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Abstract

Stratified flows in hydrostatic balance are studied in both their multilayer and
continuous formulations. A novel stability criterion is proposed for stratified
flows, which re-interprets stability in terms not of growth of small perturbations,
but of the well-posedness of the time evolution. This re-interpretation allows one
to extend the classic results of Miles and Howard concerningsteady and planar
flows, to the realm of flows that are non-uniform and unsteady.

c© 2000 Wiley Periodicals, Inc.

1 Introduction

Stratified flows occur ubiquitously in nature, with the atmosphere and ocean as
prime examples. When the horizontal scales of a flow are much larger than the
vertical ones, the flow satisfies to a good approximation thehydrostatic balance,
whereby the pressure at each position balances the weight ofthe fluid above it.
Models for hydrostatically balanced flows come in two main flavors: multilayered
models, where the flow is assumed piecewise uniform in the vertical, and models
with continuous shear and stratification. Typical real flowshave a continuous strat-
ification profile, but approximately layered flows do arise, for instance, in river out-
flows, and in the “staircase” stratification profiles often observed in the ocean [12].
In addition, many numerical discretizations of the continuous equations mimic the
physics of discrete homogeneous layers.
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Layered models are systems of conservation laws for mass andmomentum in
each layer. Continuous models can also be written as systemsof infinitely many
conservation laws, corresponding to layers of vanishing thickness, or as an infinite
system of evolution equations for vertical eigenmodes. Most stability analyses
have adopted the latter approach whereas here we explore theformer. This is best
achieved through the introduction of an isopycnal coordinate system [1], whereby
the fluid’s densityρ replaces the depthz as vertical coordinate. (This system is
appropriate for incompressible fluids; the equivalent formulation for compressible
flows involves isentropic coordinates. For brevity, we willonly concern ourselves
here with incompressible fluids.)

This article uses the mathematical machinery behind systems of conservation
laws to shed light on issues pertaining stratified flows, bothdiscrete (layered) and
continuous. In particular, it re-interprets the stabilityproperties of the system in
terms of the well-posedness of its time evolution, instead of the more customarily
used rate of growth of small perturbations. This corresponds to classifying the sys-
tem according to its type: hyperbolic corresponding to stability (more precisely,
well-posedness), and elliptic corresponding to instability (ill-posedness). Simi-
lar characterizations of stability in terms of type have been noticed in rheological
problems; see, for instance, [3].

This view provides a useful extension of stability theorems, such as the classical
results of Miles and Howard [13, 4], from their planar scenarios to more general,
non-uniform and unsteady flows. In the unstable Miles-Howard scenario, arbitrar-
ily large growth rates (hence the ill-posedness) occur for small perturbations of
sufficiently short wave-lengths. This feature is captured by a re-interpretation in
terms of a hyperbolic-elliptic transition. The physical manifestation of this tran-
sition remains the standard one: the time evolution becomesmathematically ill-
posed because it is no longer possible to neglect mixing, as the model does.

Finally, solutions that remain in the hyperbolic regime canbe nevertheless un-
stable in the classical sense: small perturbations may grow, though the growth rates
are bounded, and the catastrophic scenario of high frequency perturbations grow-
ing arbitrarily fast does not arise. In fact, examples of this scenario, with unsteady
flows with Richardson numbers bigger than1

4 but are nonlinearly unstable over
long space and time scales, are presented in [10, 11].

This article exploits the strong analogy between the equations for layered and
continuously stratified flows. Section 2 presents a derivation of the correspond-
ing models in parallel, attempting to achieve maximal simplicity. One can factor
out the mean stratification profile (or layer thickness) fromthe equations, allowing
solutions that consist of vertically periodic variations superimposed onto a back-
ground stratification.

Section 3 characterizes and computes the simple waves of thesystem [8]. As
building blocks, simple waves have the advantage over the more standard linear
modes, that they constitute fully nonlinear solutions. In particular, they break,
hence leading to another mechanism for fluid mixing. To our knowledge, simple
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waves in systems of infinitely many conservation laws have not been considered
before.

Section 4 introduces the characterization of stability based on equation type,
and uses it to extend the Miles-Howard theorem on shear stability from steady pla-
nar flows to more general non-uniform, unsteady profiles. It also develops similar
constructions for layered flows.

2 Layered and continuous stratified flows

In this section the equations describing hydrostatically balanced stratified flows
are derived for multilayer systems, and continuously stratified flows are then com-
puted as a limiting case. In the Boussinesq approximation, one can factor out the
mean stratification. This allows considering flows that are avertically periodic
perturbation of a background profile.

