Γ(u) = Γ(v). v is a degree-1 vertex if and only if |Γ(v)| = 1.

2.1 Betweenness Centrality

The betweenness metric is first defined by Freeman in Sociology to quantify a person’s impor-
tance on other people’s communication in a social network [10]. Given a graph G, let σst be
the number of shortest paths from a source s ∈ V to a target t ∈ V . Let σst(v) be the number
of such s t paths passing through a vertex v ∈ V, v 6= s, t. Let the pair dependency of v to

2

s, t pair be the fraction δst(v) =
σst(v)
σst

. The betweenness centrality of v is defined as

bc[v] =
∑

s 6=v 6=t∈V

δst(v). (1)

Since there are O(n2) pairs in V , one needs O(n3) operations to compute bc[v] for all
v ∈ V by using (1). Brandes reduced this complexity and proposed an O(mn) algorithm for
unweighted networks [11]. The algorithm is based on the accumulation of pair dependencies
over target vertices. After accumulation, the dependency of v to s ∈ V is

δs(v) =
∑

t∈V

δst(v). (2)

Let Ps(u) be the set of u’s predecessors on the shortest paths from s to all vertices in V .
That is,

Ps(u) = {v ∈ V : {u, v} ∈ E, ds(u) = ds(v) + 1}

where ds(u) and ds(v) are the shortest distances from s to u and v, respectively. Ps defines the
shortest paths graph rooted in s. Brandes observed that the accumulated dependency values
can be computed recursively as

δs(v) =
∑

u:v∈Ps(u)

σsv
σsu

(1 + δs(u)) . (3)

To compute δs(v) for all v ∈ V \ {s}, Brandes’ algorithm uses a two-phase approach. First,
to compute σsv and Ps(v) for each v, a breadth first search (BFS) is initiated from s. Then in
a back propagation phase, δs(v) is computed for all v ∈ V in a bottom-up manner by using (3).
Each phase takes a linear time, and hence this process takes O(m) time. Since there are n
source vertices and the phases are repeated for each source vertex, the total complexity of the
algorithm is O(mn). The pseudo-code of Brandes’ betweenness centrality algorithm is given in
Algorithm 1.

3 Shattering and Compressing Networks

3.1 Principle

Let us start with a simple example: Let G = (V,E) be a binary tree with n vertices hence
m = n− 1. If Brandes’ algorithm is used the complexity of computing the BC scores is O(n2).
However, by using a structural property of G, one can do much better: there is exactly one
path between each vertex pair in V . Hence for a vertex v ∈ V , bc[v] is the number of (ordered)
pairs communicating via v, i.e.,

bc[v] = 2× ((lvrv) + (n− lv − rv − 1)(lv + rv))

where lv and rv are the number of vertices in the left and the right subtrees of v, respectively.
Since lv and rv can be computed in linear time for all v ∈ V , this approach, which can be easily
extended to an arbitrary tree, takes only O(n) time.

As mentioned in Section 1, computing BC scores is an expensive task. However, as the above
example shows, some structural properties of the networks can be effectively used to reduce the
complexity. Unfortunately, an n-fold improvement on the execution time is usually not possible
since real-life networks rarely have a tree-like from. However, as we will show, it is still possible
to reduce the execution time by using a set of special vertices and edges.

3

Algorithm 1: Bc-Org

Data: G = (V,E)
bc[v]← 0, ∀v ∈ V
for each s ∈ V do

S ← empty stack
Q← empty queue
P[v]← empty list, ∀v ∈ V
σ[v]← 0, ∀v ∈ V
d[v]← −1, ∀v ∈ V
Q.push(s); σ[s]← 1; d[s]← 0
⊲Phase 1: BFS from s
while Q is not empty do

v ← Q.pop()
S.push(v)
for all w ∈ Γ(v) do

if d[w] < 0 then

Q.push(w)
d[w]← d[v] + 1

if d[w] = d[v] + 1 then

σ[w]← σ[w] + σ[v]
P[w].push(v)

⊲Phase 2: Back propagation

δ[v]← 0, ∀v ∈ V
while S is not empty do

w ← S.pop()
for v ∈ P [w] do

δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w])

if w 6= s then

bc[w]← bc[w] + δ[w]

return bc

(a) A toy social network with various types of
vertices: Arthur is an articulation vertex, Diana
is a side vertex, Jack and Martin are degree-1
vertices, and Amy and May are identical vertices.

(b) The network shattered at Arthur to three
components.

Figure 1: A toy social network and its shattered form due to an articulation vertex.

