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Abstract

Using Brownian dynamics simulations, we investigate the response to shear of a two-dimensional system of quasi-hard disks

that are confined in the velocity gradient direction by a smooth external potential. Shearing the confined system leads to a

homogenization of the one-body density profile. In order to rationalize this deconfinement effect, we split the internal one-

body force field into adiabatic and superadiabatic contributions. We demonstrate that the superadiabatic force field consists

of viscous and of structural contributions. We give an empirical scaling law that yields results for the superadiabatic force

profiles both in the flow and in the gradient direction, in excellent agreement with the simulation data.

Keywords Colloids · Rheology · Power functional theory

Introduction

Applying shear to a complex substance constitutes a means

to drive the system out of equilibrium in a well-controlled

way, and results in arguably one of the most fundamental

nonequilibrium setups [1, 2]. In its simplest form, shearing

is characterized by the shear rate γ̇ as the only relevant (and

scalar) nonequilibrium parameter. The physics at play, even

only in steady state, is however fundamentally different

from the equilibrium properties of the same material. Hence,

shearing is an excellent model situation for systematically

studying soft matter out of equilibrium.

For the important material class of colloidal dispersions,

Matthias Ballauff and collaborators have performed sterling

work, developing and exploiting ingeniously tailored parti-

cles that respond to temperature variation. Despite the quite

complex internal core-shell structure of these thermosensi-

tive colloids [3–20], the particles interact via an essentially

short-ranged steeply repulsive pair potential. Changing the

temperature facilitates systematically changing the effec-

tive particle size and hence the typical length scale of the

interparticle interactions. The underlying mechanism is the

thermoresponse of the polymeric particle shell. Controlling

the particle size allows to control accordingly the effective
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colloidal packing fraction in the system. As the response to

shear depends very sensitively on the packing fraction, ther-

mosensitive colloids give direct access to this crucial ther-

modynamic parameter. The shear rate γ̇ , often expressed as

a dimensionless Peclet number Pe [1], is an external param-

eter that controls the degree of nonequilibrium driving that

the system is exposed to.

Mode-coupling theory (MCT), as spearheaded by Fuchs

and coworkers [5, 6, 8–12, 15–17, 20], has provided a

platform for rationalizing and in many cases quantitatively

describing the results from experiments, as obtained

rheometrically. Much insightful work is based on the

“schematic model” [5, 6, 11, 15, 17] of MCT. The

impressive degree of consistency, in qualitative and in

quantitative terms, for important quantities is achieved

with a very moderate level of empirical input. This is

remarkable, as the considered quantities vary typically over

many orders of magnitude. MCT operates on the level of

two-body correlation functions. In particular, via Green-

Kubo relations, the equilibrium stress-stress autocorrelator

is set in relation to the nonequilibrium response under shear.

The full theory is hence a complex one, which justifies the

need for having the schematic model, which is regarded

as describing the essential features of the dynamics of

a generic time correlation function, in particular history-

dependence via a memory integral over previous times.

The sole equilibrium input in MCT is the static structure

factor S(q) of the fluid. The entirety of the time-dependent

nonequilibrium phenomena that occur under driving arises

from the dynamical structure of the MCT equations of

motion.
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On principal grounds, one could expect that additional

equilibrium information, besides S(q), could be required

or be at least useful. Brader, Krüger, and their coworkers

[21–25] have hence gone beyond the static limitation

by incorporating ideas from classical density functional

theory (DFT) for inhomogeneous fluids [26, 27]. DFT is

a framework that is genuinely adapted for and capable of

describing situations where the locally resolved microscopic

density distribution ρ(r) is inhomogeneous in space:

ρ(r) �= const, where r indicates position. Two important

(and useful) relationships for equilibrium systems are the

following: (i) The internal contribution to the one-body

force profile, fad(r), is solely dependent on the density

profile, but it is independent of the external forces that act

in the system (say due to the presence of walls). Hence,

fad(r) = fad(r, [ρ]), where the brackets indicate a functional

relationship of mapping the entire function ρ(r′) at all space

points r′ to the force at the given position r. The internal

force field fad(r) arises from all interparticle forces that the

remaining particles exert on a particle located at position

r in an equilibrium situation. (ii) Two-body correlation

functions are contained in the approach and are accessible,

alternatively, by the Ornstein-Zernike or the test particle

routes (see Ref. [28] for a recent account of the virtues of the

test particle approach when combined with an approximate

free-energy functional).

