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The Divertor Tokamak Test (DTT) facility is proposed for studying power exhaust solutions as well as
integrated physics and technology aspects for the demonstration power plant (DEMO). To illuminate the
richness of new novel plasma physics that can be explored in this device, linear stability properties and
shear Alfvén fluctuation spectra of a typical DTT reference scenario are investigated by self-consistent hybrid
magnetohydrodynamic-gyrokinetic simulations. The DTT core plasma can be divided into two regions, char-
acterized by reverse shear Alfvén eigenmode in the central core, and by toroidal Alfvén eigenmode in the outer
core region. The non-perturabtive effect of energetic particles (EPs), the wave-EP resonance condition as well
as power transfer are analyzed in great detail, demonstrating the peculiar role played by EPs in multi-scale
dynamics. The most unstable mode number of dominant Alfvénic fluctuations are shown to be of the order of
10, consistent with the typical orbit widths of the EPs normalized to the plasma minor radius and the DTT
target design.

I. INTRODUCTION

The Divertor Tokamak Test (DTT) facility1–4 is a
proposal for a next generation tokamak device, which
mainly aims at investigating viable and/or advanced
power exhaust solutions for the demonstration power
plant (DEMO)5, thereby filling gaps between present day
devices, the International Thermonuclear Experimental
Reactor (ITER)6,7 and DEMO. Although DTT is de-
signed as a relatively compact machine (major radius
R0 = 2.15m) focused on divertor and power exhaust
issues, it is capable to reproduce edge as well as core
plasma conditions that are relevant for burning plasmas
studies4. This is, in fact, the prerequisite for studying in-
tegrated physics and technology aspects compatible with
DEMO operation. Ultimately, this integrated physics
and technology approach is reflected in terms of a set of
dimensionless parameters, which dictate the key physics
and are a crucial element of the present work4. In partic-
ular, in DTT plasmas, there exists substantial integrated
core and edge plasma physics for the reasons discussed in
Refs. 1 and 8, which are assumed here as a starting point
and whose motivation is outside the intended scope the
present work. Thus, among various important issues, key
physics aspects to investigate and understand for illumi-
nating the complex plasma behavior9 are the properties
of the Alfvénic fluctuation spectra in DTT and the re-
lated dynamics of energetic particles (EPs) produced by
fusion reaction and/or auxiliary heating methods. These
supra-thermal plasma components are characterized by
typical dimensionless orbit widths (characteristic physi-
cal particle Larmor radius as well as magnetic drift orbit
size normalized to the machine size) similar to those ex-
pected in burning fusion plasmas; and generally smaller
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than in present day tokamaks. Also the ratio of charac-
teristic supra-thermal ion speed to the Alfvén speed in
DTT is similar to that expected in ITER and DEMO
in order to preserve the strength of EP drive of Alfvénic
fluctuations via wave-EP resonant interactions. These
key physics elements will result into integrated physics
behaviors of DTT plasmas similar to those expected in
the proposed next generation tokamaks, for example,
in ITER and Chinese Fusion Engineering Test Reactor
(CFETR)10,11.

In the past several decades, the collective excitations of
shear Alfvén wave (SAW) by EPs have been vastly stud-
ied in the literature. Recent reviews discuss the general
theoretical framework9, experimental evidence and their
interpretation and modeling12,13, as well as comparisons
of numerical simulation results with observations14,15.
These Alfvénic fluctuations exist either as discretized
Alfvén eigenmodes (AEs)16 or energetic particle contin-
uum modes (EPMs)17, depending on the strength of the
EP drive and according to the general classification of
Alfvénic fluctuations based on the general fishbone-like
dispersion relation (GFLDR)18,19. In this paper, we aim
at investigating the general features of Alfvénic fluctua-
tion spectra resonantly excited by EPs in DTT. In par-
ticular, we focus on the mode structures and linear sta-
bility properties of AEs and EPMs, while the nonlinear
dynamics and implications for EP transport will be an-
alyzed in a future work. Numerical simulation results,
presented here, assume a typical DTT reference scenario
and a model “slowing-down” EP distribution function,
making use of the hybrid magnetohydrodynamic(MHD)-
gyrokinetic simulation code (HMGC)20,21. HMGC has
been extensively applied to study the resonant interac-
tions between SAW and EPs as well as the correspond-
ing nonlinear behaviors and ensuing EP confinement
issues22–27. HMGC has also been used to investigate
plasma scenarios of practical interest, such as ITER28,
Japan Atomic Energy Research Institute Tokamak-60
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Upgrade (JT-60U)29–31, Doublet III-D (DIII-D)32,33 and
Fusion Advanced Studies Torus (FAST)8,34,35. As noted
above, the main focus of DTT is “power exhaust” and
“plasma wall interactions”. Nonetheless, based on the
same spirit of studying ITER and DEMO relevant burn-
ing plasma physics in plasmas with similar dimensionless
parameters, it seems natural to adopt a FAST-reference8