In a system ofN layers with uniform density and horizontal velocity, conserva-
tion of mass for each layer reads

(2.1) h j
t +(h ju j)x = 0,

whereh j is the layer thickness andu j the fluid velocity. Conservation of momen-
tum adopts the form

(ρ jh ju j)t +

(

ρ jh j(u j)2 +
1
2
(p j+ 1

2 + p j− 1
2 )(zj+ 1

2 −zj− 1
2 )

)

x
=

= p j+ 1
2

(

zj+ 1
2

)

x
− p j− 1

2

(

zj− 1
2

)

x
,(2.2)

whereρ j is the density of layerj, andp andz stand for the pressure and height at
the interfaces between layers. The terms on the right-hand side of the momentum
equation represent the form drag among layers. Since this isan internal force of
the system, it dissappears when adding over all layers, yielding the conservation of
total momentum

(2.3)

(

N

∑
1

ρ jh ju j

)

t

+

(

N

∑
1

h j
(

ρ j(u j)2 +
1
2
(p j+ 1

2 + p j− 1
2 )

)

)

x

= 0

The pressure satisfies the hydrostatic relation

(2.4) p j− 1
2 − p j+ 1

2 = gρ jh j ,

whereg is the gravity constant. Using conservation of mass and the hydrostatic
balance to simplify the momentum equation (2.2), one obtains

u j
t +u ju j

x +
1

ρ j

(

p j+ 1
2 + p j− 1

2

2
+gρ j zj+ 1

2 +zj− 1
2

2

)

x

= 0.
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In terms of the Montgomery potential

(2.5) M j =
1
2
(p j+ 1

2 + p j− 1
2 )+gρ j 1

2
(zj+ 1

2 +zj− 1
2 ) ,

the system can be written in the form

h j
t +(h ju j)x = 0,

u j
t +u ju j

x +
1

ρ j M
j
x = 0,

M j+1−M j

ρ j+1−ρ j = gzj+ 1
2 ,

zj+ 1
2 −zj− 1

2 = h j

The Boussinesq appoximation involves neglecting the effects of density changes
on the inertia, that is, replacingρ j by a constantρ0 in the equation foru j

t above.
Then, assuming for simplicity that∆ρ = ρ j −ρ j+1 is independent ofj, and non-
dimensionalizing

√
g′h0

x0
t → t

x
x0

→ x

u j

√
g′h0

→ u j

M j

g∆ρ h0
→ M j

h j

h0
→ h j

(whereg′ = g∆ρ
ρ0

is the reduced gravity,x0 is a typical length, and the thicknessh0

is defined for later convenience ash0 = 1
N ∑N

1 h j ), one obtains the set of equations
describing multilayer flows:

h j
t +(h ju j)x = 0,

u j
t +u ju j

x +M j
x = 0,(2.6)

∆2M j = −h j ,

where∆2 is the discrete second difference

∆2M j = M j+1−2M j +M j−1 .
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In order to obtain the equations describing continuous stratification, one uses
the alternative non-dimensionalization

√

gδ
ρ0∆ρ

t
x0

→ t

x
x0

→ x
√

ρ0∆ρ
gδ

u j → u j

∆ρ M j

gδ
→ M j

h j

δ ∆ρ
→ h j ,

whereδ = 1
r

∫

hdρ andr is the density difference between the bottom and top of
the domain. Taking the limit of small∆ρ , yields the system of partial differential
equations modeling internal waves in isopycnal coordinates:

ht +(hu)x = 0,

ut +uux +Mx = 0,(2.7)

Mρρ = −h.

These equations are strongly reminiscent of those describing a single layer of shal-
low water flow, but with the pressure termM and the layer thicknessh, which
are identical in shallow waters, related instead through a Poisson problem in the
vertical.

Subtracting from both the continuous and discrete systems the mean stratifica-
tion (or mean layer width), one can make the replacements

h j →
(

1−Sj)

M j → M j − 1
2

j( j −1) ,

for the discrete system and, for the continuously stratifiedcase,

h→ (1−S)

M → M− 1
2

ρ2 .

It is not necessary to assume constant background stratification –or layer width–
to make these substitutions: the variablesSj(x) may have a nonzero horizontal
average. Their vertical average, on the other hand, is zero,due to our choice ofh0
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andδ in the nondimensionalizations above. The discrete equations become

Sj
t −
((

1−Sj)u j)

x = 0

u j
t +u ju j

x +M j
x = 0,(2.8)

∆2M j = Sj

and the continuous ones

St − ((1−S)u)x = 0,

ut +uux +Mx = 0,(2.9)

Mρρ = S.

This setting permits the use of periodic boundary conditions in the vertical di-
rection, which simplifies many theoretical developments. Hence, from now on, the
dependent variablesS, M andu, are periodic inx and in eitherj or ρ :

Sj+N(x, t) = Sj(x, t) , Sj(x+L, t) = Sj(x, t) , . . .