Krüger and Brader’s work [21–25] for systems under

shear is based on the so-called dynamical DFT [26, 29, 30]

for nonequilibrium dynamics. Nevertheless, the approach

described in Refs. [21–25] still genuinely works on the

two-body level, which a priori puts high strain both on the

physical intuition that is required to devise approximation

schemes, as well as on computational demand. Although

dynamical DFT operates on the one-body level, for a

sheared system with flow direction being orthogonal to the

density gradient, the bare DFT [26, 29, 30] gives a null

result, in contrast to Krüger and Brader’s more sophisticated

theory [21–25]. Dynamical DFT, in its bare version [26,

29, 30], is hence defunct for the description of arguably the

most basic nonequilibrium situation of a colloidal system,

or more generally, of an inhomogeneous classical liquid.

The reason for the failure is of fundamental nature: the

true nonequilibrium dynamics is described as consisting

of a sequence of “adiabatic states” that are taken to be at

equilibrium. Clearly, this assumption is not true in general,

and for the case of shear, it is in quite striking contradiction

to reality.

However, there is hope for formulating a complete

description on the one-body level, as the superadiabatic

contributions that occur above the adiabatic effects (cor-

rectly accounted for in the dynamical DFT) are both well-

defined and well-characterizable objects [31, 32] from an

extended, kinematic functional point of view. Here, the

microscopically resolved velocity profile v(r, t) is a vari-

able on par with the time-dependent density profile ρ(r, t),

where t indicates time. The full nonequilibrium dynam-

ics is hence driven both by adiabatic effects, which are

functionally dependent only on the instantaneous density

distribution, and superadiabatic effects, which possess kine-

matic dependence on both ρ(r, t ′) and v(r, t ′) for times t ′ ≤
t , where t is the time of interest. Hence, the superadiabatic

contribution is nonlocal both in space and in time, while the

adiabatic contribution is Markovian (instantaneous) in time,

but nonlocal in space.

For the (important) case of the internal one-body force

field fint(r, t), which is generated from the underlying inter-

particle interaction potential, the adiabatic-superadiabatic

splitting is

fint(r, t) = fad(r, t, [ρ]) + fsup(r, t, [ρ, v]). (1)

This formal result [31] has implications that are important,

practical, and testable. In particular, the independence of

fsup(r, t) from the external forces allows to disentangle

intrinsic from external effects and hence it offers the

potential for deep insights into the coupled nature of the

nonequilibrium many-body physics [31].

Power functional theory (PFT) not only provides the

existence of the functional map (ρ, v) → fsup. It also

establishes on a microscopic footing a rigorous minimiza-

tion principle for the velocity profile, or equivalently for

the microscopic one-body current J(r, t) = v(r, t)ρ(r, t),

implying vanishing functional derivative at the minimum,

δRt [ρ, J]/δJ(r, t) = 0. Here, Rt is the (total) free power

functional, which consists of a sum of ideal, external, adi-

abatic, and superadiabatic contributions. The latter is the

superadiabatic excess (i.e., over ideal) free power functional

P exc
t . The superadiabatic internal force profile is obtained

as a functional derivative fsup(r, t) = −δP exc
t /δJ(r, t). As

in equilibrium DFT, the adiabatic internal force profile is

obtained via fad(r, t) = −∇δFexc/δρ(r, t), where Fexc[ρ]
is the intrinsic excess Helmholtz free-energy functional, and

nabla denotes the derivative with respect to position r. PFT

has been both applied and extended over a growing range

of physical systems and situations [31–53]. We give a brief

overview in the following.

Within PFT, the two-body structure [33–37] is accessible

via the nonequilibrium Ornstein-Zernike [33, 34] and

the dynamical test particle routes [35–37]. Functional

integration methods were developed [38], and the relevance

of local particle number conservation was demonstrated [56,

57]. Expressing the superadiabatic free power functional via

the velocity gradient [39–43] has facilitated the description
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of viscous [39, 40, 42] and of structural superadiabatic force

contributions [41–43]. Superadiabatic forces are accessible

in many-body simulations [32, 44, 45]. Efficient methods

such as force sampling [54] render this a standard task.

PFT has been applied to the bulk and interfacial behavior

of active Brownian particles [46–50]. Here, the position-

and orientation-resolved one-body fields have proven to

be appropriate variables. For the case of sedimentation

of the active ideal gas, an analytical solution for these

fields could be constructed [55]. PFT was extended for

the description of inertial classical [51] and of quantum

many-body dynamics [52, 53]. The fundamental differences

between canonical and grand canonical schemes have been

addressed in equilibrium [56] and for the dynamics [57].