equilibrium in our simulations along with ITER-like EP
pressure profiles. In fact, core plasma profiles and di-
mensionless parameters of FAST and DTT are very
similar1–4,8. Menwhile, FAST additional heating was
designed to achieve ITER-like EP pressure profiles in a
tokamak with similar size and shape to DTT8. Thus, al-
though DTT heating system has not been finalized yet,
it is meaningful to address the physics that can be in-
vestigated in DTT assuming in the present work the
same ITER-like EP pressure profiles8. We extend our
numerical studies to higher toroidal mode numbers than
those observed and expected in present days machines,
consistent with the DTT target design. In particular,
we focus on linear stability, AE spectrum, and wave-
particle resonance condition as well as power exchange.
In the present work, we illuminate the interplay among
shear Alfvén continuum, resonance condition, and most
unstable (high) mode numbers. Energetic particles are
active players on the length scale of EP magnetic drift
orbit widths; i.e. meso-scales intermediate between the
macro-scales of plasma equilibrium profiles and plasma
turbulence micro-scales9. Not only they resonantly ex-
cite plasma instabilities but can cause meso-scale mod-
ulations in the thermal plasma profiles, thereby playing
a crucial role in turbulent transport regulation9. Mean-
while, because of fluctuation induced EP transport on
meso-scales even longer than the EP characteristic or-
bit widths, EPs eventually influence fusion reactivity
profiles9. Thus, our linear stability analysis, emphasiz-
ing the importance of high toroidal mode number fluctua-
tions, suggests the crucial role played by meso-spatial and
-temporal scales in the nonlinear regime9 as will be dis-
cussed in a future publication. Thus, our analysis concen-
trates on some aspects of core physics, but suggests the
substantial integration of core and edge plasma physics
in DTT, due to the unique role played by fast particles as
mediators of cross-scale couplings and by the meso-scales
in the transport processes36, eventually affecting power
exhaust.

This paper is organized as follows. Section II describes
the simulation model and main parameters. In Section
III, the linear stability property and shear Alfvén fluctu-
ation spectrum of the proposed DTT reference scenario
are analyzed, focusing on both the macroscopic mode
dynamics and microscopic wave-particle resonant inter-
actions. Finally, summary and discussion are presented
in Section IV.

II. SIMULATION MODEL AND EQUILIBRIUM

PARAMETERS

HMGC is a hybrid magnetohydrodynamic-gyrokinetic
simulation code based on a simplified plasma
description37, assumed to consist of “a core or thermal
plasma component, essentially providing an isotropic
Maxwellian background made of electrons (e) and ions
(i), and an energetic component (H, stands for “Hot”),
which is often anisotropic and non-Maxwellian.”9 The
HMGC code adopts a relatively simple geometry; i.e.,
a high aspect ratio tokamak plasma equilibrium with
shifted circular magnetic surfaces. In fact, in its simplest
form, HMGC describes the core plasmas by a set of
O(ϵ3)-reduced MHD equations38, with ϵ ≡ a/R0 ≪ 1
the inverse aspect ratio and a the tokamak minor radius.
Furthermore, the core plasma equilibrium is typically
assumed to be cold, with Te = Ti = 0. This is the case
we consider in this work, although an extended version of
the HMGC code exist, which can treat thermal electrons
as massless fluid and thermal ions as a drift-kinetic
species39. Meanwhile, EPs are treated by a nonlinear
drift-kinetic description20,21, which is used to compute
the corresponding pressure tensor that, in turn, affects
the overall plasma response via the force balance in the
so-called pressure-coupling formulation40. The physics
basis for the hybrid MHD-gyrokinetic description and
its relevance for burning fusion plasmas is reviewed and
discussed in Ref. 9.

The main aim of the present work is to illustrate the
meso-scale features and stability properties of Alfvénic
oscillations resonantly excited by fast ions in DTT. Thus,
we will limit ourselves to a linear analysis adopting the
cold core plasma limit of the HMGC code. Due to the
underlying O(ϵ3)-reduced MHD equations, the reference
DTT equilibrium analyzed here is reshaped to a circular
one with ϵ = 0.18, while the radial profile of safety fac-
tor q is kept the same. Note that, although the width
of toroidicity induced frequency gaps is somewhat re-
duced, the main simulation results will not be qualita-
tively altered as we will demonstrate in the next section.
Meanwhile, with this choice we will be able to investi-
gate stability properties of fluctuations with moderate to
high toroidal mode numbers, which are of particular in-
terest for the present study of shear Alfvén fluctuations
in DTT with normalized EP orbit width much smaller
than in present day tokamaks.

As anticipated above, it is natural to adopt a FAST-
reference equilibrium in our simulations along with
ITER-like EP pressure profies. Fig. 1 shows the
equilibrium q profile characterized by qmin = 1.02 at
rqmin

/a ≃ 0.332, and the corresponding magnetic shear,
s ≡ (r/q)(dq/dr), profile. Here, r is the minor radial co-
ordinate. This equilibrium shows that the plasma can be
divided into two regions, i.e., a central core region with
nearly flat q profile slightly in excess of q = 1, and an
outer core region with larger q and finite shear. This
schematic subdivision can be further demonstrated by
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FIG. 1. Radial profiles of safety factor q (blue curve) and
magnetic shear s (dashed red curve) adopted in the simula-
tions.

the features of the SAW continuous spectrum. As an ex-
ample, the SAW continua for n = 2 and n = 10 are shown
in Fig. 2, along with the radial profile of bulk ion density
ni, which is assumed to be deuterium. The structures of
the SAW continua also demonstrate the existence of low
frequency gaps induced by reverse shear in the central
core region, and of higher frequency toroidicity induced
frequency gaps in the outer core region.
EP dynamics are treated non-perturbatively in HMGC

and, as discussed above, they are described by solving
nonlinear Vlasov equation in the drift-kinetic limit via
particle-in-cell methods. Finite Larmor radius (FLR) ef-
fects are neglected, but finite drift orbit width (FOW) ef-
fects are consistently retained9,20,21. In our simulations,
EPs are assumed to be characterized by an isotropic slow-
ing down initial distribution function with EP birth en-
ergy E0 given by fusion energy of alpha particles and
critical energy Ec given by Stix expression41. The initial
EP distribution function is in the form:

