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We demonstrate that application of an increasing shear field on a glass leads to an intriguing dynamic

first-order transition in analogy with equilibrium transitions. By following the particle dynamics as a

function of the driving field in a colloidal glass, we identify a critical shear rate upon which the diffusion

time scale of the glass exhibits a sudden discontinuity. Using a new dynamic order parameter, we show that

this discontinuity is analogous to a first-order transition, in which the applied stress acts as the conjugate

field on the system’s dynamic evolution. These results offer new perspectives to comprehend the generic

shear-banding instability of a wide range of amorphous materials.

DOI: 10.1103/PhysRevLett.113.208301 PACS numbers: 82.70.Dd, 61.43.Fs, 62.20.F-, 64.70.kj

A central unresolved question in the physics of glasses

concerns the behavior of a glass under applied stress. While

at the glass transition, microscopic observables change

rather smoothly, yet rapidly [1,2], as a function of density

or temperature; an important question is whether a similarly

smooth variation occurs upon application of stress. Recent

experiments and simulations show that, unlike quiescent

glasses, slowly sheared glasses exhibit high dynamic

susceptibilities with long-range, directed strain correlations

[3–6]. Such long-range correlations also indicate a high

susceptibility to the applied shear. The question is then how

the highly susceptible glass responds to an increasing

applied shear field.

It is well known that application of shear on amorphous

materials can lead to intriguing shear inhomogeneity known

as shear banding [7–12], where the shear localizes in bands

that flow at a much increased rate. This phenomenon has

long been recognized in metallic glasses [8], for which

intriguing liquid vein patterns have been observed along the

shear bands [12]. Despite its importance to a wide range of

amorphous materials including metallic and soft glasses, a

fundamental understanding of shear banding is lacking.

Phenomenologically, shear banding is associated with

nonmonotonic flow curves [9,13]: the stress to maintain a

steady-state flow of the material varies nonmonotonically

with applied strain rate. This leads to two (or more) flow

rates that coexist at the same applied stress, analogous to

the van der Waals description of coexisting gas and liquid.

While such nonmonotonic flow curves have been recently

measured in colloidal glasses [14], the microscopic origin

of shear banding remains unclear; in particular, it is unclear

whether and how shear banding is related to structural and

dynamic properties of the glassy state. Structural

differences in glasses are small, often below the resolution

limit, and direct observation of the atomic dynamics in

molecular glasses is prohibitively difficult.

Colloidal glasses allow direct observation of single

particle dynamics, offering particle trajectories to be

followed at long time and large length scales [15,16].

The constituent particles exhibit dynamic arrest due to

crowding at volume fractions larger than ϕg ∼ 0.58, the

colloidal glass transition [17,18]. These systems exhibit

glasslike properties such as nonergodicity and aging [19],

and they show long-range strain correlations when sheared

slowly [5], demonstrating the high susceptibility of the

material under applied shear. Recent combined rheology

and structure measurements [14] have revealed nonmono-

tonic flow curves and steady-state shear banding in these

systems. The onset of shear banding occurred at shear rates

of around the inverse structural relaxation time of the glass,

suggesting a deep connection between the shear-banding

phenomenon and dynamic properties of the glass.

However, the crucial relation between shear banding and

glassy dynamics remains unclear: Does the high dynamic

susceptibility of the glass eventually lead to a dynamic

analog of a first-order transition?

In this Letter, we use direct observation of single particle

dynamics in a colloidal glass to show that the application of

shear on a glass leads to an intriguing dynamic first-order

transition. We demonstrate the existence of a critical shear

rate, at which the glass separates into two dynamic states

characterized by distinct diffusion time scales. We measure

a new dynamic order parameter [20] to demonstrate the

coexistence of two dynamic phases. We show that this

dynamic transition is accompanied by a weak, but char-

acteristic, structural modification of the glass that relates

shear-induced structural distortion to mechanical proper-

ties. These results offer a new framework to understand the

genuine shear-banding instability observed in a wide range

of colloidal and metallic glasses [9,10].

The colloidal glass consists of sterically stabilized

fluorescent polymethylmethacrylate particles with a diam-

eter of σ ¼ 1.3 μm, and a polydisperity of 7%, suspended

in a density and refractive index matching mixture of

cycloheptyl bromide and cis-decalin. A dense suspension

with particle volume fraction ϕ ∼ 0.60 well inside the
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glassy state is prepared by diluting suspensions centrifuged

to a sediment. The suspension is loaded in a cell between

two parallel plates 65 μm apart, and a piezoelectric trans-

lation stage is used to move the top boundary to apply

shear at constant rates between _γ ¼ 1.5 × 10−5 and

2.2 × 10−4 s−1, with a maximum strain of 140%.

