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ABSTRACT

Context. General circulation models of the atmosphere of hot Jupiters have shown the existence of a supersonic eastward equatorial
jet. These results have been obtained using numerical schemes that filter out vertically propagating sound waves and assume vertical
hydrostatic equilibrium, or were acquired with fully compressive codes that use large dissipative coefficients.
Aims. We remove these two limitations and investigate the effects of compressibility on the atmospheric dynamics by solving the
standard Euler equations.
Methods. This was done by means of a series of simulations performed in the framework of the equatorial β-plane approximation
using the finite-volume shock-capturing code RAMSES.
Results. At low resolution, we recover the classical results described in the literature: we find a strong and steady supersonic equatorial
jet of a few km s−1 that displays no signature of shocks. We next show that the jet zonal velocity depends significantly on the grid
meridional resolution. When this resolution is fine enough to properly resolve the jet, the latter is subject to a Kelvin-Helmholtz
instability. The jet zonal mean velocity displays regular oscillations with a typical timescale of a few days and a significant amplitude
of about 15% of the jet velocity. We also find compelling evidence for the development of a vertical shear instability at pressure levels
of a few bars. It seems to be responsible for an increased downward kinetic energy flux that significantly affects the temperature of
the deep atmosphere and appears to act as a form of drag on the equatorial jet. This instability also creates velocity fluctuations that
propagate upward and steepen into weak shocks at pressure levels of a few mbars.
Conclusions. We conclude that hot-Jupiter equatorial jets are potentially unstable to both a barotropic Kelvin-Helmholtz instability
and a vertical shear instability. Upon confirmation using more realistic models, these two instabilities could result in significant time
variability of the atmospheric winds, may provide a small-scale dissipation mechanism in the flow, and might have consequences for
the internal evolution of hot Jupiters.
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1. Introduction

In the past decade, hot-Jupiter observations have evolved
from characterizing only the orbital (semi-major axis, pe-
riod, eccentricity) and structural (mass and radius) proper-
ties of the newly discovered planets to also constraining the
physical properties of the atmosphere such as the composi-
tion and the temperature-pressure profile (Madhusudhan et al.
2014; Heng & Showman 2015), as well as observables that
are directly connected to the dynamics such as 2D brightness
maps (Knutson et al. 2007; de Wit et al. 2012) and even (al-
though maybe still tentatively) atmospheric winds (Snellen et al.
2010). With new instruments such as the James Webb Space
Telescope (JWST) soon available to the community, future
observations will become more and more constraining. Their
interpretation and understanding will require elaborate and
well-understood models of the dynamical structure of their up-
per atmosphere. This need explains the recent development by
several groups of numerical models describing the atmospheric

dynamics of hot Jupiters (among which Showman & Guillot
2002; Menou et al. 2003; Cho et al. 2008; Showman et al. 2008,
2009; Dobbs-Dixon & Lin 2008; Rauscher & Menou 2010;
Heng et al. 2011b), a comprehensive review of which has re-
cently been published by Heng & Showman (2015). Taken as a
whole, these global circulation models (GCM) have produced a
few robust results that characterize the dynamics of hot-Jupiter
atmospheres. Probably the most notable is the existence of an
equatorial jet with typical eastward gas velocity on the order of a
few kilometers per second, as first shown by Showman & Guillot
(2002). This is faster than the speed of sound by a factor of a
few (i.e., the Mach number of the jet, defined as the ratio be-
tween the wind and the sound speed, is larger than unity). This
remarkable result comes from the fact that hot Jupiters are both
tidally locked and strongly irradiated by their central star as a
result of the small semi-major axis of their orbit. This has been
given a theoretical basis by the semi-analytical calculations of
Showman & Polvani (2010, 2011), who were able to explain the
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origin of the equatorial jet by the excitation of a stationary plan-
etary scale Rossby wave by stellar irradiation, a result recently
confirmed and extended to include three-dimensional effects by
Tsai et al. (2014). One reason of the success of these models is
that they appear to be consistent with some of the observations
of hot-Jupiter atmospheres, such as the eastward shift of the hot
spot at the photosphere (Knutson et al. 2007) or the day-night
temperature contrast measurements (Perez-Becker & Showman
2013).

Despite these significant findings, several questions remain.
First, the supersonic nature of the equatorial jet has raised the
question whether shocks exist in hot-Jupiter atmospheres. The
presence of such structures could have important consequences
for the atmosphere time variability and act as an efficient drag
mechanism on the flow (Rauscher & Menou 2012). This ques-
tion is made even more acute because many of the published
results have been obtained using approaches borrowed from the
community that studies the Earth atmosphere climate and uses
approximations that are well adapted to study the Earth atmo-
spheric dynamics. The most widely used approach is based on
solving a reduced set of equations, the so-called primitive for-
mulation of the hydrodynamics equations, which filters out ver-
tically propagating sound waves and assumes that the gas is
in hydrostatic equilibrium in the vertical direction. Such codes
are only able to capture hydraulic jumps as opposed to real
shocks (see Rauscher & Menou 2012, for a discussion of this
issue). Using such approaches, several groups have reported the
existence of regions where significant compression occurs and
takes the form of standing discontinuities (Showman et al. 2009;
Rauscher & Menou 2010), suggesting that shocks might indeed
develop, in agreement with theoretical arguments such as given
by Heng (2012). In addition to these models, a few papers have
been published and presented simulations that do not rely on
these standard GCM approximations and thus do not suffer from
these limitations (Dobbs-Dixon & Lin 2008; Dobbs-Dixon et al.
2010; Mayne et al. 2014a,b). These groups solved the Navier-
Stokes equations on the sphere and explicitly included some
form of dissipation to stabilize the scheme and/or to account
for the effect of unresolved features of the flow. Even though
the issue of shocks is not the main focus of either of these pa-
pers, Dobbs-Dixon et al. (2010) reported shock-like features in
some of their models. However, the use of high dissipation coef-
ficients in these particular simulations significantly changes the
mean flow so that the question of shock formation in hot-Jupiter
atmospheres remains unanswered.

In addition, it is possible that the equatorial jet is desta-
bilized by various hydrodynamic instabilities. For example,
Li & Goodman (2010) have recently shown using analytical ar-
guments coupled with idealized numerical simulations that fast
supersonic equatorial jets are vulnerable to a vertical shear in-
stability, a possibility first mentioned by Showman & Guillot
(2002)1. As shown by Li & Goodman (2010), shocks might de-
velop during the nonlinear evolution of this instability and have
significant consequences for the jet mean velocity. As explained
by Li & Goodman (2010), properly resolving this instability in
a GCM is a tremendous task because it requires the numerical
grid to be sufficiently fine to resolve the vertical pressure scale
height of the atmosphere in the horizontal direction. Given these
difficulties and because of the very idealized nature of the nu-
merical setup used by Li & Goodman (2010), it is perhaps not

1 It is worth recalling that such a vertical shear instability is by defi-
nition absent from any simulation that relies on the standard primitive
formulation of hydrodynamics.

surprising that the question of the possible development and po-
tential consequences of a vertical shear instability in hot-Jupiter
atmospheres has never been addressed in any GCM so far.

Besides their role as possible drag mechanisms, the ques-
tions of the existence of shocks and/or of the growth of hy-
drodynamic instabilities such as described above may have
some potential observational consequences in terms of the
flow variability, but also to explain the origin of the in-
flated hot Jupiters (Baraffe et al. 2010). Indeed, it has been
suggested that downward transport of kinetic energy possibly
associated with these instabilities (Showman & Guillot 2002;
Guillot & Showman 2002) along with turbulent mixing of heat
(Youdin & Mitchell 2010) might transport and deposit a suffi-
cient amount of thermal energy into the deep layers of the at-
mosphere to account for such highly inflated radii (for a detailed
discussion, see Ginzburg & Sari 2015).

The purpose of this paper is to develop an idealized model
for investigating the problems described above. For this pur-
pose, we solve the compressible Euler equations. Since we are
interested in shocks, we use the finite-volume shock-capturing
scheme RAMSES (Teyssier 2002) that is based on the Godunov
method (Toro 1997, see also Sect. 2.3). In addition to being well
adapted to resolving shocks in supersonic flows such as encoun-
tered here, finite-volume codes like RAMSES conserve the gas
total energy, the sum of its kinetic and thermal energy, even in
the absence of explicit dissipation. This means in particular that
all the kinetic energy that might be numerically dissipated (as
would be the case, for example, in a turbulent flow) returns into
heat. As noted by Goodman (2009), this is of particular impor-
tance in the context of hot-Jupiter atmospheres. Our strategy in
this first paper is to keep the numerical setup as simple as possi-
ble while retaining the basic ingredients that drive the flow dy-
namics. We therefore simplify the thermodynamics and geome-
try in two important aspects. While most published results now
use a complex but realistic treatment of radiative transfer effects,
we model these effects with a simple parametrized cooling func-
tion. For practical purpose, we use a form of the cooling function
that is linear in the temperature, also known as Newtonian cool-
ing. This has proved very useful in modeling atmospheric flows
in general and the general circulation of hot Jupiters in particu-
lar (Showman et al. 2008; Rauscher & Menou 2010; Heng et al.
2011b). Published simulations using this approximation com-
pare well with more realistic models that include a detailed
treatment of radiative transfer effects (Dobbs-Dixon & Lin 2008;
Showman et al. 2009; Heng et al. 2011a; Rauscher & Menou
2012). Our second approximation is to solve the equations in a
Cartesian geometry using the equatorial beta plane model. This
is a well-known approximation in atmospheric dynamics that
has been successfully used recently in the context of hot-Jupiter
atmospheric flows (Showman & Polvani 2010, 2011; Tsai et al.
2014; Heng & Workman 2014). The idea is to focus on the equa-
torial region of the planet and to expand the vertical projection
of its angular velocity linearly to the first order in the distance y
to the equator:

Ω =
1

2
βyez, (1)

where β is a constant and a free parameter of the model, while ez

stands for the unit vector in the vertical direction. For hot-Jupiter
atmospheres, this is a particularly useful approximation because
of their slow rotation and since the dynamics mainly develops
in the vicinity of the equator. Using these simplifications but in-
cluding the effect of compressibility, the goal of this paper is
to investigate questions such as the occurrence of shocks, the
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stability of the equatorial jet, and the origin of the flow variabil-
ity, if any.