FH ∝
nH(ψ)

E
3/2
c

1

[(E/Ec)3/2 + 1] ln[(E0/Ec)3/2 + 1]
. (1)

Here, nH(ψ) is the radial density profile, E = mHU
2/2+

MΩH is the particle energy, where mH is the alpha par-
ticle mass, U is the parallel (to the equilibrium magnetic
field) velocity, M is the magnetic moment and ΩH is EP
cyclotron frequency. This choice results in ρH/a = 0.01
and vH/vA0 = 1.80. Here, ρH ≡ vH/ΩH is the EP Lar-

mor radius, vH ≡
√

E0/mH is the characteristic EP birth
speed, and vA0 is the on-axis Alfvén speed. The EP pres-
sure drive is controlled by nH , the EP density radial pro-
file. In order to study the Alfvénic fluctuations in the
central as well as outer core regions, we assume two dif-

ferent EP radial profiles, as shown in Fig. 3. The profile
(a) is numerically fitted from the ITER reference scenario
SC228 in analogy to Ref. 8: it is adopted here to study
resonant excitations of Alfvénic fluctuations in the cen-
tral core region. The broader profile (b) is assumed to
be outward-shifted, and is used to study the linear sta-
bility in the outer core region. As overall normalization,
and unless otherwise explicitly stated, we set EP on-axis
density nH0/ni0 = 3.0 × 10−3 as a reference value, with
nH0 and ni0 being the on-axis density of EPs and bulk
ions, respectively. It corresponds to EP on-axis ratio of
kinetic to magnetic pressures βH0 ≃ 1.08× 10−2, similar
to that of the considered ITER scenario (see Ref. 8 for
an in depth discussion of this point).
As we are focusing on the linear stability proper-

ties of the Alfvénic fluctuation spectrum, in our sim-
ulations, we analyze the evolution of a single toroidal
mode number n, with n ranging between n = 2 and
n = 10. This corresponds to neglecting nonlinear mode-
mode coupling among different toroidal mode numbers,
which will be studied in a separate work. Poloidal har-
monics are retained accordingly for each n in the range
of [nqmin, nqmax].

III. LINEAR STABILITY ANALYSIS: SHEAR ALFVÉN

FLUCTUATION SPECTRUM IN DTT

In this section, we examine the linear shear Alfvén
fluctuation spectrum of the DTT reference scenario de-
scribed in Sec. II. Consistent with the general features
of the shear Alfvén continuum illustrated in Fig. 2(b),
simulation results can be essentially divided into a cen-
tral core region and an outer core region with distinct
behaviors. EPs with density profiles of Fig. 3(a) and (b)
are used for maximized drive in central and outer core
regions, respectively.

A. Central core region linear stability analysis

As a reference case for the linear stability analysis in
the central core region, a simulation case with n = 4
and m from 3 to 14 is investigated in greater detail in
this subsection. Fig. 4 shows the radial structures of
scalar potential fluctuations, as well as the corresponding
power spectrum in the (r, ω) plane. The linear dynamics
are characterized by real frequency ωr,EP/ωA0 ≃ 0.08630
and linear growth rate γL/ωA0 ≃ 0.02946, where ωA0 =
vA0/R0 is the on-axis Alfvén frequency. The fluctuations
exhibit clear characteristics of reverse shear Alfvén eigen-
modes (RSAEs), as the modes are radially located in the
vicinity of the qmin surface, and the frequency is close to
the local RSAE accumulation point frequency ωap. In
order to further analyze the underlying fluctuations, we
use external antenna42,43 to excite the eigenmode in the
same equilibrium without EPs, and verify the eigenmode
structures, real frequency and damping rate in the MHD
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FIG. 2. Radial profile of bulk ion density ni normalized to its on-axis value ni0 (a) and the shear Alfvén continua for two
typical mode numbers n = 2 and n = 10 (b).
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FIG. 3. EP density radial profiles nH normalized to its on-axis value nH0 used for: (a) analyzing Alfvénic fluctuation stability
in the central core region; and (b), in the outer core region.

limit. Here, the antenna consists of an extrinsic driv-
ing source with fixed amplitude and tunable frequency.
The fluctuation excited by antenna behaves as a forced
oscillator, with the saturated response amplitude given
by42,43

δφsat ∝
1

√

(ω2
0 − ω2

ant)
2 + 4γ2dω

2
ant

. (2)

Here, δφsat is the saturated scalar potential fluctuation
amplitude, ω2

0 = ω2
r + γ2d with ωr and γd being, respec-

tively, eigenmode real frequency and damping rate, and

ωant is the antenna frequency. Fig. 5 shows δφsat of m =
4 harmonic from antenna frequency scan, from which the
eigenmode frequency and damping rate can be obtained
by fitting with Eq. (2), yielding ωr,AE/ωA0 ≃ 0.06933
and γd/ωA0 ≃ 1.079× 10−3.