Confocal microscopy is used to image the individual

particles and determine their positions in three dimensions

with an accuracy of 0.03 μm in the horizontal and 0.05 μm

in the vertical direction [16]. All measurements presented

here are recorded in the steady-state regime, after the

sample has been sheared to γ ∼ 1. We use the structural

relaxation time τ ¼ 2 × 104 s [5] of the quiescent glass to

define the dimensionless shear rate _γ� ¼ _γτ; the applied

shear rates then correspond to _γ� between 0.3 and 2, smaller

and larger than 1, reflecting the transition from the thermal

to the shear-dominated regime. We note that this normal-

ized shear rate is significantly lower than in other studies of

colloidal flows [11,21].

The shear-rate-dependent flow behavior is summarized

in Fig. 1. At shear rates _γ� < 1, the glass flows homo-

geneously as shown by the particle displacements as a

function of height in Fig. 1(a). At _γ� > 1, the glass

separates spontaneously into bands that flow at different

rates as shown for _γ� ¼ 2 in Fig. 1(b). Linear fits to the

displacement profiles yield flow rates of _γhigh ¼
2.2 × 10−4 s−1 and _γlow ¼ 4 × 10−5 s−1 that differ by a

factor of 5. We specifically checked for steady state in our

measurements, as reaching steady state may require some

larger amount of strain, especially for the shear-banded

case. To do so, we first confirm that, after an initial

transient, the slopes in Fig. 1(b) remain unchanged over

the entire observation time (see red symbols). We then

carefully checked both structure and dynamics of the glass

as a function of the applied strain. We find that both reach a

plateau, conclusively indicating the emergence of steady

state for strains larger than γ ≳ 0.3, as shown in Fig. 1(b),

inset. We thus observe the spontaneous transition from

steady-state homogeneous to steady-state inhomogeneous

flow at _γ� ∼ 1. This is also in agreement with recent

rheology and x-ray scattering measurements [14], revealing

shear banding starting at _γ ∼ τ−1. This transition from

homogeneous to inhomogeneous flow is analogous to

the shear banding in metallic glasses [8,12].

To elucidate it, we use the full trajectories of the particles

to investigate their dynamic evolution as a function of the

applied shear. For each particle i with trajectory ΔriðtÞ, we
subtract the mean flow to compute displacement fluctua-

tions Δr
0
i
ðtÞ ¼ ΔriðtÞ − hΔrðtÞiz, where hΔrðtÞiz is the

average particle displacement at height z. Typical examples

of the resulting mean-square displacements hΔr02ðtÞi in the
high- and low-shear bands are shown in Fig. 2 (inset). The

low-shear band (stars) reveals reminiscence of a plateau,

while the high-shear band (circles) exhibits a closely linear

increase of hΔr02ðtÞi, similar to the mean-square displace-

ment of particles in a liquid. This interpretation is supported

by the strain correlations: strain correlations computed

separately for the two bands reveal coexistence of an

isotropic liquidlike and an anisotropic solidlike response

[5]; similar behavior is observed for all other applied

shear rates with _γ� > 1. Interestingly, we can collapse all

mean-square displacements by rescaling the time axis by _γ

as shown in Fig. 2, main panel. The figure compiles

FIG. 1 (color online). Deformation map of colloidal glasses at

volume fraction ϕ ¼ 0.60. The flow is homogeneous at low shear

rates (a) and inhomogeneous beyond the critical shear rate _γc ∼

6 × 10−5 s−1 (b). The figures show height-dependent particle

displacements at shear rates _γ ¼ 3 × 10−5 s−1 (a) and _γ ¼ 1 ×

10−4 s−1 (b). Each cross represents a particle. Symbols in

(b) indicate average flow profile after γ ∼ 0.3 (circles), 0.8

(squares), and 0.95 (stars), demonstrating stable shear bands.

Dashed horizontal lines (b) delineate the shear bands. Inset:

Average nonaffine displacement (during Δt ¼ 2 min, left axis)

and structural distortion (eigenvalue ratio of Minkowski tensor

W20

1
of Voronoi volumes, see Ref. [22], right axis) versus strain

demonstrate steady state after γ ∼ 0.3.