S(x, t,ρ + r) = S(x, t,ρ) , S(x+L, t,ρ) = S(x, t,ρ) , . . .

In addition,Shas zero vertical mean:
N

∑
1

Sj = 0

[

∫ r

0
S(x, t,ρ)dρ = 0

]

,

which implies that

(2.10)
N

∑
1

((

1−Sj)u j)

x = 0

[

∫ r

0
((1−S)u)x dρ = 0

]

.

In fact, more is true: the volume flux

Q =
N

∑
1

(

1−Sj)u j ,

[

Q =
∫ r

0
(1−S)udρ

]

is, under the Boussinesq approximation, also the total momentum (replaceρ j by
ρ0 in the momentum density in equation (2.3)). Hence, it is not only spatially
uniform, as (2.10) implies, but also constant in time, sincetotal momentum is
conserved. This can be shown from the equations in (2.8) by adding them by parts,
which yields

(2.11)

[

N

∑
1

(

1−Sj) u j

]

t

+

[

N

∑
1

(

1−Sj)u j 2 +M j +
1
2
(M j+1−M j)2

]

x

= 0.

Equivalently, in the continuous case,

(2.12)

[

∫

(1−S) udρ
]

t
+

[

∫

(

(1−S)u2 +M +
1
2

(

Mρ
)2
)

dρ
]

x
= 0.
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Integrating these equations over the horizontal period, and using the fact -from
(2.10)- that the term differentiated with respect to time isspatially uniform, it fol-
lows that the total volume flux (and momentum density)Q is constant1.

One can apply this result in closing the systems (2.8) and (2.9). At first sight
it is not entirely clear how the evolution equations in either of these systems are
to be closed. The difficulty is thatM is not entirely determined fromS by the
Poisson problem – since the vertical meanM̄ of M is left undetermined. However,
in view of (2.11) and (2.12), the terms differentiated in time dissappear (since they
are constant), and we obtain

(2.13) Mx = −
(

1
2

(∆M)2 +(1−S)u2

)

x

in the discrete case, and

(2.14) Mx = −
(

1
2

M2
ρ +(1−S)u2

)

x

in the continuous one.
Both systems (2.8) and (2.9) conserve energy, given by

(2.15) E =

∫

(Ek +Ep) dx,

where

(2.16) Ek =
N

∑
j=1

1
2

(1−Sj) u2
j

[

Ek =

∫ r

0

1
2

(1−S) u2 dρ
]

and

(2.17) Ep =
N

∑
j=1

∫ z
j+ 1

2

z
j− 1

2

ρ zdz=
N

∑
j=1

1
2

z2
j+ 1

2

[

Ep =
∫

ρ zdz=
∫ r

0

z2

2
dρ
]

are the kinetic and potential energy densities, respectively.

3 Simple waves

As the number of layers in the system grows, and in the continuous limit, the
system’s behavior becomes increasingly complex. It is convenient then to isolate
individual simple waves, which can be thought of as “building blocks” of the more
complex dynamics [8]. Moreover, as we shall see, the study ofsimple waves sheds
light on the system’s stability.

For a nonlinear hyperbolic system of the type

(3.1) vt +A(v)vx = 0,

1 In particular, if a Galilean transformation is performed sothatQ is initially zero, it remains zero
forever.
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wherev(x, t) is a vector with componentsv j , simple waves are solutions of the
form

(3.2) v j(x, t) = Vj(ξ (x, t)) .

In other words, all components of the vector solution are functions of a single scalar
functionξ (x, t). Plugging this ansatz into (3.1) yields the eigenvalue problem

(3.3) (A(V(ξ ))−c(ξ )I)Vξ = 0,

where

c(ξ ) = − ξt

ξx
,

which can be re-written as an equation for the evolution ofξ :

(3.4) ξt +c(ξ )ξx = 0.

The characteristic speedc(ξ ) follows from the eigenvalue of (3.3); the correspond-
ing eigenvectorVξ yields by integrationV(ξ ), the phase-space representation of
the simple wave. Notice that there is some freedom in the determination ofV(ξ ):
the initial vectorV(ξ = 0) can be chosen arbitrarily, and the eigenvectorVξ can
be re-scaled at will (this second freedom, however, amountsto just a reparameter-
ization ofV(ξ ).) Oncec(ξ ) is known, we can findξ (x, t) from any initial data
ξ (x,0) by solving the scalar equation (3.4) by the method of characteristics, and
then reconstruct the full vector solutionv(x, t) through the identity (3.2).