4

Consider the toy graph G of a social network given in Figure 1.(a). Arthur is an articulation
vertex in G and he is responsible from all inter-communications among three (biconnected)
components as shown in Figure 1.(b). Let s and t be two vertices which lie in different com-
ponents. For all such s, t pairs, the pair dependency of Arthur is 1. Since shattering the graph
at Arthur removes all s t paths, one needs to keep some information to correctly update the
BC scores of the vertices inside each component, and this can be achieved creating local copies
of Arthur in each component.

In addition to shattering a graph G into pieces, we investigated three compression tech-
niques using degree-1 vertices, side vertices, and identical vertices. These vertices have special
properties: All degree-1 and side vertices always have a zero BC score since they cannot be on
a shortest path unless they are one of the endpoints. Furthermore, bc[u] is equal to bc[v] for
two identical vertices u and v. By using these observations, we will formally analyze the pro-
posed shattering and compression techniques and provide formulas to compute the BC scores
correctly.

We apply our techniques in a preprocessing phase as follows: Let G = G0 be the initial
graph, and Gℓ be the graph after the ℓth shattering/compression operation. Without loss of
generality, we assume that the initial graph G is connected. The ℓ + 1th operation modifies a
single connected component of Gℓ and generates Gℓ+1. The preprocessing phase then checks
if Gℓ+1 is amenable to further modification, and if this is the case, it continues. Otherwise, it
terminates and the final BC computation begins.

3.2 Shattering Graphs

To correctly compute the BC scores after shattering a graph, we assign a reach attribute to each
vertex. Let G = (V,E). Let v′ be a vertex in the shattered graph G′ and C ′ be its component.
Then reach[v′] is the number of vertices of G which are represented by v′ in C ′. For instance
in Figure 1.(b), reach[Arthur3] is 6 since Amy, John, May, Sue, Jack, and Arthur have the
same shortest path graphs in the right component. At the beginning, we set reach[v] = 1 for
all v ∈ V .

3.2.1 Shattering with articulation vertices

Let u′ be an articulation vertex detected in a connected component C ⊆ Gℓ after the ℓth
operation of the preprocessing phase. We first shatter C into k (connected) components Ci for
1 ≤ i ≤ k by removing u′ from Gℓ and adding a local copy u′i of u′ to each component by
connecting it to the same vertices u was connected. The reach values for each local copy is set
as

reach[u′i] =
∑

v′∈C\Ci

reach[v′] (4)

for 1 ≤ i ≤ k. We will use org(v′) to denote the mapping from V ′ to V , which maps a local
copy v′ ∈ V ′ to the corresponding original copy in V .

For each component C, formed at any time of the preprocessing phase, a vertex s ∈ V has
exactly one representative u′ ∈ C such that reach[u′] is incremented by one due to s. This
vertex is denoted as rep(C, s). Note that each copy is a representative of its original. And if
rep(C, s) = u′ and t′ 6= u′ is another vertex in C then org(u′) is on all s org(t′) paths in G.

Algorithm 2 computes the BC scores of the vertices in a shattered graph. Note that the
only difference w.r.t. Bc-Org are lines 1 and 3. Furthermore, if reach[v] = 1 for all v ∈ V the
algorithms are equivalent. Hence the worst case complexity of Bc-Reach is also O(mn) for a
graph with n vertices and m edges.

5

Algorithm 2: Bc-Reach

Data: G′ = (V ′, E′) and reach

bc′[v]← 0, ∀v ∈ V ′

for each s ∈ V ′ do

· · · ⊲same as Bc-Org

while Q is not empty do

· · · ⊲same as Bc-Org

1 δ[v]← reach[v]− 1, ∀v ∈ V ′

while S is not empty do

w ← S.pop()
for v ∈ P[w] do

2 δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w])

if w 6= s then

3 bc′[w]← bc′[w] + (reach[s] ∗ δ[w])

return bc’

Let G = (V,E) be the initial graph with n vertices and G′ = (V ′, E′) be the shattered
graph after preprocessing. Let bc and bc′ be the BC scores computed by Bc-Org(G) and
Bc-Reach(G′), respectively. We will prove that

bc[v] =
∑

v′∈V ′|org(v′)=v

bc′[v′], (5)

when the graph is shattered at articulation vertices. That is, bc[v] is distributed to bc′[v′]s
where v′ is an arbitrary copy of v. Let us start with two lemmas.

Lemma 1 Let u, v, s be vertices such that all s v paths contain u. Then,

δs(v) = δu(v).

Pf. 1 For any target vertex t, if σst(v) is positive then

δst(v) =
σst(v)

σst
=

σsuσut(v)

σsuσut
=

σut(v)

σut
= δut(v)

since all s t paths are passing through u. According to (2), δs(v) = δu(v).