The clear upshift of the RSAE real frequencies in
the presence of EPs suggests that their effect is non-
perturbative. In order to illustrate the EP effect more
clearly, we scan the EP density from the reference value
nH0/ni0 = 3.0 × 10−3 down to 0.5 × 10−3, and the ob-
tained frequencies are shown in Fig. 6(a), along with the
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FIG. 5. Saturated response amplitudes δφsat of m = 4 har-
monic with respect to antenna frequency ωant in the antenna
frequency scan. The red curve corresponds to a best fit with
ωr,AE/ωA0 ≃ 0.06933 and γd/ωA0 ≃ 1.079× 10−3.

MHD limit ωr,AE measured by antenna and the RSAE ac-
cumulation point frequency ωap. The mode frequency ωr

is progressively upward shifted with increasing EP drive,
and the modes move from well inside the frequency gap
into the continuum. Therefore, for the n = 4 reference
case with nH0/ni0 = 3.0 × 10−3, the EP-induced fre-
quency shift ∆ωEP ≡ |ωr,EP − ωr,AE| is higher than the
frequency mismatch of the eigenmode frequency with re-

spect to the accumulation point ∆ωSAW ≡ |ωap −ωr,AE|,
as labeled in Fig. 6(a). This confirms that the effect of
EPs is clearly non-perturbative44. In fact, the underly-
ing fluctuations are no longer “pure” RSAE gap modes.
Instead, they are RSAEs strongly affected by EP kinetic
response, and are in the parameter range characteriz-
ing their transition to EPMs. Moreover, the EP non-
perturbative effect can also be seen from the damping
rates, as shown in Fig. 6(b). Here, in the EP driven
simulation cases, the damping rates are estimated as
γd = γdrive − γL, where γdrive stands for “driving rate”,
calculated from the instantaneous wave-particle power
exchange, integrated over the particle phase space and
weighted by the sum of kinetic and magnetic energy
density22. The significant increase of γd with increas-
ing EP drive suggests a possible change of the dominant
damping mechanism, and the important role played by
SAW continuum. In all the cases, radiative damping45 re-
mains important since γd ≲ |∆ωSAW| ≲ |∆ωEP| as shown
in Fig. 6.

More insights into the wave-particle interactions un-
derlying mode destabilization can be obtained from the
analysis of the wave-particle power exchange as well as
the EP resonance condition. We focus on the wave-
particle power density transfer, which is averaged over
poloidal (θ) and toroidal angles (ϕ) and reported in the
reduced phase space (r0,M,U0)

22. Note that, r0 and
U0 indicate the value of r at which each particle crosses
the equatorial plane at θ = 0, and the corresponding
value of U . Fig. 7 shows < P (r0,M,U0) >∆V integrated
over a radial shell of volume ∆V around the mode lo-
calization for the n = 4 reference case, with the solid
and dashed lines indicating, respectively, the trapped-
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FIG. 7. For the n = 4 reference case, wave-particle power
transfer density < P (r0,M,U0) >∆V , integrated over a ra-
dial shell of 0.24 ≤ r0/a ≤ 0.46, is shown in the normalized

(M̂, Û0) plane, with M in units of E0/ΩH0 (ΩH0 is on-axis
cyclotron frequency) and U0 in units of vH . Positive sign rep-
resents power transfer from particles to the wave. Solid and
dashed lines indicate approximately inner and outer trapped-
passing EP boundaries of the considered radial shell.

passing EP boundaries of the inner and outer radial lim-
its. We can observe that the mode drive is mostly pro-
vided by magnetically trapped particles. The fact that
the underlying fluctuations are characterized by single n

and constant frequency allows us to use test particles to
identify the structure of wave-particle resonances. Fol-
lowing Refs. 22, 44, and 46, we can take the extended
phase space Hamiltonian C ≡ ωPφ − nE as constant of
the perturbed motion in addition to the conserved mag-
netic moment M . Here, Pφ is the toroidal angular mo-
mentum, which, at the leading order, can be written as
Pφ ≃ mHRU + eHR0(Ψeq −Ψeq0)/c, where R is the ma-
jor radius coordinate, Ψeq is the equilibrium flux func-
tion defined by the form of the confining magnetic field,
B ≡ R0Bφ0∇ϕ + R0∇Ψeq ×∇ϕ, and Ψeq0 is its on-axis
value. Then, the particle phase space can be divided
into “slices” characterized by different values of M and
C, whose linear and nonlinear dynamics are independent
of each other. Meanwhile, the wave-particle power ex-
change can be described as the sum of contributions from
all the slices. We can then focus on a single slice (M0, C0),
where wave-particle power transfer is significant, identi-
fied from plots like Fig. 7. By selecting a set of test
particles characterized by M = M0, C = C0, and with
U0 computed correspondingly as U0 = U(r0,M0, C0),
the characteristic dynamic frequencies, such as preces-
sion frequency ωd and bounce/transit frequency ωb for
trapped/passing particles, can then be computed by fol-
lowing the corresponding equilibrium orbits. The reso-
nance frequency ωres for trapped particles is given as44

ωres(r0,M0, C0, ℓ) = nωd + ℓωb, (3)

where ωd = (∆ϕ/2π − σq̄)ωb, ωb = 2π/τb, and ℓ is the
“bounce” harmonic. Here, ∆ϕ is the change of toroidal
angle ϕ over a full bounce time τb =

∮

dθ/θ̇, σ = sgn(U),
and q̄ is the average safety factor integrated along the
particle orbit44. For passing particles, meanwhile, ωres is
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given by

ωres(r0,M0, C0, ℓ) = nωd + ℓωb + (nq̄ −m)σωb. (4)