The plan of the paper is as follows. In Sect. 2 we detail our
numerical setup and the parameters we use. The idea is to use
a set of numerical parameters as close as possible to the bench-
mark models presented by Heng et al. (2011b) and to investigate
the potential effects induced by compressibility in this model. In
Sect. 3 we present a low-resolution model and show that we re-
cover many of the features described in the literature despite our
simplistic geometry. These results validate our approach and our
approximations. In Sect. 4 we make a brief resolution study be-
fore presenting a high-resolution simulation in Sect. 5. We show
that the flow features variability at different spatial and temporal
scales that we relate to well-known hydrodynamics instabilities.
We then conclude and discuss the limitations of our work and
the perspectives it opens in Sect. 6.

2. Physical model and numerical implementation

2.1. Equations and notations

As explained in the introduction, we solved the hydrody-
namic equations in a Cartesian coordinate system denoted by
(ex, ey, ez), in a frame rotating with angular velocity Ω. We
considered a grid that extends over the ranges [−Lx/2, Lx/2],
[−Ly/2, Ly/2], and [0, Lz] in the x, y, and z directions, respec-
tively. The x-direction should be thought of as representing lon-
gitudes in traditional GCM models, y as a proxy for latitudes
and z would stand for the radial direction (aligned with the grav-
itational acceleration). Since hydrostatic equilibrium is not built
into the equations, we did not use pressure coordinates in the ver-
tical direction as is common in atmospheric sciences when solv-
ing the primitive formulation of hydrodynamics. The time evo-
lution for the gas density ρ, the velocity u and the total energy E
writes

∂ρ

∂t
+ ∇·(ρu) = 0, (2)

∂ρu

∂t
+ ∇·(ρuu + P) = −ρgez − 2ρΩ×u, (3)

∂E

∂t
+ ∇· [(E + P)u)] = L, (4)

where g is the constant vertical acceleration due to the planet
gravitational field, L is the cooling function (see Sect. 2.2),
and P denotes thermal pressure. This is related to the total en-
ergy with the relation

E =
1

2
ρu2 + ρe =

1

2
ρu2 +

P

γ − 1
· (5)

In the above equation, we have introduced the adiabatic exponent
of the gas γ and assumed an ideal equation of state in writing
the internal energy e as a function of thermal pressure. In this
case, P also relates directly to the gas temperature T through the
following equation:

P =
ρkT

µmH

= ρRT · (6)

Here k is the Boltzmann constant, µ is the mean molecular
weight, mH the mass of the hydrogen atom, and R is the spe-
cific gas constant. Throughout this paper, we assume that the
atmosphere is composed of a mixture of hydrogen and helium
and take for R the same numerical value as Heng et al. (2011b):
R = 3779 J kg−1 m−1. We also set γ = 1.4. Finally, as explained

in the introduction, we work in the framework of the equato-
rial β-plane model, so that Ω is given by Eq. (1). In the remain-
der of this paper, we therefore refer to the y = 0 plane as “the
equator”.

2.2. Cooling function L

L varies linearly with the departure from an equilibrium temper-
ature, a prescription that is also known as Newtonian cooling:

L =
ρR

γ − 1

T − Teq

τrad

, (7)

where Teq and τrad are the radiative equilibrium temperature and
radiative cooling timescale, respectively. They both depend a pri-
ori on the location in the atmosphere. L is meant to provide
a rough but computationally straightforward description of the
balance between heating due to stellar irradiation and radiative
cooling. Our choice for the spatial dependence of τrad is dis-
cussed in Sect. 2.4 and Appendix A. To calculate Teq, we fol-
lowed a procedure that is largely inspired by (but not identical
to, essentially because we use a different coordinate system) the
benchmark calculation presented by Heng et al. (2011b). We de-
scribe it here briefly for completeness. We started from a ref-
erence pressure-dependent temperature profile T 0

P
that is usu-

ally computed from 1D radiative transfer calculations. We next
defined

Tday/night = T 0
P ± ∆T, (8)

where ∆T is a constant and a free parameter of the simula-
tion. For simplicity, we did not prescribe any pressure variation
for ∆T , which is different from papers published in the literature
that used Newtonian cooling to model radiative effects. Because
the planet is tidally locked, the substellar point is fixed in time.
We chose its horizontal coordinates to be (x, y) = (0, 0). Using
these definitions for Tday and Tnight, we calculated Teq as fol-
lows: on the night side of the planet (|x| > Lx/4), we followed
Heng et al. (2011b) and set Teq = Tnight. On the planet day side
(|x| < Lx/4), we used the relation

T 4
eq = T 4

night +
(

T 4
day − T 4

night

)

cos

(

2πx

Lx

)

exp













−
y2

2L2
th













· (9)

We note that this profile is different from the functional form
of Teq introduced by Heng et al. (2011b). While the sinu-
soidal x-dependence is reminiscent of their longitudinal profile, a
similar dependence would have little meaning in the y-direction.
It is more natural to use an exponential variation in that direc-
tion, as done recently by Showman & Polvani (2011). The draw-
back of this formulation is that it introduces an additional length
scale Lth in the problem that is another free parameter of the
model. The specific value we chose in this paper is discussed
below in Sect. 2.4.

2.3. Numerical implementation

We solved the above equations using a uniform grid version
of the community code RAMSES (Teyssier 2002). RAMSES
uses a finite-volume scheme based on the MUSCL-Hancock Go-
dunov method (Toro 1997). By systematically upwinding all the
waves that enter the problem, finite-volume codes are intrinsi-
cally stable (provided they satisfy the Courant-Friedrich-Lax,
or CFL, condition) and do not require using any explicit dis-
sipation. In fact, the algorithm is constructed to add the mini-
mum amount of dissipation that is necessary to stabilize the nu-
merical scheme. This is important for one of the problems we
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are interested in, namely the issue of shock formation. How-
ever, a well-known difficulty of Godunov codes is their inabil-
ity to properly handle vertical hydrostatic equilibrium (see, e.g.,
LeVeque 1998). This is because the latter results from a balance
between two terms that are treated differently by the numeri-
cal algorithm, namely the pressure gradient (treated as a flux
of momentum computed as part of the solution of a Riemann
problem) and gravity (treated as a source term by a simple split
Crank-Nicholson algorithm). Starting from a solution initially in
exact equilibrium balance, this situation immediately creates a
mass flux at cell interfaces that rapidly leads to spurious verti-
cal velocities (even in 1D) and compromises the simulation. Re-
cently, Käppeli & Mishra (2014) developed an algorithm for the
MUSCL-Hancock scheme that is especially designed to fix this
problem. The idea is to assume that the density and pressure pro-
files within each cell are isentropic and to use the extrapolated
values at cell faces as inputs for the Riemann problem. We have
implemented their solution in RAMSES and found that it gives
very satisfactory results, in the sense that the code is now able
to keep a stratified atmosphere in hydrostatic equilibrium with
almost vanishing deviations.

The boundary conditions (BC) we used are periodic in the
x-direction. Because the Coriolis force increases in amplitude
with y, the dynamics is confined to the vicinity of the equator.
For this reason, the boundary conditions in the y-direction are
not critical provided the domain is chosen wide enough. In the
simulations presented in this paper, we set the horizontal velocity
to zero there and assumed a zero gradient for all other variables.
The vertical boundary conditions are more subtle to implement
and somewhat arbitrary. We empirically found that the follow-
ing produces good results, in the sense that artifacts introduced
by the boundaries could not be detected: we extrapolated both
density and pressure assuming an isentropic vertical profile, im-
posed a zero horizontal velocity gradient BC and reflective BC
on the vertical momentum. In addition, we forced the mass, mo-
mentum, and energy fluxes to vanishes at the vertical boundaries.
We note that the two conditions (on the variables themselves and
on the fluxes) are not necessarily consistent with each other, but
did not lead to any problem in the simulations.

The numerical implementation described above was tested
by reproducing standard results of the literature. We present two
of them in the appendix of the paper, namely the growth of
a baroclinic wave in an adiabatic atmosphere as described by
Polichtchouk et al. (2014) in Appendix B.1 and a shallow hot-
Jupiter model such as presented by Menou & Rauscher (2009),
Heng et al. (2011b) and Mayne et al. (2014a) in Appendix B.2.
Although these tests do not have an analytical solution, the sim-
ilarity between our results and the published calculations, along
with the analysis of a low-resolution deep model that we present
in Sect. 3, give confidence in our setup.

2.4. Model parameters

The physical model presented above contains several free pa-
rameters: g and β characterize the planet, while T 0

P
, τrad, ∆T,

and Lth describe the heating and cooling processes. Instead of
presenting a complete survey of the associated parameter space,
the idea of the present paper is to choose a unique set of pa-
rameters that matches those of Heng et al. (2011b) as closely as
possible and to show that the flow properties are similar to the
results presented in that paper. We defer a detailed study of the
influence of these free parameters on the results to a future pub-
lication.

Planet parameters: we followed the shallow hot-Jupiter model
of Heng et al. (2011b) and considered a planet with a radius
ap = 108 m for which g = 8 m s−2. We assumed that the planet

rotates with a frequency Ωp = 2.1 × 10−5 s−1. Expanding Ω =
Ωp sin(φ), where φ is the latitude, close to the equator, and using
Eq. (1), we thus have

β =
2Ωp

ap

= 4.2 × 10−13 m−1 s−1. (10)

Newtonian cooling parameters: we next need to prescribe the
parameters entering in the definition of Teq and τrad. To do so,

we used the analytic relation between T 0
P

and P and between τrad

and pressure. These two functions are given in Appendix A and
have numerical parameters chosen to give an approximate match
to the profiles of Heng et al. (2011b). We also set ∆T = 300 K in
all our simulations. The curves so obtained for Tnight and Tday

are plotted in Fig. A.1 and are close to the profiles used by
Heng et al. (2011b, see their Fig. 7). It is worth noting that τrad

becomes infinite below 10 bar. This choice creates an “inert
layer” at the location where P > 10 bar, in the sense that gas
cannot cool radiatively in this region. As we shall see, this point
turned out to have rather important consequences in the simu-
lations. Finally, the cooling function L depends on the parame-
ter Lth that governs its y-dependence. Apart from being on the
order of ap, there is no obvious way of choosing Lth, and its
influence on the flow properties deserves further investigations.
After a few tests at low resolution, we found a good agreement
with published results for Lth = 0.7ap. We use this value in the
remainder of the paper.