Lemma 2 For any vertex pair s, t ∈ V , there exists exactly one component C of G′ which
contains a copy of t which is not the same vertex as the representative of s in C.

Pf. 2 Given s, t ∈ V , the statement is true for the initial (connected) graph G since it contains
one copy of each vertex. Assume that it is also true after ℓth shattering and let C be this
component. When C is further shattered via t’s copy, all but one newly formed (sub)components
contains a copy of t as the representative of s. For the remaining component C ′, rep(C ′, s) =
rep(C, s) which is not a copy of t.

For all components other than C, which contain a copy t′ of t, the representative of s is t′

by the inductive assumption. When such components are further shattered, the representative
of s will be again a copy of t. Hence the statement is true for Gℓ+1, and by induction, also for
G′.

Theorem 1 Eq. 5 is correct after shattering G with articulation vertices.

6

Pf. 3 Let C be a component of G′, s′, v′ be two vertices in C, and s, v be the corresponding
original vertices in V , respectively. Note that reach[v′]− 1 is the number of vertices t 6= v such
that t does not have a copy in C and v lies on all s t paths in G. For all such vertices,
δst(v) = 1, and the total dependency of v′ to all such t is reach[v′]−1. When the BFS is started
from s′, line 1 of Bc-Reach initiates δ[v′] with this value and computes the final δ[v′] = δs′(v

′).
This is exactly the same dependency δs(v) computed by Bc-Org.

Let C be a component of G′, u′ and v′ be two vertices in C, and u = org(u′), v = org(v′).
According to the above paragraph, , δu(v) = δu′(v′) where δu(v) and δu′(v′) are the dependencies
computed by Bc-Org and Bc-Reach, respectively. Let s ∈ V be a vertex, s.t. rep(C, s) = u′.
According to Lemma 1, δs(v) = δu(v) = δu′(v′). Since there are reach[u′] vertices represented
by u′ in C, the contribution of the BFS from u′ to the BC score of v′ is reach[u′] × δu′(v′) as
shown in line 3 of Bc-Reach. Furthermore, according to Lemma 2, δs′(v

′) will be added to
exactly one copy v′ of v. Hence, (5) is correct.

3.2.2 Shattering with bridges

Although the existence of a bridge implies the existence of an articulation vertex, handling
bridges are easier and only requires the removal of the bridge. We embed this operation to the
preprocessing phase as follows: Let Gℓ be the shattered graph obtained after ℓ operations, and
let {u′, v′} be a bridge in a component C of Gℓ. Hence, u

′ and v′ are both articulation vertices.
Let u = org(u′) and v = org(v′). A bridge removal operation is similar to a shattering via an
articulation vertex, however, no new copies of u or v are created. Instead, we let u′ and v′ act
as a copy of v and u.

Let Cu and Cv be the components formed after removing edge {u′, v′} which contain u′ and
v′, respectively. Similar to (4), we add

∑

w∈Cv

reach[w] and
∑

w∈Cu

reach[w]

to reach[u′] and reach[v′], respectively, to make u′ (v′) as the representative of all vertices in
Cu (Cv).

After removing the bridge and updating the reach array, Lemma 2 is not true: there cannot
be a component which contain a representative of u (v) and a copy of v (u) anymore. Hence,
δv(u) and δu(v) will not be added to any copy of u and v, respectively, by Bc-Reach. To
alleviate this, we add

δv′(u
′) =

((

∑

w∈Cu

reach[w]

)

− 1

)

∑

w∈Cv

reach[w],

δu′(v′) =

((

∑

w∈Cv

reach[w]

)

− 1

)

∑

w∈Cu

reach[w]

to bc′[u′] and bc′[v′], respectively. Note that Lemma 2 is true for all other vertex pairs.

Corollary 1 Eq. 5 is correct after shattering G with articulation vertices and bridges.

3.3 Compressing Graphs

Although, the compression techniques do not reduce the number of connected components, they
reduce the number of vertices and edges in a graph. Since the complexity of Brandes’ algorithm
is O(mn), a reduction on m and/or n will help to reduce the execution time of the algorithm.

7

3.3.1 Compression with degree-1 vertices

Let Gℓ be the graph after ℓ shattering operations, and let u′ ∈ C be a degree-1 vertex in a
component C of Gℓ which is only connected to v′. Removing a degree-1 vertex from a graph is
the same as removing the bridge {u′, v′} fromGℓ. But this time, we reduce the number of vertices
and the graph is compressed. Hence, we handle this case separately and set Gℓ+1 = Gℓ − u′.
The updates are the same with the bridge removal. That is, we add reach[u′] to reach[v′] and
increase bc′[u′] and bc′[v′], respectively, with

δv′(u
′) =

(

reach[u′]− 1
)

∑

w∈C\{u′}

reach[w],

δu′(v′) =

∑

w∈C\{u′}

reach[w]

− 1

 reach[u′].