FIG. 2 (color online). Mean-square displacements of the

particles. Upper left inset: Mean-square displacement in the

upper (circles) and lower shear bands (dots) at _γ� ¼ 2. Main

panel: Mean-square displacements as a function of rescaled time

for the applied shear rates _γ� ¼ 0.3 (blue), 0.6 (cyan), 1.2 (green),

2 (magenta), and 5.6 (red). Lower right inset: Strain correlations

of low shear band for t ¼ 70 (left) and 350 s (right).
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measurements both in the homogeneous and the shear-

banding regime. This collapse suggests that the different

dynamics of the bands is solely due to different underlying

diffusion time scales. Indeed, this is supported by the strain

correlation function that indicates disappearance of the

solidlike quadrupolar symmetry when correlations are

computed on the rescaled time scale (longer by a factor

of _γhigh=_γlow), as illustrated in Fig. 2 (lower right-hand

insets). We thus conclude that the change of diffusion time

scale causes the symmetry change of correlations; such

discontinuous change reminds one of first-order transitions,

with the discontinuity occurring in the underlying diffusion

time scale.

To quantify this dynamic discontinuity, we search for an

order parameter that is a good measure of the dynamic

evolution. An appropriate measure of the underlying

dynamic evolution is [20]

K ¼ Δt
XN

i¼1

Xtobs

t¼0

jΔri
0ðtþ ΔtÞ − Δri

0ðtÞj2; ð1Þ

the time-integrated mean-square displacement, where Δt is
a short microscopic time scale. This parameter increases

linearly with observation time tobs [Fig. 3(a)]; hence,K=tobs

measures the rate of the system’s dynamic evolution, and

we choose this as the dynamic order parameter. To address

the transition, we determine values of K=tobs in 2 μm thick

horizontal subsections and plot probability distributions for

three different observation times in Fig. 3(b). With increas-

ing observation time, two peaks appear and sharpen,

demonstrating the coexistence of two dynamic states.

The positions of the peaks demarcate the order parameter

values of the coexisting shear bands. We can now construct

the corresponding dynamic phase diagram from the peak

positions of K for all steady-state shear rates, as shown in

Fig. 3(c). At _γ� < 1, only one single peak of K exists,

indicating the homogeneous regime. At _γ� > 1, two values

coexist, indicating the coexisting shear bands. The diagram

has the characteristic topology of a phase diagram, in which

the two-phase region is entered close to a critical point. We

note that similar dynamic phase coexistence has been

recently observed by us in traffic models with interacting

cars [23]. With increasing density and in the limit of strong

braking, traffic jams exhibited long-range correlations, after

which macroscopic phase separation into jammed and free-

moving traffic occurred.

We confirmed the first-order nature of the transition in

x-ray scattering measurements on oscillatory shear [24]. At

increasing strain amplitude and concomitant increasing

strain rate, the structure factor exhibited an abrupt sym-

metry change from anisotropic solid to isotropic liquid, just

like the strain correlations from confocal microscopy

(cf. Fig. 2). These measurements demonstrated the sharp-

ness of the transition: using order parameters to quantify

the structural symmetry and its fluctuations, we consis-

tently demonstrated the sharp appearance of a liquidlike

state via an abrupt change of the order parameter. The

confocal microscope measurements presented here allow us

to reveal the microscopic nature of this transition. To

elucidate the sharpness as a function of the increasing

shear field, we continuously ramped the shear rate _γ� from

below to above 1, crossing the transition with a continu-

ously increasing shear rate. The resulting values of K as a

function of strain rate [Fig. 3(c), inset] suggest that, indeed,

the transition occurs rapidly, in agreement with our x-ray

measurements [24]. Because of the limited system size both

spatially and along the time dimension, there are significant

fluctuations; nevertheless, the data indicate a sudden jump

of the order parameter at _γ� ∼ 1. The position of this jump is

consistent with the steady-state measurements (main

panel), plus an eventual small delay due to metastabil-

ity [25].