Computational domain and initial conditions: we need to spec-
ify the extent of the computational domain and the initial condi-
tions. We used Lx = 2πap in the x direction and found that Ly =
2.5ap was wide enough for the lateral boundaries to have no ef-
fect on the flow topology. As noted by Mayne et al. (2014a), the
vertical extent of the box has to be chosen carefully because hot
gas of the planet day side is inflated and expands upward. We
thus followed these authors and used Lz = 9 × 106 m. Except
for one model (see Sect. 5), our calculations were all initiated
from an atmosphere at rest (u = 0 everywhere), with a uniform
temperature T = 1800 K and in vertical hydrostatic equilibrium.
We set the density in the bottom layer (i.e., at z = 0) so that
P = 220 bar. With these parameters, we typically found that the
pressure at the top of the domain ranges between 6 × 10−3 and
0.1 mbar, i.e., well below the typical pressures we are interested
in in the remainder of the paper. We note that there is a current
debate in the literature regarding the sensitivity of the flow to
the initial conditions (Thrastarson & Cho 2010; Liu & Showman
2013), particularly when explicit dissipation is small or vanish-
ing, as we consider here (Cho et al. 2015). Here, we leave these
questions aside and consider the same initial conditions as used
by Heng et al. (2011b).

Simulation post treatment: unless otherwise stated, we typi-
cally produce snapshots of all the physical variables every planet
day during the simulation. To facilitate comparison with pub-
lished papers, we present all of our results interpolated in the
vertical direction on a pressure grid that extends from 200 bar at
the bottom to 1 mbar at the top using 48 levels uniformly spaced
in the logarithm of the pressure.
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Fig. 1. Color contours of the time-averaged zonal mean zonal velocity (left panel) and temperature (right panel) in the (y, P) plane for the low-
resolution model. The time average is performed from t = 200 days to t = 500 days using 300 snapshots.

Finally, we measured time in units of one planet day, which
corresponds to 299 200 s with our choice of parameters, or
about 3.5 Earth days. In the simulations we present below, the
time step is always limited by sound waves propagating in the
vertical direction. It is typically on the order of 25 s in model
LowRes (Sect. 3) and 15 s in model HighRes (Sect. 5). This
should be compared with the typical time steps of 120 s used
by, for example, Heng et al. (2011b). Although markedly larger
when using the primitive set of hydrodynamics equations, the
difference with a fully compressible set of equations is not large
enough to be prohibitive when performing hot-Jupiter atmo-
sphere simulations. This is because the typical pressure scale-
height H is large in this case (typically 103 km) so that the ratio
between H and the horizontal scales involved in the problem is
not as small as it would be for an Earth-like simulation.

3. Low-resolution model

To validate our numerical implementation and our choice for
the numerical parameters entering the problem, we start by pre-
senting a model LowRes. The grid spatial resolution was set to
(Nx,Ny,Nz) = (64, 33, 48) in this section. This is smaller by
about a factor of two than the resolution used by the finite dif-
ference core of Heng et al. (2011b). However, we did not use
any explicit dissipation here, so that a one-to-one correspon-
dence is difficult to establish a priori. The model was integrated
for 500 planet days, which corresponds to about 1700 Earth days
for our choice of Ωp.

We now describe the climatology of the atmosphere. As pre-
viously documented in the literature, the flow develops a strong
eastward jet around the planet equator (Fig. 1, left panel). In
about 200 days, it reaches steady state at pressure levels above 1
bar, while higher pressure levels gradually accelerate until the
end of the simulation (Fig. 2). Based on this result, we com-
puted the mean properties of the flow by calculating time aver-
ages from t = 200 until the end of the simulation. The zonally av-
eraged jet velocity at the equator reaches about 6.6 km s−1 at the
top of the atmosphere (i.e., at a pressure level of about 1 mbar),
which corresponds to a mean Mach number of about 2. As a re-
sult of the short radiative timescale in the atmosphere (compared
to the dynamical timescale), the temperature structure displays a
structure that is close to the zonally averaged radiative equilib-
rium temperature, except in the deep layers of the atmosphere

(at P = 10 bar and below) where a hot spot is seen with T
up to 2000 K. We find very little velocity fluctuations in the
flow above 1 bar after 200 days, which is consistent with,
for example, Showman et al. (2008). Even if we tend to find
slightly faster equatorial jets, the zonally averaged structure de-
scribed above compares favorably with results published in the
literature that use a similar cooling function (Showman et al.
2008; Rauscher & Menou 2010; Heng et al. 2011b; Mayne et al.
2014a). One difference is, however, that we find weaker west-
ward jets at high latitudes (with maximum westward winds
of 100 m s−1 compared to typical published values that are about
one order of magnitude higher). This difference most likely
arises because we used a Cartesian coordinates system, as op-
posed to the spherical geometry that is commonly used. It needs
to be kept in mind when comparing our results with previ-
ously published models. We checked that the total (i.e., volume-
integrated) angular momentum is conserved in our calculations.
In the equatorial β-plane approximation, the latter takes the form

M =

$
ρ

(

u −
1

2
βy2

)

dτ, (11)

where the integral should be taken over the computational do-
main. We found that M is conserved to within 2% in model 128×
33 over the 500 days of integrations (with the small change being
associated with a small leakage through the meridional bound-
aries of the domain).

The day-to-night heating contrast results in strong zonal
asymmetries in both the dynamical fields and the temperature.
These asymmetries are stronger in the atmosphere upper lay-
ers and gradually decrease downward. This is illustrated in
Fig. 3, which shows the temperature and horizontal winds in
the (x, y) plane at the pressure levels 1.66 mbar, 100 mbar,
and 4.4 bar. The zonal asymmetries in the first two panels are
large because of the short radiative timescale at those locations.
For example, at 1.66 mbar, the highest (resp. lowest) velocity
amounts to 7.1 km s−1 (resp. 5.5 km s−1) and temperatures range
from about 700 K to 1400 K. By contrast, the equatorial jet is
essentially zonally symmetric at P = 4.4 bar, in agreement with
previous results. At 100 mbar, we recover the chevron shape
structure in the temperature reminiscent of previously published
calculations. The structure of the flow at 1.66 mbar is interesting
because it illustrates one of the consequence of using the equa-
torial β plane model: while simulations performed on the sphere
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Fig. 2. Space-time diagram (i.e., time evolution of the pressure profile)
of the zonally averaged zonal wind at the equator in the low-resolution
model.

Table 1. Model properties.

Model Nx Ny Umean
50

U′
50

(m s−1) (m s−1)

LowRes 64 33 6158 –

128 × 33 128 33 6117 1.1
128 × 65 128 65 7390 18.6

128 × 109 128 109 7703 66.8
128 × 195 128 195 7957 124.3

256 × 65 256 65 7371 –
512 × 65 512 65 7226 –

1024 × 65 1024 65 7511 –

HighRes 1024 195 7731 207.3

Notes. Column 1 gives the model label. Columns 2 and 3 feature the
horizontal resolution. Columns 4 and 5 list the zonally and time aver-
aged zonal wind and zonal wind fluctuations at 50 mbar (see text for
details on its calculation). All the other parameters of the models are
identical and described in Sect. 2. Data are averaged between t = 200
and t = 400, except for the models with Ny = 195, for which the aver-
aging is performed between t = 170 and t = 280.

typically display a planetary scale Hadley cell, with upward mo-
tions in the substellar point and downward motions at the an-
tistellar point, this flow is impossible to obtain by definition in
the framework of the equatorial β-plane model. Instead, merid-
ional velocity are always deflected back to the equator since the
Coriolis force becomes gradually stronger as y increases.

To conclude on Sect. 3, the good agreement between the flow
structure in our simulation, as shown in Figs. 1 and 3, with equiv-
alent figures reported by Heng et al. (2011b), along with the fact
that these results broadly agree with several studies of the same
kind published in the literature, validate both our numerical im-
plementation and the choice of our model parameters.

4. Resolution study

We next investigated the sensitivity of the properties described
above to variations in the horizontal spatial resolution. All of
the other parameters of the simulations were kept fixed. We
varied Nx from 64 to 1024 and Ny from 33 to 195. The simu-
lation parameters and their outcomes are summarized in Table 1.
All runs but one were integrated for 400 days. Model HighRes,
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Fig. 3. Time-averaged temperature (color contour) and horizontal wind
(arrows) for the low-resolution model at pressure level P = 1.66 mbar
(top panel), P = 97 mbar (middle panel) and P = 4.4 bar (bot-
tom panel). The time average is performed from t = 200 days to
t = 500 days using 300 snapshots.

with a resolution of (Nx,Ny) = (1024, 195), is computationally
demanding. To reduce part of the burden, we restarted model
1024 × 65 at t = 100 and multiplied the number of cells in
the y direction by a factor of three. The equations were then
integrated for another 350 days.