Corollary 2 Eq. 5 is correct after shattering G with articulation vertices and bridges, and
compressing it with degree-1 vertices.

3.3.2 Compression with side vertices

Let Gℓ be the graph after ℓ shattering and compression operations, and let u′ be a side vertex
in a component C of Gℓ. Since Γ(u′) is a clique, there is no shortest path passing through u′.
That is, u′ is always on the sideways. Hence, we can remove u′ from Gℓ by only compensating
the effect of the shortest s′ t′ paths where u′ is either s′ or t′. To alleviate this, we initiate
a BFS from u′ as given in Algorithm 2, which is similar to the ones in Bc-Reach. The only
difference between Bfs-Side and a BFS of Bc-Reach is an additional line 2.

Algorithm 3: Bfs-Side

Data: Gℓ = (Vℓ, Eℓ), a side vertex s, reach, and bc′

· · · ⊲same as the BFS init. in Bc-Reach

while Q is not empty do

· · · ⊲same as BFS in Bc-Reach

δ[v]← reach[v]− 1, ∀v ∈ Vℓ

while S is not empty do

w ← S.pop()
for v ∈ P[w] do

δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w])

if w 6= s then

1 bc′[w]← bc′[w] + (reach[s] ∗ δ[w])+
2 (reach[s] ∗ (δ[w]− (reach[w]− 1))

return bc’

Removing u′ affects three types of dependencies:

1. Let s ∈ V be a vertex s.t. rep(C, s) = u′ and let v′ be a vertex in C where v = org(v′).
Due to Lemma 2, when we remove u′ from C, δs(v) = δu′(v′) cannot be added anymore
to any copy of v. Line 1 of Bfs-Side solves this problem and adds the necessary values
to bc′(v′).

2. Let s ∈ V be a vertex s.t. rep(C, s) = v′ 6= u′. If we remove u′ from C, due to
Lemma 2, δs(u) = δv′(u

′) will not be added to any copy of u. Since, u′ is a side vertex,

8

δv′(u
′) = reach[u′]− 1. Since there are

∑

v′∈C−u′ reach[v′] vertices which are represented
by a vertex in C − u′, we add

(reach[u′]− 1)
∑

v′∈C−u′

reach[v′]

to bc′[u′] after removing u′ from C.

3. Let v′, w′ be two vertices in C different than u′, and v, w be the corresponding original
vertices. Although both vertices will keep existing in C − u′, since u′ will be removed,
δv′(w

′) will be reach[u′]× δv′u′(w′) less than it should be. For all such v′, the aggregated
dependency will be

∑

v′∈C,v′ 6=w′

δv′u′(w′) = δu′(w′)− (reach[w′]− 1),

since none of the reach[w′] − 1 vertices represented by w′ lies on a v′ u′ path and
δv′u′(w′) = δu′v′(w

′). The same dependency appears for all vertices represented by u′.
Line 2 of Bfs-Side takes into account all these dependencies.

Corollary 3 Eq. 5 is correct after shattering G with articulation vertices and bridges, and
compressing it with degree-1 and side vertices.

3.3.3 Compression with identical vertices

When two vertices in G are identical, all of their pair dependencies, source dependencies, and BC
scores are the same. Hence, it is possible to combine these vertices and avoid extra computation.
We distinguish 2 different types of identical vertices. Vertices u and v are type-I identical if and
only if Γ(u) = Γ(v). Vertices u and v are type-II identical if and only if Γ(u)∪{u} = Γ(v)∪{v}.

To handle this, we assign ident attribute to each vertex. ident(v′) denotes the number of
vertices in G that are identical to v′ in G′. Initially, ident[v′] is set to 1 for all v ∈ V .

Let I ⊂ V be a set of identical vertices. We remove all vertices u′ ∈ I from G except one
of them. Let v′ be this remaining vertex. We increase ident[v′] by |I| − 1, and keep a list of
I\{v′}’s associated with v′.

When constructing the BFS graph, the number of paths σ[w] is updated incorrectly for an
edge {v, w} when v is not the source. The edge leads to ident[v] paths: σ[w]← σ[w] + (σ[v] ∗
ident[v]) if v 6= s.