This dynamic transition is surprising and suggests highly

collective dynamic behavior of the system. Dynamic first-

order transitions have been recently observed in simula-

tions on facilitated glassy dynamics [20]: under an applied

artificial field s that couples to the dynamic order parameter

distribution via PðsÞ ¼ P0 expð−Ks=kTÞ, where P0 is the

unperturbed distribution, all hallmarks of a true first-order

FIG. 3 (color online). Dynamic order parameter and phase

diagram. (a) Dynamic order parameter as a function of obser-

vation time. K is a linear measure of the system’s dynamic

evolution. (b) Histogram of order parameter values for increasing

observation times. The emerging bimodal distribution indicates

dynamic phase coexistence. (c) Corresponding dynamic phase

diagram: Mean order parameter as a function of applied strain

rate. The dashed lines delineate boundaries of the shear-banding

regime. Inset shows the dynamic order parameter at continuously

increasing applied shear rate, for particles in the upper (red

squares) and lower regions (blue dots). Arrow demarcates sudden

change of order parameter.
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transition were observed. In the present case, the applied

shear stress σ can take the role of the conjugate field: it is

well known that the applied stress σ couples to local

rearrangements via their induced strain ϵ according to

PðϵÞ ¼ P0 exp½−σΩðϵÞ=kT�, where the activation volume

ΩðϵÞ ¼
R
ϵdV measures the integrated local strain [8,26].

Because of the high dynamic susceptibility of the colloidal

glass under applied shear [5], likewise, the coupling

between the applied stress and the particle dynamics can

introduce a first-order transition in its dynamic evolution.

While the transition occurs in the dynamics, it is

interesting to elucidate changes in the glass structure.

Constitutive models of the flow of amorphous materials

suggest a coupling between flow and structure, often

related to small density changes [8,11,27]; we therefore

investigated structural differences in the two bands. We

show radial distribution functions in Fig. 4(a). No obvious

structural difference between the low- and high-shear bands

is observed, in agreement with earlier observations [11].

However, when we resolve gðrÞ along the compression and

dilation directions, a clear structural difference shows up

[Fig. 4(a), inset]. The high-shear band (red symbols and

line) exhibits pronounced anisotropy, while the low-shear

band (blue symbols and line) is more isotropic. The

decrease of gðrÞ in the dilation direction indicates a

depletion of nearest neighbors in the extensional sector,

while the (slight) increase of gðrÞ in the compression

direction indicates a (small) enhancement of nearest

neighbors in the compressional sector. Because of the

nature of the hard-core potential, the increase in the

compressional sector is small, smaller than the particle

loss in the extensional sector, and this results in a net

depletion of particles in the nearest-neighbor cage.

According to Ref. [28], this depletion of nearest neighbors

leads to lower shear moduli. This is precisely what is

observed in the figure: the decrease along the extension

direction is more pronounced than the increase in the

compression direction, leading to a depletion of particles in

the cage. These results reveal the structural origin of the

different mechanical behavior of the two bands. This

structural distortion should play an important role in the

coupling of structure and dynamics in the shear-banding

transition. Indeed, we can measure the resulting net dilation

in the shear band from the mean-square difference Δ
2

between the two angle-averaged gðrÞ curves as a function

of a linear stretching α that transforms r to r0 ¼ r × α. We

show Δ
2 as a function of α in Fig. 4(b), inset; the minima of

Δ
2 at α > 1 indicate a small amount of dilation. We

evaluate the minima αmin for all shear rates and plot αmin

as a function of shear rate in the main panel. These values

indicate a dilation of ∼0.4% in the high-shear band after

shear banding. While the detected changes are small and

affected by large uncertainty, they demonstrate a character-

istic structural change accompanying the shear-banding

transition.

The direct observation of particle dynamics during shear

banding of a colloidal glass reveals the coexistence of two

dynamic steady states analogous to the coexistence of

equilibrium phases in first-order transitions. The applied

shear plays the role of a conjugate field that couples to the

dynamic evolution: sufficiently high values of the applied

shear rate cause coexistence of two dynamic states with

different time scales for diffusion. This mechanism points

out new perspectives to comprehend flow instabilities in

amorphous materials: the large dynamic susceptibility, on

the one hand (evidenced by long-range strain correlations),

and the coupling to the applied shear, on the other hand,

lead to a dynamic transition that is akin to first-order

transitions. This is supported by the different structure of

the two bands, distinct by the degree of distortion of the

nearest-neighbor cage. This distortion leads to net depletion

of particles in the cage, and to lower shear moduli. We

believe that the presented dynamic transition should be a

general feature of dynamically driven systems, and recent

traffic simulations reveal the formation of dynamic con-

densates in one-dimensional dynamically facilitated sys-

tems, consistent with this idea [23]. The observed coupling

between applied stress and diffusion time could play a role

in crowded biological systems; as the diffusion time scale is

an important underlying time scale, any direct coupling of

diffusion to external (shear) fields would greatly affect the

diffusive behavior upon mechanical perturbation.
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