For a mode with linear growth rate γL, Eqs. (3) and
(4) allow us to express the condition for significant wave-
particle power exchange to occur:

|ω − ωres(r0,M0, C0, ℓ)| ≲ γL. (5)

For the n = 4 reference case, we select M0ΩH0/E0 =
0.4933 and C0/E0 = −1.955, corresponding to U0/vH =
0.1852 at r0/a = 0.3600, that is, a resonance peak for
trapped particles. Test particles are distributed in the
radial interval 0.18 ≤ r0/a ≤ 0.95, and Fig. 8 shows
ωres(r0) with several bounce harmonics. From the crite-
rion given in Eq. (5), the dominant resonance is clearly
the precession resonance with ℓ = 0.
Similar to the n = 4 reference case analyzed above, we

analyze the linear stability properties and SAW fluctua-
tion spectrum in the central core region by means of EP-
driven simulations, antenna excitations and test particle
methods with n in the range 2 ≤ n ≤ 10. All EP-driven
simulations are found to be strongly unstable and the
fluctuations are characterized by RSAE mode structures,
similar to the ones of the n = 4 reference case shown in
Fig. 4. Moreover, by evolving test particles in each simu-
lations, we find that the drive of these RSAE fluctuations
is predominantly provided by the precession resonances

2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

n

L/ A0

FIG. 9. Linear growth rates γL of the RSAE fluctuations
with n in the range 2 ≤ n ≤ 10.

of trapped particles for all considered toroidal mode num-
bers. The linear stability properties are summarized in
Fig. 9, for the reference value nH0/ni0 = 3.0 × 10−3

of EP density. All considered mode numbers are char-
acterized by similar linear growth rates, and the growth
rate is quite insensitive to n. Thus, we could reasonably
conclude that, the most unstable mode number of the
RSAE fluctuations in the central core region is of the or-
der of n ∼ O(10) as expected8,9. This is quite different
from SAW fluctuations in present day tokamaks, where
the most unstable mode number is generally of the or-
der of n ∼ O(1)8,9. The most unstable mode number
found in our simulations can be verified against theo-
retical estimations17,47–50 that the perpendicular (to the
equilibrium magnetic field) wavelength of the underlying
fluctuations is comparable with the characteristic particle
orbit width, i.e., k⊥ρd ≃ 1, where k⊥ is the perpendicular
wave number and ρd is the resonant EP magnetic drift
orbit width. Interested readers may refer to Refs. 17, 47–
50 for a detailed discussion. Fig. 10 shows typical values
of k⊥ρd with respect to n, where ρd is the banana orbit
width of resonant trapped particles. We can see that the
criterion k⊥ρd ≃ 1 is satisfactorily verified for the most
unstable mode number in our simulations. Indeed, the
most unstable mode number being n ≫ O(1) is exactly
what we expect for DTT as well as other next generation
tokamaks, in which EPs are generally characterized by
smaller dimensionless orbits (ρH/a = 0.01, ρd/a ≃ 0.035
for the present case) than in present day devices. The
present results also suggest the important role played by
meso-scale dynamics in the nonlinear regime, which are
beyond the scope of the present analysis and will be in-
vestigated in a future work.

The real frequencies of RSAE fluctuations in EP-driven
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mode structures: ∆r is the radial width of the mode structure
envelope at half maximum amplitude, and rmax is the radial
coordinate at maximum amplitude. ρd is measured by the
orbits of resonant test particles.

simulations and the eigenmode real frequencies measured
by antenna excitations are shown in Fig. 11 as a function
of the toroidal mode number n. We note that the EP-
induced frequency shifts ∆ωEP (defined in Fig. 6) are
comparable for every toroidal mode number, consistent
with their similar growth rates (see Fig. 9) and, thus,
similar EP drives. However, significant changes of mode
dynamics with n can be observed and understood when
comparing mode frequency to the corresponding RSAE
accumulation point frequency ωap. In the lower mode
number limit, the modes reside inside the continuum and
EP effects are clearly non-perturbative since ∆ωEP ≳
∆ωSAW

44. In the higher mode number limit, however,
the modes can be separate from the continuum, and the
EP effects could therefore be considered perturbative.

B. Outer core region linear stability analysis

Following the same approach as in Sec. III A, a sim-
ulation case with n = 6 and m in the range of 5 to 21
is presented first as a reference case for the outer core
region. The radial mode structures and the correspond-
ing power spectrum are shown in Fig. 12. The linear
dynamics are characterized by ωr,EP/ωA0 ≃ 0.3331 and
γL/ωA0 ≃ 0.01585, and the underlying fluctuation can
be recognized as toroidal Alfvén eigenmode (TAE), since
the mode frequency lies inside the toroidicity induced
frequency gaps, and several coupled poloidal harmonics
contribute to the mode structure. The eigenmode real

2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

n

/ A0

r,EP

r,AE

ap

FIG. 11. The real frequencies of the RSAE fluctuations
driven by EPs ωr,EP are shown in red circles as a function
of the toroidal mode number n. Eigenmode real frequen-
cies ωr,AE measured by antenna excitations are shown in blue
squares. Corresponding RSAE accumulation points ωap are
shown in green diamonds.