The propagation of the dependencies ident[w] along the edge {v, w} should be accounted

multiple times as in δ[v]← δ[v] + σ[v]
σ[w]ident[w](δ[w] + 1).

Finally, for a given source s, there are ident[s] similar shortest path graphs, and the accu-
mulation of the BC value is bc′[w]← bc′[w] + ident[s]δ[w].

The only path that are ignored in this computation of BC are the paths between u ∈ I and
v ∈ I. If I is a type-II identical set, then this path are direct and the computation of BC is
correct. However, if I is a type-I identical set, these paths have some impact. Fortunately, it
only impacts the direct neighboor of I. There are exactly |I| × (|I| − 1) paths whose impact is
equally distributed among the neighbors of I.

The technique presented in this section has been presented without taking reach into ac-
count. Both techniques can be applied simultaneously but the details are not presented here
due to space limitation.

Corollary 4 Eq. 5 is correct after shattering G with articulation vertices and bridges, and
compressing it with degree-1, side, and identical vertices.

9

3.4 Implementation Details

There exist linear time algorithms for detecting articulation vertices and bridges [21, 22]. In our
implementation of the preprocessing phase, after detecting all articulation vertices with [22], the
graph is decomposed into its biconnected components at once. Note that the final decomposition
is the same when the graph is iteratively shattered one articulation point at a time as described
above. But decomposing the graph into its biconnected components is much faster. A similar
approach works for bridges and removes all of them at once. Since the detection algorithms are
linear time, each cumulative shattering operation takes O(m+ n) time.

For compression techniques, detecting recursively all degree-1 vertices takes O(n) time.
Detecting identical vertices is expected to take a linear time provided a good hash function to
compute the hash of the neighborhood of each vertex. In our implementation, for all v ∈ Vℓ, we
use hash(v) =

∑

u∈Γ(v) u. Upon collision of hash values, the neighborhood of the two vertices
are explicitly compared.

To detect side vertices of degree k, we use a simple algorithm which for each vertex v of
degree k, verifies if the graph induced by Γ(v) is a clique. In practice, our implementation
does not search for cliques of more than 4 vertices since our preliminary experiments show that
searching these cliques is expensive. Similar to shattering, after detecting all vertices from a
certain type, we apply a cumulative compression operation to remove all the detected vertices
at once.

Figure 2: Combining identical vertices can create an articulation point: Vertices 1 and 8 are
identical vertices with neighbors {2, 4, 6, 7}. When one of the identical vertices is removed, the
remaining one is an articulation point.

The preprocessing phase is implemented as a loop where a single iteration consecutively
tries to shatter/compress the graph by using the above mentioned five operations. The loop
continues as long as improvement are made. Indeed, a single iteration of this loop may not be
sufficient since each operation can make the graph amenable to another one. For example, in our
toy graph given in Figure 1.(a), removing the degree-1 vertex Martin makes Wayne and Henry
identical. Furthermore, when Diana is also removed as a side vertex, Henry and Wayne both
become side vertices. Or as Figure 2 shows, removing identical vertices can form an articulation
vertex .

4 Experimental Results

We implemented the original and modified BC algorithms, and the proposed optimization tech-
niques in C++. The code is compiled with icc v12.0 and optimization flags -O2 -DNDEBUG.
The graph is kept in memory in the compressed row storage (CRS) format using 32-bit data
types. The experiments are run on a node with two Intel Xeon E5520 CPU clocked at 2.27GHz
and equipped with 48GB of main memory. Despite the machine is equipped with 8 cores, all
the experiments are run sequentially.

10

Graph Time

application name #vertices #edges org. best

Category social

Social CondMat 16,726 47,594 21.1 9.1
CondMat03 27,519 116,181 102.0 52.3
hep-th 8,361 15,751 3.2 1.6
CondMat05 40,421 175,691 209.0 107.0
PGPgiant 10,680 24,316 10.7 3.7
astro-ph 16,706 121,251 40.3 22.2

Category structural

Auto bcsstk29 13,992 302,748 68.3 26.4
bcsstk30 28,924 1,007,284 399.0 41.4
bcsstk31 35,588 572,914 363.0 106.0
bcsstk32 44,609 985,046 737.0 77.3
bcsstk33 8,738 291,583 37.0 11.1

Category geographical

Redistricting ak2010 45,292 108,549 178.0 114.0
ct2010 67,578 168,176 514.0 369.0
de2010 24,115 58,028 61.4 40.6
hi2010 25,016 62,063 18.4 12.9

Road luxembourg 114,599 119,666 632.0 390.0

Category misc

Router as-22july06 22,963 48,436 39.9 15.5

Power power 4,941 6,594 1.3 0.7

Biology ProtInt 9,673 37,081 11.2 8.1

Semi- add32 4,960 9,462 1.4 0.3
Conductor memplus 17,758 54,196 17.6 11.2

Geomean 47.4 19.6

Table 1: Properties of the graphs used in the experiments. Column org. shows the original
time of Bc-Org without any modification. And best is the minimum execution time by a
combination of the proposed heuristics.