Here, we present the first study of superadiabatic

forces in a system under simple shear, i.e., flow that

is characterized by linear dependence of the velocity on

position, and hence spatially constant imposed shear rate

γ̇ . In order to trigger a response of the system on the

one-body level, as befits the concepts underlying the PFT

framework, we expose the sheared two-dimensional system

to an additional confining external potential. We choose the

(arguably) simplest possible geometry, where the external

potential Vext(y) varies only in the shear gradient direction

y. As a consequence, all one-body quantities become

functions of (only) the y-coordinate, and the system remains

translationally invariant in the flow direction x.

The above setup is interesting, as it allows the study of the

influence of shear on a prototypical confined situation for a

simple fluid, i.e., that of a periodically varying, oscillating

potential (along the y-direction of the shear gradient). We

can hence monitor both the structural forces that act in

the y-direction and the viscous forces that act in the flow

direction x. We present simple phenomenological scaling

laws that fit the results quantitatively. We consider moderate

fluid densities only and hence deliberately stay away from

the intricacies of the glass transition. We do, however,

consider cases of high driving, where we find the system

to exhibit interesting and apparently universal saturation

behavior. The saturation relates the external conservative

force −∇Vext and the intrinsic superadiabatic force to each

other. This is a remarkable mechanism, as external and

superadiabatic forces are very different in origin. As a result

of the shear, the density profile homogenizes, and hence,

shear acts against the confinement induced by Vext.

This paper is organized as follows: In “Description of the

system,” the physical system considered is described and the

Brownian dynamics (BD) simulation algorithm is laid out.

The results of the simulations are presented in “Results.” In

“Conclusions,” we conclude and give an outlook on possible

future work.

Description of the system

Microscopic dynamics

Our two-dimensional system consists of N (indistinguish-

able) circular particles suspended in an incompressible

implicit solvent. The particles are quasi-hard disks; their

pair interaction potential is given by

φ(r) = ǫ
(σ

r

)36
, (2)

where r is the center-center distance between two particles,

σ = const denotes the diameter of the particles, and ǫ =
const sets the energy scale.

In addition to their internal interactions, the particles are

subject to thermal fluctuations and to an external force field.

The thermal fluctuations induce a random force f ran
i (t) on

particle i with the following statistical properties:

(3)

where the angles denote an average over different real-

izations of the noise, t and t ′ indicate time arguments, ξ

denotes the friction coefficient, kB indicates the Boltzmann

constant, T indicates the temperature, δ(·) represents the

Dirac delta distribution, is the 2 × 2 unit matrix, and the

integers i, j = 1 . . . N label the particles.

The external force field splits according to

fext(yi) = fshear(yi) − ∇iVext(yi), (4)

where yi indicates the y-coordinate of particle i and ∇i

is the derivative with respect to the position ri of particle

i. Here, the first term is a non-conservative linear shear

field acting in the x-direction and the second term is

a conservative compression force along the y-direction,

given, respectively, by

fshear(y) = γ̇ yêx, (5)

Vext(y) = V ext
0

(

1 − 8y2

L2
+ 16y4

L4

)

, (6)

where the shear rate γ̇ is an inverse timescale that

characterizes the strength of the driving and êx is the

unit vector in the x-direction. The confining potential (6)

compresses the system symmetrically in the y-direction

towards y = L/2; the constant V ext
0 sets the depth of the

potential well. The maximum is at y = 0, and minimum of

the well is at y = ±L/2, such that Vext(0) − Vext(L/2) =
V ext

0 . Figure 1 shows an illustration of the model. We use

periodic boundary conditions in both spatial directions; L

denotes the size of the (square) simulation box.
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Fig. 1 Sketch of the geometry of the system. Shown are the external

potential Vext(y) that compresses the system towards y = 0 (dashed-

dotted red line); the resulting conservative force field −∇Vext acting

in the y-direction (red arrows indicate direction and the solid red

line indicates the magnitude); and non-conservative force field (blue

arrows) fshear due to the externally imposed shear flow. The system

is translationally invariant in the x-direction. Lees-Edwards boundary

conditions render the shear force continuous in the periodic images of

the system along the y-direction

We consider overdamped dynamics, where the inertia

of the particles can be neglected and the dynamics of the

system is described by the Langevin equation of motion

[27]:

ξ ṙi(t) = f
int
i (rN ) + fext(yi) + f

ran
i (t), (7)

f
int
i (rN ) = −∇i

N
∑

j=1

N
∑

k=j+1

φ
(

|rj − rk

∣

∣), (8)

with ṙi denoting the time derivative of ri .

One-body correlation functions

In steady state, the system is invariant under translation in

the x-direction and all one-body quantities (as described

below) only depend on the y-coordinate. In our simulations,

we check that a steady state is reached before sampling any

quantities of interest.