4.1. Effect on the climatology

All models qualitatively display the same climatology as de-
scribed above. However, quantitative measures vary. As an ex-
ample, we report in Table 1 (Col. 4, see also Fig. 4) the zonally
and time-averaged (between t = 200 and t = 400) zonal wind at
the equator at the pressure level P = 50 mbar. We note that the
equatorial jet is still being slightly accelerated over that period
and has not yet reached a perfect equilibrium. For example, in
model 128 × 65, the zonal wind at 50 mbar increases from 7.1
to 7.4 km s−1 during that period (which represents less than 5%,
a rather small acceleration that justifies the claim made above
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Fig. 4. Left axis: variations of the 50 mbar zonally and time-averaged
zonal wind at the equator with Ny. The blue squares correspond to the
models with a zonal resolution Nx = 128, the red circle shows model
LowRes, and the black plusses show the results of the models with a
meridional resolution Ny = 65 and varying number of cells in the zonal
direction. Right axis (green stars): variations of the amplitude of the
high-frequency fluctuations of the zonally averaged zonal wind fluctu-
ations (see text for details on its calculation) with Ny for the series of
models with Nx = 128.
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Fig. 5. Spatial distribution of η at the pressure level P = 1.66 mbar in
model 128 × 65 (color contours). The arrows show the amplitude and
direction of the hozizontal wind.

that the flow is close to steady state). Taken as a whole, this res-
olution study shows a strong sensitivity to the meridional resolu-
tion Ny (see the blue squares), but a very weak sensitivity to the
zonal resolution Nx (see the symbols that correspond to Ny = 65
and varying Nx, all clustered at a mean zonal wind of about
7.2–7.3 km s−1). This difference comes from the different spa-
tial scales of the equatorial jet in the x and y directions, namely a
sharp meridional velocity gradient, but a large-scale longitudinal
structure. In model LowRes, grid cells have a meridional extent
of dy = 107 m, which means that the jet is only resolved with a
handful of grid points (see the jet meridional size in Fig. 1) and
is severely affected by numerical dissipation. Quite differently,
the zonal variations of the jet have a typical scale similar to the
zonal computational domain itself (simply because thermal forc-
ing is modulated on that scale) and is easily resolved with a few
tens of cells in all of our models.

4.2. Shocks

As discussed in the introduction, it has been a long-standing
problem to determine whether shocks exist in hot-Jupiter
atmospheres. We did not find any signatures of shocks in our
simulations that would be traced by a sudden decrease of the lo-
cal Mach number or a rapid increase of the density. As a more
quantitative diagnostic, we computed a dimensionless measure
of the flow divergence, as done recently by Zhu et al. (2013):

η = max

(

0,−
dx

cs

∇·u

)

, (12)

where dx denotes the cell size in the radial direction. In a shock-
capturing scheme such as RAMSES, the numerical algorithm is
designed to spread shocks over only a handful of cells, so we
would expect η to reach at least a few tens of percent in shocks
and be independent of spatial resolution. Zhu et al. (2013) ar-
gued that η > 0.2 is a good criterion for detecting strong shocks
in their simulation. Since shocks are spread over a few cells
in finite-volume codes such as RAMSES, such a threshold in-
deed corresponds to a velocity jump larger than the sound speed
across a discontinuity (or, using the Rankine-Hugoniot condi-
tions, to an upstream Mach number larger than ∼1.5).

In general, we found that η only amounts to a few percent
at a pressure higher than a few tens of mbar, and decreases
downward. For example, in model 128 × 65, its highest value
reaches 0.045, 0.034 and 0.022 at pressure levels P = 50 mbar,
100 mbar, and 1 bar, respectively. η only takes significant values
at pressure of a few mbar, as illustrated in Fig. 5. At such a low
pressure, three zones feature values of η in excess of 10%. The
first two are symmetric around the equator and located on the jet
wings for positive values of x. We note that they also manifest
themselves by an increased temperature (see Fig. 3). It is likely
that these two compressive regions are an artifact of the equato-
rial β-plane model that prevents a hemispheric Hadley cell from
developing around the planet. The last zone with a large η is lo-
cated at x ∼ −0.8 around the equator and corresponds to the re-
gion where the zonal wind is strongly decelerated when entering
the day side of the planet. η reaches 23% at this location in model
128 × 65. As emphasized by Heng (2012), this is the location
where shocks would most easily form. However, here, it appears
that this zone is only a region of strong compression, but not
a shock. Indeed, we found that η gradually decreases when the
zonal resolution is increased, reaching 12% in model 256 × 65
and only 6% in model 512 × 65. This gradual decrease shows
that the zonal-wind decline when entering the planet day side
is smooth and converged upon increasing the resolution, as op-
posed to a shock that would steepen and be caracterized by a
constant high η value. We note that the two symmetric high η
regions in Fig. 5 show the same trend with resolution, which
means that these two zones are also regions of adiabatic com-
pression. We conclude from this analysis that the mean flow in
the atmosphere of hot Jupiters displays no shocks.

4.3. Time variability

We also computed an estimate of the high-frequency rms fluc-
tuations U′

50
of the zonally averaged equatorial zonal wind

at 50 mbar (see last column in Table 1 and green symbols in
Fig. 4 for the models with Nx = 128). To do so, we first sub-
tracted the low-frequency component of the wind by smoothing
the raw data with a Hamming function with a width of 20 days.
U′

50
is then simply the root mean square of that signal. While it is

very small when Ny = 33, we find that U′
50

increases steadily and
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Fig. 6. Top: evolution of the vertical profile of the zonally averaged
zonal wind at the equator in a time-pressure plane for model HighRes.
The horizontal dashed line marks the 50 mbar level. The solid lines
are contours of the zonally averaged Richardson number (see text). The
contours are for 0.1 (interior contour) and 0.25 (exterior contour). Bot-
tom: time variations of the zonally averaged zonal wind at the equator
at the pressure level P = 50 mbar for model HighRes (see text for a
discussion of the three phases displayed in both panels).

amounts to more than 100 m s−1 for model 128 × 195 and about
twice that value for our highest resolution model HighRes (not
shown in Fig. 4). We now focus on this last model to investigate
the physical origin of this variability.

5. High-resolution model

The nature of the zonally averaged zonal wind variability in
model HighRes is best illustrated by showing the time variation

of the vertical profile of the zonal wind at the equator Ueq (Fig. 6,

top panel). The difference with Fig. 2 is striking: Ueq shows sig-
nificant variations during the entire duration of the simulation.
These variations take the form of quasi-periodic oscillations of
the zonal wind, with a period of about ten days, during the first
half of the simulation (t < 300) and are less regular, but still
significant, at later times. The zonal wind variations are in phase
from the top of the planet atmosphere down to the inert layer be-
low 10 bar, which is most likely a result of the fast communica-
tion timescale across the atmosphere provided by sound waves.

The time history of Ueq at P = 50 mbar is shown in Fig. 6 (bot-
tom panel). We can distinguish three phases of the zonal wind
evolution (indicated with labels in the upper part of both panels):
phase I (t = 100 to t = 170) is a spin-up phase during which the
flow adjusts to the sudden change in meridional resolution. In
agreement with the results of Sect. 4, the zonal wind rapidly in-
creases by about 1 km s−1 over a period of just a few days. We
call the period that extends between t = 170 and t = 270 phase II.
The flow appears to have reach a quasi-steady state during this
period (see also the top panel of the same figure, which suggests
that this is the case at all levels above a few bar), and the zonal
wind displays quasi-periodic oscillations around a well-defined
mean value. At 50 mbar, the zonally averaged zonal wind fluc-
tuations are significant and amount to almost 1 km s−1 between
its highest and lowest values. We investigate the flow properties
during phase II in detail in Sect. 5.1. At time t ∼ 270, this quasi-
periodic evolution of the wind seems to come to an end and the
mean zonal wind decreases. We call this phase III of the flow
evolution. As shown by the solid contours in Fig. 6 (top panel),
the beginning of this phase coincides with a significant decrease
of the Richardson number Ri. The latter is defined by the relation

Ri =
N2

(∂U/∂z)2
, (13)

where N2 stands for the Brunt-Väisälä frequency and is calcu-
lated according to

N2 =
ρg2

P

[(

d ln T

d ln P

)

S

−

(

d ln T

d ln P

)]

, (14)

is which the first term inside the square bracket denotes the isen-
tropic gradient. As discussed by Showman & Guillot (2002) in
the context of hot-Jupiter atmospheres and later investigated in
more details by Li & Goodman (2010), sheared flows in strati-
fied atmospheres are prone to a vertical shear instability when Ri
is smaller than a threshold value that depends on the gas ther-
modynamics but is on the order of 1/4. In our simulation, the
coincidence between the end of phase II and the appearance of
zonally averaged Richardson numbers smaller than 0.1 suggests
that such an instability develops at that time and starts perturbing
the flow. In Sect. 5.2 we investigate phase III in more detail and
give compelling evidence that this is indeed the case.

5.1. Barotropic Kelvin-Helmholtz instability (phase II)

5.1.1. Equatorial jet variability

During phase II of model HighRes, the equatorial jet periodi-
cally alternates between two states, during which it is either al-
most perfectly zonal in the vicinity of the equator or display me-
anders (Fig. 7). The jet velocity increases when the jet is zonal
and slows down when the meander amplitude saturates and de-
creases. To proceed, we next decomposed the horizontal velocity
as the sum of a time-averaged component and a fluctuating part:

u(x, y, t) = u(x, y) + u′(x, y, t), (15)

where the time averaged is performed using 100 dumps evenly
spaced between t = 170 and t = 270. In the following, we use
the notations u (resp. v) and u′ (resp. v′) to denote the x (resp. y)
component of these velocities. Using this decomposition, we de-
fine the specific kinetic energy of the fluctuations as

EK = u′2 + v′2, (16)
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Fig. 7. Color contours showing the horizontal distribution of the zonal
wind at time t = 208 (top panel) and t = 213 (bottom panel) in model
HighRes at P = 10 mbar. The arrows display the horizontal wind vec-
tors. Note the clear meandering of the equatorial jet in the bottom panel
as opposed to the more zonal structure of the equatorial jet in the top
panel.

and the meridional gradient of the total vorticity of the flow (in-
cluding the planetary scale vorticity associated with Ωp),

ξy =
∂ξ

∂y
= β −

∂2u

∂y2
· (17)

Taking advantage of the barotropic nature of the flow (Fig. 6,
top panel), we now focus on its structure at the 50 mbar pressure
level until the end of this section.