For the experiments, we used 21 real-life networks from the dataset of DIMACS Graph
Partitioning and Graph Clustering Challenge. The graphs and their properties are summarized
in Table 1. They are classified into four categories. The first one, social, contains 6 social
networks. The second one, structural, contains 5 structural engineering graphs. The third one,
geographical, contains 4 redistricting graphs and one road graph. The last one, misc, contains
graphs from various applications such as autonomous systems, protein-protein interaction, and
power grids.

4.1 Ordering sparse networks

As most of the graph-based kernels in data mining, the order of the vertices and edges accessed
by Brandes’ algorithm is important. In today’s hardware, cache is one of the fastest and one
of the most scarce resources. When the graphs are big, they do not fit in the cache, and the
number of cache misses along with the number of memory accesses increases.

If two vertices in a graph are close, a BFS will access them almost at the same time. Hence,
if we put close vertices in G to close locations in memory, the number of cache misses will
probably decrease. Following this reasoning, we initiated a BFS from a random vertex in G and
use the queue order of the vertices as their ordering in G. Further benefits of BFS ordering on
the execution time of a graph-based kernel are explained in [23].

For each graph in our set, Figure 3 shows the time taken by both the BFS ordering and
Bc-Org relative to the original Bc-Org execution time with the natural vertex ordering. For

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
ondM

at

C
ondM

at03

hep-th

C
ondM

at05

PG
Pgiant

astro-ph

_ bcsstk29

bcsstk30

bcsstk31

bcsstk32

bcsstk33

_ ak2010

ct2010

de2010

hi2010

_ luxem
bourg

_ as-22july06

_ pow
er

_ ProtInt

_ add32

m
em

plus

Re
la

tiv
e

tim
e

Figure 3: Relative performance of BFS ordering with respect to original time with natural
ordering.

18 of 21 matrices using a BFS ordering improved the performance. Overall, it reduced the time
to approximately 80% of the original time on average. Hence compared with BFS ordering, the
natural order of a real-life network has usually a detrimental effect on the execution time of BC.

4.2 Shattering and compressing graphs

For each graph, we tested 7 different combinations of the improvements proposed in this paper:
They are denoted with o, od, odb, odba, odbas, odbai, and odbasi, where o denotes the
BFS ordering, d denotes degree-1 vertices, b denotes bridge, a denotes articulation vertices, s
denotes side vertices, and i denotes identical vertices. The ordering of the letters denotes the
order of application of the respective improvements.

Given a graph G, we measure the time spent for preprocessing G by a combination to obtain
G′, computing the BC scores of the vertices in G′, and using these scores computing the BC
scores of the vertices in G. For each category, we have two kind of plots: the first plot shows
the numbers of edges in each component of G′. Different components of G′ are represented by
different colors. The second plot shows the normalized execution times for all 7 combinations.
The times for the second chart are normalized w.r.t. the first combination: the time spent by
Bc-Org after a BFS ordering. For each graph in the category, each plot has 7 stacked bars
representing a different combination in the order described above.

As Figure 4 shows, there is a direct correlation between the remaining edges in G′ and the
execution time. This proves that our rationale behind investigating shattering and compression
techniques is valid. However, the figures on the left show that these graphs do not contain good
articulation vertices and bridges which shatter a graph approximately half. Since, red is almost
always the dominating color, we can argue that such vertices and edges do not exist in real life
graphs.

For social graphs, each added shattering and compression technique provides a significant
improvement for almost all of the cases. That is, the best combination is odbasi for 5 out of
6 graphs, and the normalized execution time is continuously decreasing when a combination is
enhanced with a new technique. According to the original and best execution times in Table
1, for social graphs, the techniques, including ordering, provide 53% improvement in total. For
structural graphs, although the only working technique is identical vertices, the improvement is

12

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

CondMat CondMat03 hep-th CondMat05 PGPgiant astro-ph

#
 e

dg
es

 in
 c

om
po

ne
nt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CondMat CondMat03 hep-th CondMat05 PGPgiant astro-ph