As the one-body density,

ρ(r) =
〈

N
∑

i=1

δ(r − ri)

〉

, (9)

will not vary in time in steady state, its time derivative

∂ρ(r)/∂t = 0, and the continuity equation reduces to

∇ · J = 0, (10)

implying that the particle current J(y) is also constant in

time. Here, the one-body current is defined as

J(r) =
〈

N
∑

i=1

δ(r − ri)vi

〉

, (11)

where the velocity vi of particle i at time t is given by a

centered difference of its position vector [45],

vi(t) = ri(t + 
t) − ri(t − 
t)

2
t
, (12)

where 
t is the time step of the numerical integration

routine (as detailed in “Brownian dynamics simulations”

below). See Ref. [45] for the derivation of the finite differ-

ence expression (12) for the velocity in Brownian dynamics.

We split the current into three distinct contributions, corre-

sponding to the force densities due to internal interactions

(Fint), thermal diffusion (−kBT ∇ρ), and external influence

(ρfext), and hence,

ξJ = Fint − kBT ∇ρ + ρfext (13)

= ρ (fint + fran + fext) . (14)

Here, the one-body internal force density distribution is

defined as

Fint(r) =
〈

N
∑

i=1

δ(r − ri)f
int
i

〉

, (15)

where f int
i , as given by Eq. 8, is the force acting on particle i

due to the internal interactions with all other particles in

the system. The force fields are obtained by dividing

force densities by the density profile, i.e., fint = Fint/ρ

and fran = −kBT (∇ρ)/ρ ≡ −kBT ∇ ln ρ. In the results

described below, we present data for force fields rather than

for force densities. The thermal fluctuations generate an

average force caused by the thermal fluctuations,

fran(y) = −kBT ∇ ln ρ. (16)

Splitting the current and therefore the forces is useful as

it enables us to perform the splitting of the internal force

field into its adiabatic and super adiabatic contribution. The

velocity profile is then obtained as

v(y) = J(y)/ρ(y). (17)

Adiabatic construction

The adiabatic system is defined as having the same

equilibrium one-body density as the nonequilibrium system

[31]. The Mermin-Evans theorem, which is at the heart of

DFT, states that in equilibrium for a system with given

internal interaction potential, at temperature T , volume

V and chemical potential μ fixed, there is a unique
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mapping from a given one-body density distribution ρ(r)

to a corresponding external potential [26, 27]. In order

to construct the adiabatic system, we use two different

methods which we show below to give consistent results.

The adiabatic construction implies to take the non-

equilibrium density as an equilibrium density and to

calculate the corresponding external potential Vad(y) =
−μad(y), where μad denotes the intrinsic chemical potential

in the adiabatic system. We use the scaled-particle theory

(SPT) equation of state for the hard disk fluid [27], which

implies the following form of the chemical potential:

μSPT
ad

kBT
= ln

(

ρ�3

1 − η∗

)

+ (3 − 2η∗) η∗

(1 − η∗)2
. (18)

Here, η∗ = π/4σ 2
BHρ, where σBH denotes the Barker-

Henderson diameter [27], given by σBH =
∫ ∞

0 dr(1 −
e−φ(r)/(kBT )). The thermal wavelength � only adds an

irrelevant constant to the chemical potential. Using Eq. 18 is

the first way we construct the adiabatic system. The notation

V SPT
ad (y) is used to denote external potentials calculated this

way. Note that the dependence of the right hand side of

Eq. 18 on y is explicitly known, as it arises from the known

density profile ρ(y), taken as an input.

The second way of performing the adiabatic construction

also employs an approach based on a local density

approximation (LDA), but using simulation data as input.

Using the LDA is reasonable for the cases considered in

the results section below, as the density profile ρ varies

slowly on the scale of the particle size σ . For given non-

equilibrium conditions, we base the LDA on simulation data

of an equilibrium system (i.e., for γ̇ = 0) with an unchanged

value of V ext
0 as compared to the nonequilibrium system.

This yields, in an LDA approximation, the bulk chemical

potential of the system as a function of density, as both

the (imposed) external potential Vext(y) and the (sampled)

density profile ρeq(y) are known as a function of position

y. Eliminating the parameter y then yields the desired form

of the chemical potential as a function of density. In more

detail, let yeq(ρ) be the inverse function of ρeq(y). We then

obtain the (bulk) chemical potential as a function of (bulk)

density as

μLDA
ad (ρ) = −Vext(yeq(ρ)). (19)

Using the equation of state Eq. 19 and the results for the

nonequilibrium density profile ρ(y), we can now calculate

the external potential in the adiabatic system via V LDA
ad (y) =

−μLDA
ad (ρ(y)).