Figure 8 (top panel) shows that the time-averaged value of
the rms of EK during phase II reaches values on the order of a
few hundred m s−1 at 50 mbar in the jet core, interior to the re-
gion where ξy vanishes, and drops rapidly outward of this region.
It is a well-known result of hydrodynamics that the existence
of two extrema in the flow vorticity profile (such as shown in
Fig. 8) is a necessary condition to destabilize a two-dimensional
incompressible flow (see, for example, Vallis 2006). Here, the
flow is compressible, stratified, and three dimensional, and such
a simple criterion does not apply, strictly speaking. Neverthe-
less, we can still expect that it remains a good guide for lin-
ear stability because the deviations from both compressibility
and two-dimensionality are small. The rapid drop of EK outside
of the two locations where ξy vanishes also argues in favor of
this interpretation and strongly suggests that the jet is subject
to a Kelvin-Helmholtz instability that originates from the veloc-
ity meridional gradient and drives the oscillations seen during
phase II.
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Fig. 8. Top: color contours show the rms of the eddies specific kinetic
energy (u′2 + v′2) spatial distribution in the horizontal plane at a pres-
sure level P = 50 mbars for model HighRes (during phase II of the
evolution), while arrows display the steady component of the wind for
the same time interval. The thick solid line plots the locus of the points
where the meridional gradient of total vorticity (planet+flow) vanishes.
Bottom: y-profile of the time-averaged zonal velocity (during phase II)
at the vicinity of the equator and at pressure level P = 50 mbars for
model HighRes (blue crosses) compared with a Bickney jet profile (red
line – see text for details). The two vertical arrows mark the location of
vanishing meridional gradient of total vorticity.

5.1.2. Linear instability properties

To investigate this possibility in more detail, we next focus on
a single oscillation of the jet. It is highlighted as the region
shaded in light gray in Fig. 6 (bottom panel). In practice, the
analysis that follows was conducted by restarting model High-
Res at t = 220 for about seven days, saving the simulation data
every 4000 s to sample the fluid evolution at high frequency.
Figure 9 shows that the rms fluctuations of v′ at the equator
(solid blue curve), initially on the order of 20 m s−1, grows dur-
ing about three days until they reach an amplitude of ∼350 m s−1,
after which they decay in roughly one day. The spatial structure
of these fluctuations is further illustrated in Fig. 10 using two
snapshots that illustrate the growing (left panel) and maximum
(right panel) phases of the evolution. During the growing part
(here plotted at t = 223.3), v′ clearly displays a regular and os-
cillating pattern at the equator, with a well-defined spatial pe-
riod of one-fifth of the domain size, suggestive of a linear modal
growth. The background jet structure is only weakly modified
during this phase. We note that the jet velocity reaches its max-
imum at this point (black curve in Fig. 9). By time t = 224.7,
the velocity fluctuations have grown significantly and show clear
signs of saturation, as evidenced by the colliding positive and
negative contours. Before examining this saturation phase in
more detail in the next paragraph, we first quantify the properties
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Fig. 9. Time evolution of the root mean square of the meridional veloc-
ity fluctuations v′ (blue curve – see text for details) and mean jet velocity
(black curve) at the equator. The red circles indicate the different time
at which the jet structure is plotted in Fig. 10.

of the fastest growing mode of the instability by performing a
spectral analysis of the flow properties. This was done by com-
puting the amplitude of the Fourier coefficients of v′(x, y, t) in
the zonal direction. We then spatially averaged these coefficients
in the vicinity of the planet equator and show their variations as
a function of the normalized zonal wavenumber kx and time in
Fig. 11 (left panel)2. From t = 222 to t = 224, the flow evolution
is dominated by the kx = 5 mode. Consistent with the idea of
a linear instability, this mode grows exponentially with a typi-
cal timescale of about one day (Fig. 11, right panel). It reaches
its maximum amplitude at t ∼ 224, shortly after higher kx modes
amplitudes also start to grow, presumably as a result of nonlinear
interactions with the kx = 5 mode. This later growth of higher kx

modes is illustrated in the right panel of Fig. 11 for the particu-
lar cases of the modes kx = 7 and kx = 9. At t = 225, a wide
range of spatial scales, with wave number kx up to 15 (see left
panel of Fig. 11), have reached a significant amplitude. For the
entire duration of this additional simulation, we also find that
larger scale modes (with kx ranging from 1 to 3) have significant
amplitudes. Their evolution, however, is quite different from that
of the modes with kx ≥ 5. They do not display any signature of
an exponential growth, and their amplitude is modulated by no
more than a factor of two during the simulation. It is likely that
these properties reflect the nonlinear feedback of the instability
on the large-scale structure of the equatorial jet.

To summarize, we have determined the wave number of the
most unstable mode of the instability (kx = 5) and its growth rate
(σ = 1 day−1 = 3.5× 10−6 s−1). In principle, these properties (as
well as the mode phase velocity, see below) could be compared
to the result of a numerical linear instability analysis. However,
for a 3D compressible flow, such an analysis is tedious and be-
yond the scope of this paper. Here, we only provide a very crude
estimate of these properties based on 2D incompressible flows.
A useful and well-studied example of such flows is the so-called
Bickney jet, for which the jet profile is given by

U(y) = UB sech2

(

y

LB

)

, (18)

2 The zonal wave number is defined such that kx = 1 corresponds to a
wavelength equal to the size of the domain in the x-direction.

where the parameters UB and LB caraterize the jet. The Bickney
jet is known to be unstable to the Kelvin-Helmoltz instability,
and the most unstable wavelength satisfies the relation kxLB ∼ 1
(Drazin & Reid 1981). The core of the jet in our simulations (i.e.,
within the region where the vorticity is maximum) can be well fit
by the Bickney jet meridional profile (see Fig. 8, bottom panel)
for which LB = 2 × 107 m. Given the size of our computational
box and the above scaling, this is consistent with the instability
having a most unstable wavenumber kx = 5, as seen in the simu-
lations. However, in this case, the predicted growth rate σth is on
the order of ǫkxUB, with ǫ ∼ 0.15. This translates into a growth
rate that is more than an order of magnitude faster than measured
in the simulation. This large disagreement illustrates the limit of
a naive 2D reasoning and suggests that three-dimensional effects,
compressibility, or the finite resolution of our simulations likely
affect the flow. More work is needed to clarify the properties
of the instability, and, more importantly, the conditions under
which it develops.

5.1.3. Nonlinear saturation (due to shocks?)

As mentioned above, the background jet becomes significantly
distorted when the amplitude of the perturbations reaches large
amplitudes (see right panel of Fig. 10). The nonlinear interaction
that results quickly dampens the flow velocity fluctuations, the
jet slows down (black curve in Fig. 9) and returns to a more zonal
structure such as shown in Fig. 7 (top panel). We have found tem-
perature fluctuations of a few hundred Kelvin during this phase
(Fig. 12, bottom panel). They tend to be associated with the re-
gion of the jet that displays the largest meanders (Fig. 12, top
panel). In addition, sharp features in the zonal velocity (such as
seen at the location x ∼ −0.2×108 and y ∼ −0.1×108, for exam-
ple) are ubiquitous in snapshots of the flow during the nonlinear
stage of the instability.

For these reasons, and because of the supersonic nature of the
jet velocity, it is natural to ask whether saturation occurs through
shocks. Detecting shocks in 3D non-steady flows is known to
be extremely difficult to achieve in a systematic manner. Here,
we only give some simple arguments that suggest that shocks
play no role in the instability saturation. First, as in Sect. 4.2,
we computed the distribution of η given by Eq. (12). We again
found that the highest value of η never exceeds a few percent at
50 mbar (and, in fact, at all pressure levels). The sharp gradients
mentioned above in the zonal velocity are compensated for by
regions with significant vertical downward flow. This suggests
that the nonlinear saturation of the instability is not associated
with large compressive events.

A second argument is that in the frame where the shock
would be stationary, the flow is just about sonic. This can be
seen by plotting the equatorial meridional velocity fluctuations
in a spacetime diagram in the (x, t) plane, also known as a Hov-
möller plot (see Fig. 13). It shows that the eastward velocity of
the growing wave pattern amounts to about 6 km s−1 (see solid
black line)3. Because the flow velocity in the frame rotating with
the planet reaches at most 8 km s−1 (see upper panel of Fig. 12),
this means that the zonal wind velocity upstream of a putative
shock would be lower than 2 km s−1 in the frame in which the
flow structures are stationary. This is similar to (and in fact,
slightly lower than) the sound speed, so that the flow Mach num-
ber is at best on the order of unity. If shocks exist, they are only
weak shocks, with an upstream Mach number on the order of 1 at

3 This velocity also corresponds to the phase velocity of the linear in-
stability discussed above.
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Fig. 10. Color contours showing the horizontal spatial distribution of the zonal wind at P = 50 mbars at times indicated with red dots in Fig. 9,
namely t = 223.3 (left panel) and t = 224.7 (right panel). Black contours plots the meridional velocity fluctuations v′. Contours are shown
every 50 m s−1 from −100 to 100 m s−1 on the left hand side panel and every 100 m s−1 from −400 to 400 m s−1 on the right hand side panel. In
both panels, positive (resp. negative) contours are shown with solid (resp. dashed) lines and the zero contour is omitted.
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Fig. 11. Left: amplitude of the meridional velocity fluctuations Fourier transform ṽ′(kx, t) in the (kx-time) plane for model HighRes, spatially
averaged over the region |y| < 5 × 107 m. Contours are for log(ṽ′max/2), log(ṽ′max/4), log(ṽ′max/8) and log(ṽ′max/16). The region surrounding the
maximum is filled in gray. Right: same as the left panel, but showing the time evolution of particular modes: kx = 5 (thick solid line), kx = 7
(dashed line,) and kx = 9 (dot-dashed line). The straight dashed line represents an exponential growth with a timescale of one day.

best. More work is needed to characterize the dynamical mech-
anism responsible for the saturation and to investigate whether
this result holds across the entire parameter space, but the present
simulation seems to rule out the presence of shocks, at least for
the set of parameters we considered.

5.2. Vertical shear instability (phase III)

The nature of the flow changes during phase III of the simu-
lation. A typical snapshot of the equatorial zonal wind in the
(x, P) plane during this phase is plotted in Fig. 14 (left panel,
here shown at t = 319). It demonstrates that the zonal wind at
the equator displays high-frequency variations in the x-direction
that seem to extend over the entire atmosphere.