Re
la

tiv
e

tim
e

1
Phase 1
Phase 2
Preproc

(a) Category social

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

bcsstk29 bcsstk30 bcsstk31 bcsstk32 bcsstk33

#
 e

dg
es

 in
 c

om
po

ne
nt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

bcsstk29 bcsstk30 bcsstk31 bcsstk32 bcsstk33

Re
la

tiv
e

tim
e

1
Phase 1
Phase 2
Preproc

(b) Category structural

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

ak2010 ct2010 de2010 hi2010 luxembourg

#
 e

dg
es

 in
 c

om
po

ne
nt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ak2010 ct2010 de2010 hi2010 luxembourg

Re
la

tiv
e

tim
e

1
Phase 1
Phase 2
Preproc

(c) Category geographical

 0

 10000

 20000

 30000

 40000

 50000

 60000

as-22july06 power ProtInt add32 memplus

#
 e

dg
es

 in
 c

om
po

ne
nt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

as-22july06 power ProtInt add32 memplus

Re
la

tiv
e

tim
e

1
Phase 1
Phase 2
Preproc

(d) Category misc

Figure 4: Left: The numbers of edges in the connected components of G′ as stack bars. Each component
is represented by a different color. Right: Normalized execution times of preprocessed BC computations
with the combinations o, od, odb, odba, odbas, odbai, and odbasi, respectively, where the times are
normalized w.r.t. o and divided to three stages: preprocessing time and the time spent in the first and
second phases of the BFSs.

13

of 79% on the average. For the redistricting graphs in geographical, the techniques are not very
useful. However, with the help of BFS ordering, we obtain 32% improvement on average. For
the graph luxembourg, degree-1 and bridge removal techniques have the most significant impact.
Since the graph is obtained from a road network, this is expected (roads have bridges). Hence,
if the structure of the graph is known to some extent, the techniques can be specialized. For
example, it is a well known fact that biological networks usually have a lot of degree-1 vertices
but a few articulation vertex. And our results on the graph ProtInt confirms this fact since
the only significant improvement is obtained with the combination od. In our experiments, the
most interesting graph is add32 since the combinations odbas and odbasi completely shatters
it. Note that on the left, there is no bar since there is no remaining edge in G′ and on the right,
all the bar is blue which is the color of preprocessing. When all techniques are combined, we
obtain a 59% improvement on average over all graphs.

Please note that the implementation uses 4 different kernels depending on whether reach
and ident are used. Each new attribute brings an increase in runtime which can be seen on
CondMat03 when going from o to od and on luxembourg when going from odba to odbai.

The combinations are compared with each other using a performance profile graph presented
in Figure 5. A point (r, p) in the profile means that with p probability, the time of the corre-
sponding combination on a graph G is at most r times worse than the best time obtained for
that G. Hence, the closer to the y-axis is the better.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2

Pr
ob

ab
ili

ty

Degradation

o
od

odb
odba

odbas
odbai

odbasi

Figure 5: Performance profile of various combination of optimization on all the selected graphs.

Not using graph shattering techniques (o) has the worse performance profile. It is never
optimal. According to the graph, using all possible techniques is the best idea. This strategy
is the optimal one with more than 60% probability. Clearly, one always wants to use graph
shattering techniques. If little information is available odbasi should be the default choice.
However, if one believes that identical vertices will barely appear in the graph, then odbas

might lead to better performances.

5 Conclusion

Betweenness is a very popular centrality metric in practice and proved to be successful in many
fields such as graph mining. But, computing BC scores of the vertices in a graph is a time
consuming task. In this work, we investigate shattering and compression of networks to reduce

14

the execution time of BC computations.
The shattering techniques break graphs into smaller components while keeping the informa-

tion to recompute the pair and source dependencies which are the building blocks of BC scores.
On the other hand, the compression techniques do not change the number of components but
reduces the number of vertices and/or edges. An experimental evaluation with various net-
works shows that the proposed techniques are highly effective in practice and they can be a
great arsenal to reduce the execution time while computing BC scores.

We also noticed that the natural order of a real-life network has usually a detrimental effect
on the execution time of BC. In our experiments, even with a simple and cheap BFS ordering,
we managed to obtain 20% improvement on average. Unfortunately, we are aware of several
works, which do not even consider a simple ordering while tackling a graph-based computation.
So one rule of thumb: “Order your graphs”.

As a future work, we are planning to extend our techniques to other centrality measures
such as closeness and group-betweenness. Some of our techniques can readily be extended for
weighted and directed graphs, but for some, a complete modification may be required. We
will investigate these modifications. In addition, we are planning to adapt our techniques for
parallel and/or approximate BC computations.