Brownian dynamics simulations

To simulate the system described in “Description of the

system,” Brownian dynamics simulations are used. These

are based on the integration of Eq. 7, which can be

performed with the Euler algorithm,

ri(t+
t) = ri(t)+ξ−1
(

f
int
i (rN ) + fext(yi)

)


t+δri . (20)

Here, 
t is the time step used in the algorithm and

δri is a random displacement with Gaussian distribution

of standard deviation
√

2
tkBT/ξ . We use the Box-

Muller transformation to generate the Gaussian distribution

from random numbers generated by the Mersenne Twister

algorithm.

At the start of each simulation run, N particles are

randomly distributed in a square simulation box of size

V2D = Nπσ 2/η, while ensuring that there are no overlaps

between any pair of the particles. The side length of the

square box is L =
√

V2D. We use Lees-Edwards (sliding

box) boundary conditions [58, 59].

All our simulations were performed with N = 256

particles and with a time step of 
t = 5 · 10−6 τ0 where τ0

denotes the reduced time scale τ0 = ξσ 2/ǫ. The constants

ǫ, ξ , and σ are set to unity; we only consider the case of

the reduced temperature T ∗ = kBT/ǫ = 1. The packing

fraction η, the shear rate γ̇ , and strength of the confinement

V ext
0 are our control parameters. When the Peclet number

Pe is defined using the particle diameter (rather than the

particle radius) as the unit of length, the value of our

dimensionless shear rate is identical to that of the Peclet

number, as Pe ≡ γ̇ σ 2/D = γ̇ τ0/T ∗, where the diffusion

constant is defined as D = kBT/ξ .

The one-body density ρ(y) and the average instantaneous

force due to interparticle interaction fint(y) are sampled.

The histograms used for the sampling of these parameters

have a resolution of σ/15 but are down sampled to a

resolution of σ/5 to reduce the noise. For each presented set

of parameters, multiple simulations were run (typically at

least 150). The results of these are then averaged to produce

the final data. Each of the simulations is at first run for

teq = 0.75 τ0, so the system can relax into the steady state.

After teq has passed, the sampling of the physical quantities

of interest is started at a rate of 2000 τ−1
0 . The simulation is

then kept running for trun = 200 τ0.

In order to test whether the steady state is reached after

teq, four sets of parameters have additionally been run with

teq = 100 τ0 and trun = 100 τ0 and were then compared to

the results of the density profiles produced by simulations

with teq and trun. The results of these runs show that the

difference between the datasets is smaller than 1% and
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shows no bias, indicating that teq = 0.75 τ0 is sufficient for

the relaxation into the steady state. For smaller values of

the shear rate than considered here, using longer relaxation

times teq might be necessary.

Results

Behavior of the density profile

We first present the effects that varying the shear rate γ̇

and the strength of the compression V ext
0 has on the density

profile ρ(y) of the system. We have considered moderate

values of packing fraction ranging from η = 0.1 to 0.35.

As a reference, the hard disk fluid transitions to a glassy

state for packing fractions larger than η = 0.699 [60].

In equilibrium, the hard disk fluid is stable for packing

fraction below 0.701 ≡ (π/4)0.892 (cf. Ref. [61]). The

presence of the confining potential leads to a local increase

in density, which potentially could increase the local density

above the transition packing fraction for higher values of

η. As different sets of the parameters only appear to lead

to quantitative changes of the density profile and not to

different physical effects, results are presented for selected

values of parameters.

In Fig. 2, results of simulations with packing fractions

of 0.2 and 0.3 are presented. Starting with η = 0.2

in panel (a), we show the effects of an increase in the

strength of the confinement on the density profile, while

the shear rate is kept constant. We observe that the density

is compressed into the trough of the conservative potential

Vext and that an increase of V ext
0 leads to a corresponding

increase in the amplitude of the peak in the density profile.

Figure 2c shows how the density profile at constant strength

of confinement is altered by the shear rate. It is apparent

that shearing the system leads to a pronounced flattening of

the density profile. Figure 2b and d are shown to evaluate

the effect that a change in packing fraction has on the

density profiles. One can observe that the magnitude of

the deviation of the local density from the bulk density

ρb = N/V2D for corresponding sets of parameters remains

similar.

Fig. 2 Density profiles ρ(y) as a function of y/σ for various sets

of parameters η, γ̇ , and V ext
0 obtained from BD simulations (lines).