frequency and damping rate in the MHD limit can be
measured by antenna frequency scans, and are given by
ωr,AE/ωA0 ≃ 0.3615 and γd/ωA0 ≃ 0.07902. Note that
the TAE fluctuations are more strongly damped than
the RSAEs in the central core region. This could be
due to the narrower toroidicity induced gap, and thus,
stronger TAE coupling to SAW continuum due to the
artificial ϵ = 0.18 adopted in our simulations. Based on
the mode structure, we can conclude that the dissipation
is predominantly due to continuum damping51,52, unlike
the RSAE case characterizing the central core region (cf.
Sec. III A) dominated by radiative damping. However,
the qualitative features of mode structures and resonant
excitation by EPs are unaltered, since they predomi-
nantly depend on q and EP radial profiles9,18,19. Fig.
13(a) shows ωr as a function of nH0/ni0 in a EP density
scan. The mode frequency in the MHD limit without
EPs is also shown as measured by antenna excitation.
We can observe that, despite the frequency gap widths
are reduced in our model description with ϵ = 0.18,
∆ωEP < ∆ωSAW can still be satisfied for the reference
case and, thus, the EP effect could be considered pertur-
bative. In fact, if we assume perturbative EP effects, i.e.,
γL scales linearly with nH0, we are able to extrapolate γL
in the EP density scan to the MHD limit without EPs,
and verify the extrapolated γd against the damping rate
given by antenna excitation. As shown in Fig. 13(b), the
agreement of two methods is quite satisfactory. More-
over, the extrapolation of γL also suggests an excitation
threshold for TAE onset being approximately given by
nH0/ni0 ≃ 2.48× 10−3 for the n = 6 case.
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FIG. 12. Analogous to Fig. 4, radial structures of each poloidal harmonics of scalar potential fluctuations (a) and the
corresponding power spectrum in the (r, ω) plane (b) are shown in arbitrary units for the n = 6 reference case in the outer core
region. The solid lines in figure (b) represent the SAW continuum.
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FIG. 13. TAE real frequencies ωr,EP (a) and linear growth rates γL (b) from the EP density scan are shown, ωr,AE and γd in
the MHD limit measured by antenna are also included in respective frames. In addition, the upper and lower TAE accumulation
points ωap are shown as the green dashed lines in figure (a).

For the n = 6 reference case, Fig. 14(a)
shows the wave-particle power density transfer <
P (r0,M,U0) >∆V integrated over a radial shell ∆V
around mode location; and in Fig. 14(b), the radial
profiles of power density transfer integrated over par-
ticle velocity space < P (r0,M,U0) >M,U0

are shown
for trapped, counter-passing and co-passing particles, re-
spectively. We can observe that, in general, trapped
and passing particles play comparable roles in the mode
drive. Trapped particle response is more localized in

the (M,U0) plane (Fig. 14(a)), while passing particles
are characterized by sharper radial profiles around sev-
eral radial locations (Fig. 14(b)). The different fea-
tures of trapped and passing particles can be further
illustrated by test particles chosen from power transfer
peaks of each type. Fig. 15 shows ωres(r0) with mul-
tiple bounce/transit harmonics ℓ, for trapped, counter-
and co-passing particles. Here, a representative poloidal
harmonic m = 10 is used for passing particles resonance
frequencies. We can observe that the relevant bounce
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FIG. 14. The wave-particle power density transfer < P (r0,M,U0) >∆V integrated over a radial shell of 0.65 ≤ r0/a ≤ 0.9 (a).

Normalization of (M̂, Û0) axes is the same as in Fig. 7. The solid and dashed lines indicate approximately the trapped-passing
EP boundaries of inner and outer limits of the considered radial shell. In frame (b), the radial profile of < P (r0,M,U0) >M,U0

integrated over M and U0 coordinates, is shown for trapped, counter-passing and co-passing particles, respectively.
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FIG. 15. ωres(r0) calculated from respective test particles orbits for trapped particles (a), counter-passing particles (b) and
co-passing particles (c). A typical poloidal harmonic m = 10 is used for figure (b) and (c). The black solid line indicates ωr

and the dashed lines show, respectively, ωr + γL and ωr − γL. The over-imposed blue dash-dotted curve represents the radial
dependence of power exchange of the test particles in arbitrary units.

harmonic for trapped particle resonance is ℓ = 0, similar
to the cases of the RSAE fluctuations in the central core
region. For passing particle resonances, a broad range
of transit harmonics are involved, and multiple poloidal
harmonics are excited consistently, as expected from the
passing-particle resonance condition given in Eq. (4).
Moreover, passing particles show much steeper ωres(r0)
profiles than trapped particles due to the ∝ (nq̄−m)σωb

term in Eq. (4), which dominates the radial variation
of ωres(r0), noting that nq′r = nr(dq/dr) and ωb/ωr are
both large for the present case. Thus, for given poloidal

mode number, different passing particle transit harmonic
resonances take place at different radial positions where
ωres(q̄(r0), ℓ) ≃ ωr, with much shorter individual reso-
nance width (∼ O(γL/(nq

′ωb))) than that of trapped
particles. The structures of < P (r0,M,U0) >M,U0

shown
Fig. 14(b) are, thus, the result of different features of
trapped and passing particle resonance frequencies shown
in Fig. 15, consistent with the analysis of Refs. 9 and 44.
It is worthwhile to point out that ωres(r0), shown in Fig.
15, only reflect a single slice of phase space characterized
by constant (M0, C0); however, < P (r0,M,U0) >M,U0
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FIG. 16. Linear growth rates γL of the TAE fluctuations
with n in the range of 5 ≤ n ≤ 10. Three EP densities are
used with nH0/ni0 = 3.0, 4.0, 5.0× 10−3.

shown in Fig. 14(b) consist of contributions from the
whole phase space. Furthermore, from the linear res-
onance conditions and wave-EP power transfer, we can
conjecture that trapped particles will behave more coher-
ently in the fluctuation-induced transport process, while
passing particles transport will be more diffusive9,26,44.