5.2.1. Identification of the instability

By-eye measurement of the oscillations spatial period (Fig. 14,
right panel, see the black horizontal line) gives a typical value
of about 8000–10 000 km. By comparison, the most unstable
mode of the vertical shear instability has a typical wave number
kx that satisfies the relation kxH ∼ 0.5 (Li & Goodman 2010).
For a temperature of about 1800 K such as we used here, the

associated wavelength amounts to about 11 000 km, remarkably
close to our measurement. As an additional diagnostic, we plot in
Fig. 15 a space-time diagram of the high-frequency component
of the zonal wind (hereafter noted δu). The latter is calculated
by applying a high-pass filter to individual snapshots such as
shown in Fig. 14. To do so, we used a Hamming function with a
half width of 30 zonal cells as a low-pass filter and subtracted
the low-pass-filtered data from the raw data. The comparison
with the Richardson number (solid contours in Fig. 15) shows
a clear positive correlation: at the bottom of the atmosphere
(P ∼ 1–10 bar), δu displays a local maximum at pressure depth
for which Ri drops below one-fourth. In addition, this maximum
is higher when Ri is smaller (see the difference between phases II
and III of the simulation, or the increase of δu at t ∼ 150 that
is coincident with a period of lower Ri values). Taken together,
these results are consistent with the analysis of Li & Goodman
(2010) and strongly suggest that the vertical shear instability op-
erates at pressure levels where the Richardson number reaches
zonally averaged values lower than one-fourth.

5.2.2. Formation of shocks in the upper atmosphere

Figure 15 also shows that δu increases strongly in the atmo-
sphere upper layers, reaching values of up to a few hundred m s−1
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Fig. 12. Zonal velocity (top panel) and temperature (bottom panel) at
time t = 224.7 in model HighRes (i.e., when velocity fluctuations reach
their highest value) at pressure level P = 50 mbar. Jet meanderings
upstream of the substellar point, located at (x, y) = (0, 0), are clearly
associated with temperature fluctuations.

at pressure levels of a few mbar. It is also clear that these ve-
locity fluctuations are connected to the atmospheric activity at
10 bar. Future work is needed to investigate their exact origin,
but it is plausible, as recently suggested by Cho et al. (2015) in
another context, that they are gravity waves triggered by the ver-
tical shear instability that propagate upward and amplify as the
density decreases.

Because these fluctuations reach large amplitudes in the up-
per atmosphere, we closely investigated whether they eventu-
ally steepen into shocks. In agreement with the findings of the
preceding sections, the flow remains devoid of such shocks at
pressures higher than ∼10 mbar, with η being on the order of
a few percent at most. However, we found signatures of weak
shocks in the top layers of the atmosphere. As an example, we
show in Fig. 16 that the zonal wind at P = 1.66 mbar displays
strong and high-frequency variations near the equator, accross
which the zonal velocity appears to decrease by a few km s−1.
These fluctuations are associated with values of η up to 35%
and also display significant increase of the temperature by a few
hundred Kelvin (see Fig. 17, left panel). Given the short radia-
tive timescale at this pressure (∼104 s), significant temperature
fluctuations like this are indications of fast dynamics. We thus
focused on one of these structure (indicated as a dashed line in
the left panels of Fig. 17) and plotted the profiles of the zonal
wind and of the temperature along this line (Fig. 17, right panel).
There is a clear discontinuity in both profiles at x ∼ 1.72×108 m
that we identify as a shock. At this location, the zonal velocity
rapidly decreases from 7 km s−1 to 4 km s−1 within a handful of
cells. Simultaneously, the temperature increases from ∼800 K
to about 1050 K. We measured the shock front velocity Vsh by
restarting the simulation for a short time, saving output data
at a high frequency. We found for Vsh a value on the order of

Fig. 13. Hovmöller space-time diagram of the meridional velocity fluc-
tuations v′ at the equator in model HighRes at pressure level P =
50 mbar. The thin black lines have a slope of 6 km s−1 .

3.9 km s−1 (not shown), which, along with a typical sound speed
of 2 km s−1 at this location, indicates that the shock upstream
Mach number is roughly M1 ∼ 1.5. The associated temperature
discontinuity shown in Fig. 17 (right panel) can then be com-
pared with the prediction of the Rankine-Hugoniot condition:

T2

T1

=
[(γ − 1)M2

1
+ 2][2γM2

1
− (γ − 1)]

(γ + 1)2M2
1

, (19)

where T1 and T2 are the upstream and downstream gas temper-
atures, respectively. For the case considered here (M1 = 1.5 and
γ = 1.4), Eq. (19) gives T2/T1 = 1.32, in very good agreement
with the simulation (whose ratio is about 1.35). This confirms
that the numerous structures identified in Fig. 17 (left panel)
with the contours of η are indeed shocks. We did not attempt to
quantify the frequency, Mach number distribution, and preferred
locations of these shocks. In addition to being a difficult task on
its own to be carried in a systematic manner, there are also lim-
itations and artifacts of the present setup (see below) that have
led us to postpone a detailed characterization of these shocks to
future work.

5.2.3. Dissipation in the deep atmosphere and implications
for the interior

Figure 15 also shows a significant increase of the temperature at
P ∼ 10 bar (see the white dashed contours) up to a temperature
of about 2400 K (which should be compared to Teq = 1800 K
at that level). Again, there is a strong correlation between this
rise and the flow activity, which suggests that the former is a
consequence of the latter. This is expected and only a result of
small-scale kinetic energy being dissipated and transformed into
heat. In RAMSES, such a thermalization is naturally captured
because we solve the total energy equation and do not need to use
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Fig. 14. Zonal velocity at the equator in a (x, P) plane at time t = 319 in model HighRes (left panel). Note the high-frequency variations of the
velocity (particularly easy to see in the atmosphere upper layers), superposed on the large-scale zonal and vertical variations of the equatorial jet
velocity. The right panel shows an enlargement of the dashed box shown in the left panel. The horizontal bar has a length of 10 000 km.
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Fig. 15. Space-time (time-pressure) diagram of the zonally averaged high-frequency component of the zonal wind (see text for details) in color
contours (note that the color table is saturated at 50 m s−1). Contours of Ri (solid lines) and T (dashed lines) are overplotted. For Ri, contours are
for Ri = 0.1 and 0.25. For the temperature, contours are for T = 1900, 2000, 2100, and 2200 K.

an explicit dissipation coefficient (in this sense, the dissipation is
solely numerical in origin). At 10 bar and below, the radiative
timescale τrad goes to infinity and heated gas cannot cool radia-
tively anymore: in other words, heat deposited in the inert layer
as a result of kinetic energy dissipation accumulates and temper-
ature rises. As shown in Fig. 15, this increase in temperature at
10 bar also increases the vertical temperature gradient (in abso-
lute values) and helps decrease the Richardson number through
its dependence on the Brunt-Väisälä frequency. This effect can

be quantified by measuring the kinetic energy flux in the vertical
direction. To do so, we computed the kinetic energy flux per unit
area according to the relation

FKE(P) =
1

LxLy

"
1

2
ρv2vzdxdy, (20)

where the integral is calculated at the pressure level P. In both
models LowRes and HighRes, Fig. 18 shows that we recover a
negative vertical flux of kinetic energy, in quantitative agreement
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with Showman & Guillot (2002) and with a similar value of
about −2000 to −3000 W/m2. We note that this agreement is
somewhat fortuitous and should not be taken too seriously: in
the equatorial β-plane model such as used here, motions gradu-
ally go to zero away from the equator, so that FKE depends on
the arbitrary location of the boundaries in the y-direction. How-
ever, this qualitative agreement with Showman & Guillot (2002)
supports the fact that the existence of this flux is reliable.

Figure 18 also shows that a higher negative flux is present
in the deep atmosphere (P ∼ 5–10 bar) in model HighRes than
in model LowRes, precisely at the location where we see the
temperature increase during phase III. This additional flux is
likely associated with the vertical shear instability and illustrates
the idea of Showman & Guillot (2002) that downward kinetic
energy transport can be associated with extra heating in the deep
layers of the atmosphere. In addition to the increased kinetic en-
ergy flux suggested by Fig. 18, turbulence in a stably stratified
atmosphere also transports heat downward (Youdin & Mitchell
2010) and is likely at play here as well.

As first recognized by Guillot & Showman (2002), such
downward energy fluxes are similar to, and even greater than,
the internal cooling flux of a typical inflated hot Jupiter. This
mechanism, that is, conversion of stellar energy into kinetic en-
ergy that is transported and dissipated deep in the atmosphere, is
thus still a viable explanation of the problem of the large radius
of highly irradiated giant planets. The main difficulty, which is
faced by most proposed mechanisms, is that this energy must be
deposited deep enough inside the planet to significantly affect
its thermal evolution (Ginzburg & Sari 2015), possibly in the
deep adiabat (Guillot & Showman 2002). Depending on the pre-
cise planet and its age, Guillot & Showman (2002) predicted this
level to be in the 100–1000 bar range. Although Fig. 18 seems to
imply that not much energy is deposited below the 10–20 bar
level, it should be clear that in our model this barrier is most
probably an artifact of the numerical setup. As discussed above,
the presence of an inert layer below 10 bar, where τrad becomes
infinite, provides a strong positive feedback on the wave activity
and the heating at this level. If we had a more realistic, gentler
increase of the radiative timescale, the level of maximum energy
deposition would probably be pushed deeper. We remark that
Fig. 15 displays clear evidence of significant small-scale activ-
ity at pressure levels of a few bar, that is, largely above the inert
layers, early in the simulation (t < 300 days). This is sugges-
tive evidence that an infinite radiative timescale is not needed to
trigger the vertical shear instability. But we cannot yet assess the
maximum depth at which energy deposition will occur.

Therefore, while our model illustrates the possibility that
vertical shear instability can develop in hot-Jupiter atmospheres,
their long-term effect on the flow remains to be determined with
a more realistic treatment of the radiative properties of the deep
atmosphere. Only then will we be able to properly quantify
whether the mechanism first proposed by Guillot & Showman
(2002) can realistically account for the inflated radius of strongly
irradiated giant planets.