In each panel, two of the parameters are kept constant while vary-

ing the third (as indicated). Panel a: η = 0.2, γ̇ τ0 = 200. Panel

b: η = 0.3, γ̇ τ0 = 100. Panel c: η = 0.2, V ext
0 /ǫ = 2. Panel d:

η = 0.3, V ext
0 /ǫ = 2. The effect of variation of a single parameter on

the density profile is indicated by an arrow. The symbols denote den-

sity profiles ρLDA
ad (y) (crosses) and ρSPT

ad (y) (circles), obtained by the

two methods of adiabatic construction described in Section “Adiabatic

construction”

900 Colloid Polym Sci (2020) 298:895–906



Forces in the nonequilibrium system

We next present results for the internal force field fint(y).

This is a particularly interesting quantity, as it contains

the superadiabatic part of the force in the nonequilibrium

system (cf. Eq. 1). We first investigate the y-component,

f int
y (which acts in the gradient direction). The main panels

in Fig. 3 display the results for the same control parameters

as the density profiles shown in Fig. 2. Figure 3a and b

illustrate the relationship between the degree of confinement

of the system and the behavior of the internal force

field, in steady state. As expected, Fig. 3a shows that the

magnitude of f int
y increases as the applied external potential

is increased. One can also observe that in the homogeneous

sheared system (i.e., without compression, V ext
0 = 0 and

therefore with constant density profile), f int
y vanishes. The

effects that an increase in shear rate has on f int
y are presented

in Fig. 3c and d. The data shown suggests that the shear

rate increases the magnitude of f int
y very rapidly for low

shear rates, but f int
y appears to reach a saturated state for

γ̇ τ0 → ∞. This is intuitively clear considering that f int
y is

unlikely to be larger then −f ext
y in steady state. Recall that

Vext is kept constant in Fig. 3c and d.

The insets in Fig. 3 show the y-components of the force

fields decomposed as in Eq. 14, along with the total force

field f total
y , i.e., the sum (14) divided by the local density.

We show results for four different systems. We expect

f total
y (y) to vanish because of the symmetries in the system.

As throughout, subscripts x and y denote the components

of vectors. In Fig. 3 e, f, g and h, it is apparent that f total
y

indeed vanishes identically, apart from some residual noise

in the data. The figure also demonstrates that both f int
y and

f ran
y act in the opposite direction to f ext

y (y) and their sum

exactly cancels the applied compression.

Comparing the results of the equilibrium system shown

in Fig. 3h to the sheared system in Fig. 3f reveals a

pronounced difference in the way the force, due to the

compression f ext
y , is compensated. In Fig. 3h, f int

y is not

too different in magnitude to f ran
y , while in the non-

equilibrium case presented in Fig. 3f, the entropic force

f ran
y is much smaller and f int

y almost solely compensates

f ext
y . This is in line with the results from the density

profiles, as the homogenization unavoidably leads to the

Fig. 3 Internal force field f int
y (y) as a function of y/σ for multi-

ple sets of parameters η, γ̇ , and V ext
0 . The parameters held constant

in panels a–d are the same as in Fig. 2. The insets show con-

tributions to the force balance in Eq. 14 for four examples. The

internal and the total force are sampled in simulations, while the

deterministic external force is imposed and the random force is

calculated using Eq. 16 and simulation data. Panel e: η = 0.2,

γ̇ τ0 = 200, V ext
0 /ǫ = 1. Panel f: η = 0.3, γ̇ τ0 = 100,

V ext
0 /ǫ = 2. Panel g: η = 0.2, γ̇ τ0 = 100, V ext

0 /ǫ = 2. Panel h:

η = 0.3, γ̇ τ0 = 0, V ext
0 /ǫ = 2
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entropic force becoming much smaller. Obviously, this

effect becomes more apparent as the shear rate and

therefore the homogenization is increased, as is clear from

a comparison of Fig. 3g and e.

In Fig. 4, the x-component of the internal force field,

f int
x (i.e., the component that acts in the flow direction) is

plotted for the same parameters as f int
y above. We leave out

the results for a shear rate of γ̇ τ0 = 300, as this is very

noisy. We first consider the effects of an increase of V ext
0 on

the density profile (cf. panels (a) and (b)). One can observe

that the relation between V ext
0 and f int

x is practically linear.

In Fig. 4 c and d, the effects of a variation of the shear rate

on f int
x are illustrated. The magnitude of the force increases

as the shear rate is increased. However, the force does not

increase linearly.

Adiabatic construction

We use the two methods outlined in “Adiabatic construction”

to perform the adiabatic construction. In order to assess

their performance, we have carried out simulations of

the adiabatic system, i.e., runs in equilibrium under the

influence of an external potential Vad(y), as obtained

following the two procedures (SPT and LDA) described in

“Adiabatic construction.” In the following, we compare the

respectively obtained density profiles ρSPT
ad (y) and ρLDA

ad (y)

to each other, as well as to the corresponding (target)

nonequilibrium density profile ρ(y).