Similar studies are extended to other toroidal modes
for the analysis of linear stability properties of the outer
core region, as we did in Sec. III A for the central core
region. The antenna excitation results are not shown
here, since the TAEs can be relatively strongly coupled
with the SAW continua and, therefore, it is not always
possible to separate the eigenmode structures from the
responses of the SAW continuum. As a matter of fact,
the clearest response to antenna excitations and the best
agreement between antenna excitations and EP-driven
simulations are achieved for n = 6. This is shown in
Fig. 13, where the TAE mode frequency lies in the mid-
dle of the gap and, thus, the couplings with upper and
lower SAW continua are minimized. As a survey of the
AE linear stability properties in the outer core region,
EP-driven simulations with three reference densities at
nH0/ni0 = 3.0, 4.0, 5.0 × 10−3 for toroidal mode num-
bers in the range of 5 ≤ n ≤ 10 are presented. Cases
with n lower than 5 are stable or marginally unstable in
the weakest drive simulations due to small drift orbits
and diamagnetic drift frequencies, and are consequently
far from the most unstable condition. The linear growth
rates of the TAE fluctuations with respect to n for the
three EP reference densities are shown in Fig. 16. These
results suggest that the most unstable mode number is
n ≳ 10 for the TAE fluctuations in the outer core region,
slightly higher than the RSAE fluctuations in the cen-

5 6 7 8 9 10
0

1

2

3
10-3

n

nH0,th/n i0

FIG. 17. TAE excitation threshold nH0,th estimated by ex-
trapolating γL from the results considered in Fig. 16.

tral core region, as expected from analytical theory9,18,19.
The EP concentration threshold for mode excitation can
be estimated by assuming a linear scaling of γL with re-
spect to nH0, and its dependence on n is shown in Fig.
17, which further confirms that the most unstable mode
number occurs for n ≳ 10.

From the wave-particle power exchange and test par-
ticle evolution, the resonance conditions of the weakest
drive TAE fluctuations (with nH0/ni0 = 3.0× 10−3) are
similar to the n = 6 reference case for all considered
toroidal mode numbers. That is, precession resonance
for trapped particles, and transit harmonic resonance for
passing particles, with the two types of particles play-
ing comparable roles in the overall power exchange. The
most unstable mode number can be determined by maxi-
mization of the combined contribution from trapped and
passing particles, which is expected to be in-between the
most unstable modes for each type of particles, estimated
based on k⊥ρd ∼ O(1). Fig. 18 shows typical values of
k⊥ρd calculated with respect to n for trapped, counter-
and co-passing particles. We can conclude that the most
unstable mode number excited by trapped EP resonances
is n ∼ O(10), while the one by passing EP resonances
is n > 10. The most unstable mode number found in
our simulations lies in between the two limits, consistent
with our analysis. Note that, in our simulations, EPs
are assumed to be isotropic fusion produced alpha par-
ticles; thus, the characteristic trapped particle banana
orbit width and/or passing particle drift orbit width ρd
reflect the high birth energy. However, in a realistic DTT
operation scenario, EPs could be very likely produced by
(negative) neutral beam injection in the outer core re-
gion, with lower energy than fusion alphas, and/or ion
cyclotron resonance heating in the central core region.
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FIG. 18. Numerical calculations of k⊥ρd with respect to
n, with ρd represening the banana orbit width of trapped
particles and drift orbit width of passing particles. Here, k⊥
and the banana orbit width of trapped particles are measured
as in Fig. 10, while the drift orbit width of passing particles is
measured for resonant test particles, including the correction
due to finite Shafranov shift.
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FIG. 19. Real frequencies ωr of the TAE fluctuations for the
same cases considered in Fig. 16. The respective upper and
lower TAE accumulation points are shown in green curves.

Thus, we may expect a predominant role of transit res-
onances with passing EPs in the outer core region, with
the most unstable mode number being n ≳ O(10).

Real frequencies of the TAE fluctuations are shown
in Fig. 19, for the same cases considered in Fig. 16,
along with the respective upper and lower TAE accumu-

lation points based on the radial locations of the fluc-
tuations. The mode frequency increases with increas-
ing n, and it goes closer to the upper SAW continuum.
In the high mode number limit, the EP effect becomes
non-perturbative even for the weakest drive case, as the
separation of mode frequency and upper accumulation
point becomes very small. The stronger damping asso-
ciated with stronger coupling to SAW continuum, then
provides another factor to be considered for the most
unstable modes, in addition to the k⊥ρd ∼ O(1) analysis
discussed in great detail. Furthermore, we may speculate
that the upper branch of kinetic TAEs50 instead of TAE
could be driven unstable for even higher mode number.