Before ending this section, and with the above caveats in
mind, we stress that the effect of the vertical shear instability on
the equatorial jet velocity is significant. While its time-averaged
value over phase II of the flow evolution is about 7700 m s−1 at
50 mbar, the equatorial wind decrases to 6700 m s−1 when av-
eraged between t = 400 and t = 450. We have checked that
the spatial distribution of the temperature above 1 bar is almost
identical during the two phases (not shown) and cannot be re-
sponsible for the jet velocity decrease. It is instead likely that
the small-scale velocity fluctuations associated with the vertical
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Fig. 16. Zonal velocity in model HighRes at t = 335 at the pressure
level P = 1.66 mbar. Arrows indicate velocity vectors and the square
marks the region studied in Fig. 17.

shear instability act as a form of drag that slows down the jet,
possibly mediated by gravity waves (see Watkins & Cho 2010)
and, as shown above, by shocks, both excited by the vertical
shear instability. Given the limitations of the numerical setup
used here, a detailed and quantitative investigation of this pos-
sibility is beyond the scope of this paper, but opens up the possi-
bility of developing a physically motivated subgrid scale model
for the dissipation in the atmosphere of hot Jupiters that could be
incorporated into traditional GCMs.

6. Discussion and conclusion

6.1. Main results

Using a series of high-resolution idealized simulations of hot-
Jupiter atmospheres that solve the Euler equations with a finite-
volume shock-capturing scheme, we have found the following
results:

• Numerical simulations performed in the framework of the
equatorial β-plane model agree well with results published
in the literature using a wide range of models and elaborate
treatments of the radiative effects.
• A supersonic, equatorial, eastward jet forms quickly in the

upper layers of the atmosphere. At P ∼ 50 mbar, its zonally
averaged velocity reaches about ∼7 km s−1 and is found to
be sensitive to the meridional resolution (or, equivalently, to
the dissipation).
• At high enough spatial resolution (or low enough dissipa-

tion), the jet displays strong velocity fluctuations that can
be attributed to meander formations upward of ∼1 bar and
smaller scale fluctuations with an amplitude of a few tens
of m s−1 at pressure levels P ∼ 1–10 bar.
• The meander formations are clearly associated with a

barotropic Kelvin-Helmholtz instability that results in quasi-
periodic modulations of the jet velocity with a typical pe-
riod of about ten days. The properties of the flow are broadly
consistent with the expectations of linear stability analysis.
Temperature fluctuations of a few hundred Kelvin are found
at the photosphere of the planet at the peak of the insta-
bility, most likely a result of adiabatic compression asso-
ciated with the equatorial jet meanderings. Future work is
needed to determine whether these variations are compat-
ible with the observed upper limit of 2.7% of the dayside
variability of HD 189733b (Agol et al. 2010; Knutson et al.
2012) and whether they could be observable with the JWST
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Fig. 17. Left: color contours of the zonal wind (top panel) and temperature (bottom panel) at time t = 335 in the rectangle box depicted in Fig. 16.
The contours show the distribution of η, as given by Eq. (12). Levels are for η = 0.1 and 0.2. Right: profiles of the zonal velocity (black curve) and
temperature (red curve) along the dashed line shown in the left panels. For both curves, the empty squares mark the locations of the cell centers.

using brightness mapping such as discussed by de Wit et al.
(2012).
• The smaller scale fluctuations are likely associated with

a vertical shear instability. They correlate nicely with the
locations where the Richardson number is smaller than
one-fourth. They create zonal variations of the jet veloc-
ity with a spatial scale of ∼104 km that is consistent
with the most unstable mode predicted by a linear analysis
(Li & Goodman 2010).
• The dissipation of the kinetic energy associated with the

vertical shear instability results in a substantial increase of
the temperature at P ∼ 10 bar. This thus confirms that the
atmosphere converts stellar energy into kinetic energy that
is transported downward to be deposited at deeper levels
(Showman & Guillot 2002). A better treatment of the lower
boundary is needed to know whether the deposition level can
be deep enough to affect the interior and help explain the ra-
dius anomaly (Guillot & Showman 2002).
• We find weak shocks in the upper layers of the atmosphere

(P < 10 mbar). They have typical upstream Mach numbers
of between 1 and 2 and create temperature fluctuations of a
few hundred Kelvin. At higher pressure (P > 10 mbar), we
find no shocks despite the supersonic nature of the equatorial
jet.

6.2. Limitations and future work

These results should not hide the limitations of the work pre-
sented here that are as many avenues for progress. As noted in
Sect. 2, the model depends on a number of free parameters. The
motivation of the present paper was to choose a unique set of
these parameters so that the flow properties match those of the
benchmark calculation described by Heng et al. (2011b). Even if
the dynamical mechanisms responsible for the instabilities high-
lighted here are fairly general, future work is needed to system-
atically investigate the sensitivity of the results presented here
to each of these parameters and to make quantitative predictions
that would be valuable for more realistic atmospheres. For ex-
ample, we note that the zonal wind velocity we obtained tends to
be higher than commonly found by other authors. Is this because
we work in the framework of the equatorial β-plane model? Or
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Fig. 18. Vertical profile of the kinetic energy flux during phase III of
model HighRes (green curve) and in model LowRes (blue curve), cal-
culated according to Eq. (20). The dashed line marks the location of the
top of the inert layer at 10 bar. Both curves are time averaged between
t = 350 and t = 450.

is it related to the form of the thermal forcing we use, and in
particular to the value of Lth? Another question is that of con-
vergence with spatial resolution: it is possible (and even likely!)
that numerical dissipation still affects the instabilities described
in Sects. 5.1 and 5.2. This may affect their saturation properties
and their quantitave effect of the mean flow, and particularly the
velocity of the jet. The present work shows that a proper con-
vergence study (systematically varying both the meridional and
the vertical resolution), even though it is very computationally
demanding, is clearly needed.

Perhaps the most stringent limitation of the present work
comes from the presence of an inert layer below 10 bar where
the radiative timescale τrad goes to infinity. The strong increase
in temperature we see at this location is probably overestimated
because of the inability of the gas to cool radiatively. This prob-
lem may be somewhat mitigated upon noting that τrad is ex-
pected to increase rapidly in the deep layers of hot-Jupiter atmo-
spheres (P ≤ 10–100 bar). For example, Showman et al. (2008)
use τrad = 108 s at 20 bar. This is more than 300 planet days
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and much faster than the timescale of a few days that is associ-
ated with the vertical shear instability (see Fig. 15), so that the
effect of choosing an infinite value for τrad may not be as severe
as naively expected. Nevertheless, it is clear that a strong in-
crease in temperature such as found here acts as a positive feed-
back onto the vertical shear instability by reducing the Richard-
son number Ri. Whether it affects the findings presented in this
paper, and if it does, by how much, remains to be clarified.
One possibility to do so is to replace the Newtonian relaxation
scheme with a simplified radiative transfer scheme (Heng et al.
2011a; Rauscher & Menou 2012). This may alleviate the prob-
lem in the deep atmosphere.

The need to strengthen these results is made even more im-
portant because standard GCM codes that use the primitive for-
mulation of the hydrodynamic equations are unable to account
for such vertical shear instabilities. By assuming hydrostatic
equilibrium in the vertical direction, they assume de facto that
such an instability does not exist. Instead, they rely on subgrid
scale modeling to include their effect on the flow. Future work is
therefore needed to validate these subgrid models and/or develop
more appropriate approaches if necessary. This is an important
step to validate the long-term use of such codes as the primary
tool to model hot-Jupiter atmospheric flows.
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Appendix A: Equilibrium temperature and cooling

timescale

We give here for reference the pressure profiles of T 0
P

and τrad

that we used here. They are a simplified version of the profiles
presented by Heng et al. (2011b). The thermal timescale τrad is
calculated with the following relation:

τrad =



















τ0 (P0/P)α0 if P < P0

τ1 (P1/P)α1 if P0 < P < P1

+∞ if P > P1,
(A.1)

where P0 = 1 bar, P1 = 10 bar, τ0 = 105 and τ1 = 107.5 s. The
dimensionless exponent α0 and α1 amounts to −0.41 and −2.5,
respectively. Likewise, T 0

P
is given as a combination of linear

functions of the logarithm of the pressure:

Tiro =



















T−2 − γ−2 log (P−2/P) if P < P−2

T1 − γ1 log (P1/P) if P−2 < P < P1

T2 − γ2 (P2/P) if P > P1,
(A.2)

where P−2 = 10−2 bar and T−2, T1 and T2 are set to 1100, 1800,
and 3000 K, respectively. The slopes of the linear relations are
given by γ−2 = 100 K, γ1 = 233 K, and γ2 = 983 K. The relation
between τrad and P and between T 0

P
and P are shown in Fig. A.1,

where we also display the variation of Tday and Tnight such as
defined in Sect. 2.2. All curves are meant to be compared with,
for example, Fig. 7 of Heng et al. (2011b), with which they agree
well.

Appendix B: Numerical tests

B.1. Baroclinic instability in an adiabatic atmosphere

As argued by Polichtchouk et al. (2014), the growth of a baro-
clinic wave is a severe test for codes that pretend to accurately
describe atmospheric flows because it grows slowly from in-
finitesimal perturbations. This is even more so for finite-volume
codes such as RAMSES that have problems handling hydro-
static equilibria, and we found that problem to be very help-
ful in assessing the reliability of our setup. In this appendix,
we thus qualitatively reproduce one of the models presented
by Polichtchouk & Cho (2012), namely their equatorial jet case,
since the base flow is close to the jet configuration we studied
here. As noted by Polichtchouk et al. (2014), the detailed evolu-
tion of the atmosphere is very sensitive to the exact structure of
the jet and the initial perturbation, so that our goal here is not
to reproduce the results of Polichtchouk & Cho (2012) quantita-
tively, but instead to show that we obtain the same qualitative
evolution of the flow. Indeed, since we neither use the same
equations (Euler vs. primitive) nor the same geometry (Carte-
sian vs. spherical), a one-to-one quantitative comparison is not
possible.