The adiabatic density profiles for representative parame-

ter choices are shown as symbols in Fig. 2. The quality of the

agreement demonstrates that both versions of the adiabatic

construction reproduce the density profile of the nonequi-

librium systems very well. The relative difference in density

is smaller than ∼ 1%. Comparing the different methods of

adiabatic construction reveals good agreement between the

results, showing that our simulations are able to reproduce

the behavior of the hard disk fluid as predicted by SPT.

However, the approach using only our simulation data and

LDA to calculate the chemical potential is slightly superior.

Therefore, we use data obtained with these simulations in

the analysis to obtain the superadiabatic force field.

Superadiabatic forces

Having obtained results for both the internal force field in

the nonequilibrium system, fint, as well as in the adiabatic

system, fad, we proceed by using the force splitting (1) in

order to calculate the superadiabatic forces according to

fsup(y) = fint(y) − fad(y). (21)

As the adiabatic system is translationally invariant in x,

we expect the corresponding force component to vanish,

f ad
x ≡ 0. Our simulation data confirms this expectation.

Equation 21 accordingly implies f
sup
x (y) = f int

x (y); hence,

in the flow direction, the superadiabatic force is identical

Fig. 4 Viscous force field, scaled as f int
x (y)σ/ǫ, as a function of

the scaled position coordinate y/σ for multiple sets of parame-

ters η, γ̇ , and V ext
0 . The parameters held constant are the same

as in Fig. 2. In panels (c) and (d), the circles denote the supera-

diabatic force calculated using Eq. 22 and the density profiles

shown in Fig. 2
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to the full internal force field. These results were discussed

above in Section “Forces in the nonequilibrium system”.

The situation in the gradient direction is different, as the

density inhomogeneity in y leads to f ad
y �= 0. In Fig. 5, the

y-component of the superadiabatic force field is presented

in the main panels. The superadiabatic force behaves in a

similar manner as the internal force: It reaches a saturated

state as the shear rate γ̇ is increased and it is proportional to

the strength of the external confinement.

Comparing the typical magnitude of the superadiabatic

force (shown in Fig. 5) to that of the total internal

force (shown in Fig. 3) reveals that even for small shear

rates f
sup
y already makes up about one-tenth of f int

y .

The relative contribution of f
sup
y increases as the shear rate

is increased and surpasses the adiabatic contribution for the

intermediate values of shear rate considered. For the highest

values of γ̇ τ0 presented, the internal force is completely

dominated by superadiabatic contributions. We conclude

that the superadiabatic effects in sheared systems play a

significant role and that any attempt at describing the

nonequilibrium dynamics requires an understanding of the

superadiabatic contribution.

The saturated state corresponds to the state of the

system with vanishing density gradient. Comparing both

components of fsup(y) with each other reveals they have

a similar shape, but with the sign flipped and that the x-

component has a larger magnitude. This again implies a

direct link to the density gradient, which we investigate in

the following section.

Scaling of the superadiabatic force fields

The observations described in “Superadiabatic forces”

suggest that the superadiabatic force profile depends linearly

on the gradient of the density. It is furthermore apparent that

this force also depends on the applied shear rate. Assuming

a linear dependence on the shear rate, the simplest possible

representation of the superadiabatic force as a scaling law is

f
sup
y (y) = cy γ̇∇ρ(y) (22)

where the constant cy is dependent on the packing fraction η

and on V ext
0 . In order to compare this empirical rule to our data,

we need to take the gradient of the densities presented in

Fig. 2. As direct numerical differentiation produces very noisy

results, we first fit a polynomial of order 4 to the density

profiles and then carry out the differentiation analytically.

The results of this calculation (for the y-component) are

denoted by the circles in Fig. 5 a1 and b1. We find that for

low shear rates up to ≈ 100 γ̇ τ0, the y-component of the

scaling law shows very good agreement with our data for

both considered values of the packing fractions. However,

the scaling form overestimates the superadiabatic force in

case of high shear rates, which implies that the saturation

effects discussed above are not captured perfectly.