IV. SUMMARY AND DISCUSSION

In this paper, linear stability properties and shear
Alfvén fluctuation spectra of a typical DTT reference
scenario have been investigated by numerical simulations
using hybrid MHD-gyrokinetic code HMGC, assuming a
FAST-reference equilibrium and ITER-like EP parame-
ters. In our simulations, a relatively simple geometry
is assumed, and a simplified version of the simulation
model of core plasmas is also adopted. This, of course,
is far from being complete. For example, the analysis in
this paper could be extended to realistic geometry and
to include the kinetic effects of thermal plasmas, such
as the compressibility and diamagnetic effects of thermal
ions, which are able to play an important role in low fre-
quency dynamics. These physics will be addressed in fu-
ture analyses. Meanwhile, the present study retains the
essential elements for analyzing the general features of
Alfvénic fluctuation spectra resonantly excited by EPs
in DTT. In particular, the peculiar meso-scale features
due to the typical dimensionless EP orbit widths, similar
to those expected in burning fusion plasmas; and gener-
ally smaller than in present day tokamaks.
We have shown that, due to the radial profile of

adopted equilibrium and the resulting SAW continuum
structure, the linear dynamics of the investigated sce-
nario can be schematically divided into a central core
region with nearly flat q profile, and an outer core re-
gion with finite magnetic shear. The Alfvénic fluctua-
tions in the central core region are shown to be domi-
nated by low frequency, nearly undamped RSAEs, which
are predominately driven unstable by the precession res-
onance of magnetically trapped particles, as identified by
test particle analysis. Meanwhile, radiative damping is
an important mechanism in the wave dissipation. The
non-perturbative effect of EPs is shown to be evident for
the RSAEs in lower n cases, as ∆ωEP ≳ ∆ωSAW, i.e.,
the EP induced frequency shift is comparable or higher
than the frequency mismatch of the eigenmode frequency
with respect to the SAW accumulation point frequency.
In the higher n cases, the non-perturbative response is
less evident, since the modes can be separate from SAW
continuum. The most unstable toroidal mode number is
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∼ O(10), consistent with the theoretical estimate based
on the dimensionless EP orbit width, i.e., k⊥ρd ∼ 1. The
wave particle power transfer is relatively broad and lim-
ited by the finite radial mode width rather than by the
precession resonance condition of RSAE with magnet-
ically trapped EPs. This, together with high toroidal
mode numbers and the non-perturbative EP response,
suggests that thermal plasma profiles should be corru-
gated on these length scales over characteristic times that
are consistent with EP transport. As anticipated in the
Introduction, this suggests the important role played by
meso-scale physics in EP transport and nonlinear dynam-
ics, which will be addressed in a separate work.

In the outer core region, higher frequency TAE modes
are excited, for which the dominant dissipation is con-
tinuum damping due to the finite coupling with the
SAW continuous spectrum. In the presence of the rel-
ative stronger damping than in the central core region,
higher n (n ≥ 5) TAEs with stronger EP drive can
be driven unstable for the reference EP profile with
nH0/ni0 = 3.0 × 10−3. The effect of EPs driving TAE
fluctuations is perturbative in lower n cases, and becomes
non-perturbative for higher-n’s with the mode frequency
being very close to the upper accumulation point fre-
quency. Both precession resonance of trapped particles
and transit harmonic resonances of passing particles con-
tribute comparably to the overall mode drive. However,
the features of wave-EP power transfer are significantly
different for the two types of particles. This can be ex-
plained by their different resonance frequency radial pro-
files. The most unstable toroidal mode number for TAE
fluctuations is n ≳ 10, even higher than RSAE fluctu-
ations in the central core region and much larger than
that of present day tokamaks. This is consistent with
maximization of the combined contribution from trapped
and passing particles, estimated by the k⊥ρd ∼ 1 crite-
rion. Note that the characteristic normalized EP orbit
widths in DTT, namely, banana orbit width of trapped
particles and the drift orbit width of passing particles,
are expected to be smaller than in present day toka-
maks. Therefore, the most unstable mode numbers of
SAW fluctuations in our simulations are consistent with
DTT target design. This, again, suggests the important
role played by meso-scale physics in EP transport and
nonlinear dynamics, which, however, will be different for
magnetically trapped and passing EPs. These issues are
of great importance but are outside the intended scope
of the present work, and will be subject of future inves-
tigations.

In the perspective of further research, crucial elements
in the assessment of DTT are connected with nonlinear
behaviors of Alfvénic fluctuations, such as the nonlin-
ear saturation mechanism, fluctuation induced particle
transport and global EP confinement. Notwithstanding
the intrinsic limitations of the linear study presented in
this work, our numerical simulation results are an impor-
tant and necessary step towards a full nonlinear investi-
gation. In fact, they clearly point out which nonlinear

physics could be expected, and could play an important
role for the operation of DTT. In particular, this anal-
ysis indicates the importance of meso-scales in nonlin-
ear transport processes, and the unique role of EPs as
mediators of cross-scale couplings. As a matter of fact,
meso-scales naturally emerge due to the high toroidal
mode number of the resonantly excited fluctuations spec-
trum. These are the length scales on which, based on the
present theoretical understanding of nonlinear physics of
EP and Alfvén waves, zonal structures will be excited and
regulate drift wave turbulence and turbulent transport
with a feedback on the fusion reactivity profiles. Mean-
while, the spatial structures of wave-EP power transfer
will be reflected by the fluctuation induced EP transport.
Thus, it is legitimate to expect that magnetically trapped
EP give rise to more coherent nonlinear behaviors and,
possibly, secular transport events; while passing particles
should be very likely dominated by diffusive relaxation
of radial profiles connected with the local fluctuation in-
tensity. All these physics will be important elements to
investigate in the future for understanding the physics
in DTT. Nonetheless, this work can claim having illus-
trated the richness of the substantial physics which could
be studied in the DTT device, as DTT is expected to be
able to study integrated physics and technology aspects
in burning plasma relevant conditions.
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