The structure of the atmosphere at t = 0 is computed assum-
ing thermal wind balance after specifying the jet zonal veloc-
ity. The latter is computed using the following relation, adapted
to the equatorial β-plane geometry from Polichtchouk & Cho
(2012):

u(x, y) =























U0G(z)

√

sin

[

π sin2
(

π
2

4y+Ly

2Ly

)]

, |y| < Ly/4

0, otherwise

where G is defined as

G(z) =
1

2
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1 − tanh3
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z − zJ
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Fig. A.1. Pressure variations of the equilibrium temperature Teq (top
panel) and the Newtonian relaxation time τrad (bottom panel) used to
calculate the cooling function L in the deep hot-Jupiter model.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Y (or latitudes) 1e8

0

200

400

600

800

1000

P
(i

n
 m

b
a
rs

)

-3.8e+02
-3.1e+02
-2.5e+02
-1.8e+02
-1.2e+02
-5.6e+01
7.5e+00
7.1e+01
1.4e+02
2.0e+02
2.6e+02
3.3e+02
3.9e+02
4.5e+02
5.2e+02
5.8e+02
6.5e+02
7.1e+02
7.7e+02
8.4e+02
9.0e+02

Fig. B.1. Initial (i.e., at t = 0) zonally averaged zonal wind used for
the baroclinic instability simulations (colors and white contours). The
black contour show the zonally averaged zonal wind at the end of the
simulation for the model with resolution (Nx,Ny,Nz) = (256, 128, 32).
Contours are drawn every 100 m s−1 from 100 to 900 m s−1.

The previous relations depend on a number of free parameters. In
this appendix, we use zJ = 0.8Lz, ∆zJ = 0.2Lz, U0 = 1000 m s−1,
and Lz = 2 × 106 m s−1. The initial structure of the jet is shown
in Fig. B.1 and resembles that shown in their Fig. 4 (right panel)
by Polichtchouk & Cho (2012). Next, a localized temperature
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Fig. B.2. Time evolution of the volume-integrated eddy kinetic energy
(per unit area) in the baroclinic instability test. The solid and dotted
lines both share the resolution (Nx,Ny,Nz) = (256, 128, 32) and cor-
respond to the model with and without an initial temperature pertur-
bation, respectively. The dashed and dot-dashed lines shows the re-
sults of the models with resolution (Nx,Ny,Nz) = (128, 64, 32) and
(Nx,Ny,Nz) = (512, 256, 32), respectively.
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Fig. B.3. Relative vorticity (top panel) and temperature (bottom panel)
distribution in the horizontal plane at 930 mbar at time t = 32 showing
the development of a baroclinic wave that grows on top of a zonal equa-
torial jet. The parameters are chosen after Polichtchouk & Cho (2012)
and the resolution is (Nx,Ny,Nz) = (256, 128, 32).

perturbation of amplitude δT0 is added at all pressure levels in
the atmosphere. It takes the form

δT (x, y) = δT0 sech2

(

6πx

Lx

)

sech2

(

π

3

4y − Ly

2Ly

)

, (B.1)

so that it is localized initially at x = 0 and y = Ly/4, that is, on
the jet northern flank.

We first present and compare the results of two simulations
with resolution (Nx,Ny,Nz) = (256, 128, 32) for which we set
δT0 = 0 (control run) and 1 K (perturbed run). We computed the
volume integral of the specific eddy kinetic energy (EKE) as a

121

−2.4 −1.6 −0.8 0.0 0.8 1.6 2.4
X (in meters) 1e8

−1.0

−0.5

0.0

0.5

1.0

Y
 (

in
 m

e
te

rs
)

1e8

-1.5e-05
-1.3e-05
-1.2e-05
-1.1e-05
-9.0e-06
-7.5e-06
-6.0e-06
-4.5e-06
-3.0e-06
-1.5e-06
0.0e+00
1.5e-06
3.0e-06
4.5e-06
6.0e-06
7.5e-06
9.0e-06
1.0e-05
1.2e-05
1.4e-05
1.5e-05

173

−2.4 −1.6 −0.8 0.0 0.8 1.6 2.4
X (in meters) 1e8

−1.0

−0.5

0.0

0.5

1.0

Y
 (

in
 m

e
te

rs
)

1e8

-1.5e-05
-1.3e-05
-1.2e-05
-1.1e-05
-9.0e-06
-7.5e-06
-6.0e-06
-4.5e-06
-3.0e-06
-1.5e-06
0.0e+00
1.5e-06
3.0e-06
4.5e-06
6.0e-06
7.5e-06
9.0e-06
1.0e-05
1.2e-05
1.4e-05
1.5e-05

Fig. B.4. Relative vorticity at 930 mbar at time t = 32 for the baroclinic
instability growth with resolution (Nx,Ny) = (128, 64) (top panel) and
(Nx,Ny) = (512, 128) (bottom panel).

diagnostic of the baroclinic instability growth:

EKE =

∫

V

ρ
[

u′2 + v′2
]

dV. (B.2)

As described by Polichtchouk & Cho (2012), the specific EKE
grows after a few days in the perturbed case (see Fig. B.2) as
a result of a baroclinic wave, but stays very small in the control
run during the entire simulation. The specific EKE remains at the
level of 10−10 J/m−2 (i.e., 17 orders of magnitude smaller than the
perturbed model after the growth of the baroclinic wave!), indi-
cating that our numerical scheme accurately conserves the sym-
metry of the flow and the initial atmospheric hydrostatic equi-
librium (the highest meridional velocity at the end of that run at
975 mbar is only on the order of 8 cm s−1!). In the perturbed run,
the specific EKE peaks between t = 30 and t = 35. The flow
at 975 mbar shows five well-defined cyclones that roll on both
sides of the jet (see Fig. B.3), clearly correlated with temperature
fluctuations. This again agrees qualitatively very well with the
results of Polichtchouk & Cho (2012). We note that the number
of cyclones and the amplitude of the vorticity perturbations they
display also agrees quantitatively well with these results. Finally,
after a few tens of days, the specific EKE saturates and decays.
At the end of the model evolution, the equatorial jet structure is
modified and displays a vertical structure that is more barotropic
(see Fig. B.1, black contours), in agreement with the finding of
Polichtchouk & Cho (2012).

We also performed a resolution study, keeping the number
of vertical levels fixed to Nz = 32, and gradually varying the
horizontal resolution from (Nx,Ny) = (128, 64) to (Nx,Ny) =
(512, 256), although the highest resolution simulation is only in-
tegrated to t = 45. The vorticity distribution at 975 mbar (see
Fig. B.4) shows that the minimum resolution required to cap-
ture the instability is (Nx,Ny) = (256, 128) and that the structure
of the flow is qualitatively captured at this resolution, although
quantitatively, Fig. B.2 shows that the growth rate has not yet
converged. This resolution study gives a useful comparison with
the analysis of Polichtchouk & Cho (2012), who used a spectral
numerical scheme, and somewhat mitigates their claim that fi-
nite difference shemes require resolution higher by an order of
magnitude to capture the growth of the baroclinic wave. Here, it
appears that a difference of about a factor of two is sufficient.
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Table B.1. Parameters used for the shallow hot-Jupiter model.

Parameters Symbol Value

Box vertical size (m) Lz 3 × 106

Pressure at bottom boundary (Pa) P0 105

Day-night temperature difference (K) ∆T 300

Cooling timescale (sec) τrad 1.5 × 105

Cut-off length of cooling function (m) Lth 3.5 × 107

Temperature at bottom boundary (K) Tsurf 1600

Tropospheric lapse rate (K m−1) Γtrop 2 × 10−4

Tropopause temperature increment (K) δTstra 10

Tropopause pressure (Pa) σstra 1.25 × 104

Overall, the results presented here agree qualitatively
well with the results of Polichtchouk & Cho (2012) and
Polichtchouk et al. (2014) and give credit to our implementation.

B.2. A shallow hot-Jupiter model

We next reproduce the benchmark simulation of a shallow
hot Jupiter, such as presented by Menou & Rauscher (2009),
Heng et al. (2011b), Bending et al. (2013), and Mayne et al.
(2014a). As for the case of the baroclinic instability presented
above, we adapted the setup described by these authors to the
equatorial β-plane. It differs from the deep hot-Jupiter model by
the depth of the atmosphere, which extends downward only to
1 bar, and by the parameters entering in the cooling function L.
More specifically, τrad is a constant equal to half a planet day,
and Teq is given by the function

Teq = Tperp + βtrop∆T cos

(

2πx

Lx

)

exp













−
y2

2L2
th













, (B.3)

where Tperp and βtrop depend on z according to

Tperp = Tsurf − Γtrop

(

zstra +
z − zstra

2

)

+

√

δT 2
stra +

(

Γtrop

2
[z − zstra]

)2

(B.4)

and

βtrop =















sin
(

π
2

σ−σstra

1−σstra

)

, if z < zstra

0, otherwise.
(B.5)

The different parameters of the problem are taken to be identi-
cal to the original papers mentioned above and are recalled for
completeness in Table B.1. In our case, we also need to specify
the location of the upper boundary of the domain, which we take
to be Lz = 3 × 106 m, while we retain for Lx and Ly the same
values as for the deep model described in Sect. 2.4. Lth and β
also take values identical to those of the main body of the paper.
We started our simulation with an atmosphere initially at rest
and in hydrostatic equilibrium with T = Tperp. We integrated the
hydrodynamics equations for 300 planet days, of which the last
200 days were used to produce time-averaged fields. The grid
resolution was chosen to be (Nx,Ny,Nz) = (64, 32, 24).

As for the deep hot-Jupiter model described in Sect. 3, we
find that a fast equatorial wind develops with typical amplitude
of 1000 m s−1. Here, however, the flow displays significant fluc-
tuations with typical wind velocity fluctuations of a few tens
of m s−1 (not shown). These fluctuations have also been reported
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Fig. B.5. Zonally averaged zonal wind (top panel) and temperature (bot-
tom panel) in the shallow hot-Jupiter model. The raw simulation data
are averaged over 200 planet days starting at t = 100. See text and
Table B.1 for the model parameters.
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Fig. B.6. Temperature (color contours) and wind velocities at the
750 mbar pressure level in the shallow hot-Jupiter model, averaged in
time over 200 planet days starting at t = 100.

by previous authors and probably result from the interaction be-
tween the atmosphere and the bottom domain boundary. The
time-averaged spatial distributions of the zonally averaged zonal
wind and temperature both agree well with the papers mentioned
above (see Fig. B.5). Likewise, the temperature distribution at
750 mbar displays the familiar chevron-like shape that has been
identified to be the consequence of planetary scale waves by
Showman & Polvani (2010, 2011).

The good agreement of our results with previously pub-
lished simulations of shallow hot-Jupiter atmospheres demon-
strates that the equatorial β plane model is appropriate for study-
ing slowly rotating tidally locked gas giant planets.
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