An alternative way of testing the form Eq. 22 can be

obtained by considering both the force balance in the

nonequilibrium system,

−V ′
ext(y) + f ad

y (y) + f
sup
y (y) − kBTρ′(y)/ρ(y) = 0, (23)

Fig. 5 Panels (a1) and (b1): Superadiabatic force field f
sup
y for mul-

tiple systems. Solid lines denote data obtained in simulations; also

shown are the results of the empirical scaling law (Eq. 26). Panels

(a2) and (b2): Comparison of the left hand side (solid lines) and the

right hand side (circles) of Eq. 25 for the same parameters as in the

main panels. Here, the integration constant d was chosen such that the

graphs are centered around γ̇ ρ = 0. In panels (a1) and (a2), the param-

eters η = 0.2 and V ext
0 /ǫ = 2.0 are held constant, while in panels (b1)

and (b2), the parameters η = 0.3 and V ext
0 /ǫ = 2.0 are held constant
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and the force balance in the adiabatic system,

−V ′
ad(y) + f ad

y (y) − kBTρ′(y)/ρ(y) = 0, (24)

where the prime denotes the derivative with respect to y.

Here, Eq. 23 is obtained by dividing the force density

balance (13) by the density profile and using the adiabatic-

superadiabatic splitting (1) to express the internal force

field fint as a sum of adiabatic and superadiabatic force

contributions. Observing that the y-component of the

current vanishes in the sheared steady state then yields (23).

Equation 24 is the analogue in the adiabatic system; as the

adiabatic state is in equilibrium, there are neither flow nor

superadiabatic contributions by construction.

Using Eq. 24 to eliminate f ad
y from Eq. 23, using the

scaling form Eq. 22, and integrating in y, one arrives at

γ̇ ρ(y) = Vad(y) − Vext(y) − d

cy

, (25)

where d is an integration constant and cy is the same

constant as used in Eq. 22. This balance equation only needs

the nonequilibrium density and the adiabatic potential (as

obtained in the simulations) as input to carry out a test of the

scaling law for the superadiabatic forces. The corresponding

results are depicted in panels a2 and b2 of Fig. 5. One

observes the same level of agreement as in the case of

the direct comparison of the superadiabatic forces and the

scaling law.

In case of the viscous force, we use a form with a

modified (empirical) exponent,

f
sup
x (y) = cx γ̇

0.8∇ρ(y), (26)

where cx is a fit parameter, which again depends on the

values of η and of V ext
0 . In Fig. 4c and d, the results of

this effective scaling law are compared to the simulation

data of the superadiabatic force. We find again very good

agreement with the real data. Similarly to the viscous force,

the structural force, the structural force is also overestimated

in case of high shear rates close to the saturated state.

Although we have not performed a systematic error

analysis, we are confident that our data is much more

consistent with the unusual value 0.8 of the exponent in

Eq. 26 than with an exponent of 1, or even 0.9. We

expect the power law (26) to be an empirical representation

of the data rather than a fundamental relationship. We

leave the construction of a corresponding approximation

for the superadiabatic excess power functional, which is

the generator of the nonequilibrium forces via fsup(r, t) =
−δP exc

t /δJ(r, t), to future work.

Conclusions

We have systematically investigated the effects that shearing

has on the density and force profiles of a two-dimensional

system of quasi-hard disks upon which an additional

conservative confining force field is applied in the direction

normal to the flow. Our results show that the shear

flow induces a superadiabatic structural force that acts

against the compression of the system. As a result, the

density profile approaches the homogeneous bulk density

for high shear rates. We have investigated the forces that

act in the system. There occurs a dissipative effect from

the forces acting against the flow of the particles as

well as a structural force. The adiabatic construction was

used to identify these superadiabatic force contributions.

The concept of superadiabatic forces [31, 32, 44] allows

systematic classification [42] of flow and structural effects,

including viscous [39–41] and structural [41–43] force

contributions.

Future work could be directed at the behavior at low

shear rates. Low shear rates are interesting as our current

scaling law is not invariant if the shear direction changes,

i.e., our scaling law predicts a stronger confinement for such

situations. Additionally by investigation of a wider range

of parameters, a more definite understanding of the scaling

laws could be achieved. Furthermore, considering confining

potentials that are less smooth than the one considered here

should be interesting, as would be investigating the laning

instability reported in Ref. [62], disorder–order transitions

reported for three-dimensional systems in Ref. [63] and

the general framework for viscosity of Ref. [64]. The

results that we provide could form material for an in-depth

comparison of PFT and MCT, possibly along the lines of

Ref. [33]. Dispersions of thermoresponsive colloids [3–

20] could be excellent model systems for corresponding

experimental work that is aimed at systematically studying

superadiabatic forces.
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M, Fuchs M (2013) Overshoots in stress-strain curves: colloid

experiments and schematic mode coupling theory. J Rheol 57:149

16. Ballauff M, Brader JM, Egelhaaf SU, Fuchs M, Horbach J,
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21. Brader JM, Krüger M (2011) Density profiles of a colloidal liquid

at a wall under shear flow. Mol Phys 109:1029
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