References

[1] D. Ediger, K. Jiang, J. Riedy, D. A. Bader, C. Corley, R. M. Farber, and W. N. Reynolds,
“Massive social network analysis: Mining twitter for social good,” in ICPP, 2010, pp.
583–593.

[2] J.-K. Lou, S. de Lin, K.-T. Chen, and C.-L. Lei, “What can the temporal social behavior tell
us? An estimation of vertex-betweenness using dynamic social information,” in ASONAM,
2010.

[3] D. A. Bader and K. Madduri, “A graph-theoretic analysis of the human protein-interaction
network using multicore parallel algorithms,” Parallel Comput., vol. 34, pp. 627–639, Nov
2008.

[4] D. Koschützki and F. Schreiber, “Centrality analysis methods for biological networks and
their application to gene regulatory networks,” Gene Regulation and Systems Biology,
vol. 2, 2008.

[5] S. Jin, Z. Huang, Y. Chen, D. Chavarria-Miranda, J. Feo, and P. C. Wong, “A novel appli-
cation of parallel betweenness centrality to power grid contingency analysis,” in IPDPS’10,
April 2010, pp. 1 –7.

[6] V. Krebs, “Mapping networks of terrorist cells,” Connections, vol. 24, 2002.

[7] Ö. Şimşek and A. G. Barto, “Skill characterization based on betweenness,” in NIPS, 2008,
pp. 1497–1504.

[8] A. Lugowski, D. Alber, A. Buluç, J. Gilbert, S. Reinhardt, Y. Teng, and A. Waranis, “A
flexible open-source toolbox for scalable complex graph analysis,” in SIAM Conference on
Data Mining (SDM), 2012.

[9] D. A. Bader and K. Madduri, “SNAP, small-world network analysis and partitioning:
An open-source parallel graph framework for the exploration of large-scale networks,” in
IPDPS’08, 2008.

[10] L. Freeman, “A set of measures of centrality based upon betweenness,” Sociometry, vol. 4,
pp. 35–41, 1977.

15

[11] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Mathematical So-
ciology, vol. 25, no. 2, pp. 163–177, 2001.

[12] U. Brandes and C. Pich, “Centrality estimation in large networks,” I. J. Bifurcation and
Chaos, vol. 17, no. 7, pp. 2303–2318, 2007.

[13] R. Geisberger, P. Sanders, and D. Schultes, “Better approximation of betweenness central-
ity,” in ALENEX, 2008, pp. 90–100.

[14] R. Lichtenwalter and N. V. Chawla, “DisNet: A framework for distributed graph compu-
tation,” in ASONAM, 2011.

[15] D. A. Bader and K. Madduri, “Parallel algorithms for evaluating centrality indices in real-
world networks,” in ICPP, 2006, pp. 539–550.

[16] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarria-Miranda, “A faster
parallel algorithm and efficient multithreaded implementations for evaluating betweenness
centrality on massive datasets,” in IPDPS’09, 2009.

[17] Z. Shi and B. Zhang, “Fast network centrality analysis using GPUs,” BMC Bioinformatics,
vol. 12, p. 149, 2011.

[18] P. Pande and D. Bader, “Computing betweenness centrality for small world networks on
a GPU,” Poster at 15th High Performance Embedded Computing Conference, Lexington,
Massachusetts, 2011.

[19] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart, “Edge vs. node parallelism for
graph centrality metrics,” in GPU Computing Gems: Jade Edition, W.-M. W. Hwu, Ed.
Morgan Kaufmann, 2011, pp. 15–28.

[20] U. Brandes, “On variants of shortest-path betweenness centrality and their generic com-
putation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008.

[21] R. E. Tarjan, “A note on finding the bridges of a graph,” Inf. Process. Lett., vol. 2, no. 6,
pp. 160–161, 1974.

[22] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient algorithms for graph manipulation,”
Commun. ACM, vol. 16, no. 6, pp. 372–378, Jun. 1973.

[23] G. Cong and K. Makarychev, “Optimizing large-scale graph analysis on a multi-threaded,
multi-core platform,” in IPDPS’11, 2011, pp. 688–697.

16

	1 Introduction
	2 Background
	2.1 Betweenness Centrality

	3 Shattering and Compressing Networks
	3.1 Principle
	3.2 Shattering Graphs
	3.2.1 Shattering with articulation vertices
	3.2.2 Shattering with bridges

	3.3 Compressing Graphs
	3.3.1 Compression with degree-1 vertices
	3.3.2 Compression with side vertices
	3.3.3 Compression with identical vertices

	3.4 Implementation Details

	4 Experimental Results
	4.1 Ordering sparse networks
	4.2 Shattering and compressing graphs

	5 Conclusion