Figures 1 and 2 show snapshots of two simple waves, one corresponding to the
largest (first-baroclinic) eigenvalue of a three-layer system, and the other to the
second-largest (second-baroclinic) eigenvalue of a sixteen-layer system. In both
cases, sinusoidal initial data are followed as they evolve into a breaking wave. In
order to continue the solution after the breaking time, a closure is required, possibly
involving mixing [5, 15, 6].

The idea of simple waves can be extended from the multilayer case to the con-
tinuously stratified equations (2.9), by replacing the index j in (3.2) by the contin-
uous variableρ :

u(x, t,ρ) = U(ξ (x, t),ρ)(3.5)

M(x, t,ρ) = M(ξ (x, t),ρ)

(where we useM rather thanS as dependent variable, so as to have differential
rather than integral operators). This results in the system

(3.6)

(

(u−c) ∂ 2

∂ρ2 Mρρ

1 u−c

)

(

Mξ
uξ

)

=

(

0
0

)

,

which yields the second-order differential equation forMξ :

(3.7) (u−c)2∂ 2Mξ

∂ρ2 = Mρρ Mξ ,
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FIGURE 3.1. First baroclinic simple wave in a three-layer system, up to
its breaking time. The color code represents the values of the velocityu,
and the solid lines the position of the interfaces between layers. The fig-
ure on the left has the initial value, corresponding to a sinusoidal profile
for ξ (x,0); the figure on the left depicts the simple wave near its break-
ing time. The profile is vertically periodic: the form of the interface at
the base of the bottom layer matches the one at the top of the uppermost
layer.
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FIGURE 3.2. Second baroclinic simple wave in a sixteen-layer system,
up to its breaking time. The conventions for plotting and themeaning of
the two figures are the same as for Figure 1.

To our knowledge, this idea of extending simple waves to continuous systems
of [infinitely many] conservation laws has not been exploredbefore. For stratified
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flows, it allows us to go beyond the well-known linear internal waves [9] to their
fully nonlinear counterpart.

4 Stability criteria

The eigenvalue problem (3.3) does not necessarily have onlyreal solutions. In
other words, stratified flows are systems ofmixed type: hyperbolic when all eigen-
values ofA(v) are real, and elliptic otherwise. The presence of elliptic domains is
associated with an instability of the system: when the equations turn elliptic, the
initial-value problem for them becomes ill-posed [7], and solutions can be found
that are initially arbitrarily close, yet diverge from eachother in arbitrarily short
time intervals. This perspective on the stability problem is more powerful than the
conventional one, in which one looks for exponentially growing solutions of the
equations linearized around a global profile. With this approach we can character-
ize the stability of non-uniform, evolving, solutions, anddetect the places where
the time-evolution becomes ill-posed, and hence mixing is needed. The calculation
is local: it suffices to determine whether the system matrix at any particular point
(x, t) has or not a complete set of real eigenvalues.

Ill-posedness is a much more dramatic scenario that regularinstability. The fact
that perturbations grow does not necessarily invalidate a model, nor calls for a new
closure. Yet when the growth-rate of perturbations is unbounded, the model stops
making sense. Hence ill-posedness is typically an indication that new physics is
required. In the present study, the missing physics is that of mixing among fluid
layers.

The classic results of Miles and Howard [13, 4] on shear-instability for stratified
flows can be re-interpreted in terms of well-posedness, and hence extended to non-
planar, unsteady profiles: When the eigenvaluec is complex, equation (3.7) can be
rewritten in the form

∂ 2Mξ

∂ρ2 =
Mρρ

(

(u−cr)2 +c2
i

)2 (u−cr + ici)
2 Mξ .

Multiplying through byM̄ξ and integrating inρ , we obtain

∫

∣

∣

∣

∣

∂Mξ

∂ρ

∣

∣

∣

∣

2

+
Mρρ

(

(u−cr)2 +c2
i

)2(u−cr + ici)
2
∣

∣Mξ
∣

∣

2
dρ = 0.

The imaginary part of this equation yields

2ci

∫ Mρρ
(

(u−cr)2 +c2
i

)2 (u−cr)
∣

∣Mξ
∣

∣

2
dρ = 0.

Hence a necessary condition for the imaginary part ofc not to vanish is that(u−cr)
change sign; in particular, there must exist a critical layer wherecr = u. Near such
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point, one may expand (3.7) into

(uρ(ρ0))
2(ρ −ρ0)

2∂ 2Mξ

∂ρ2 = Mρρ(ρ0)Mξ ,

or

(4.1) (ρ −ρ0)
2∂ 2Mξ

∂ρ2 +RiMξ = 0,

where the Richardson numberRi is given by

Ri =
Mρρ(ρ0)

(uρ(ρ0))2 .

This Euler equation has solutions of the form

Mξ = |ρ −ρ0|α ,

with

α =
1
2
±
√

1
4
−Ri.

WhenRi > 1/4, these solutions are singular, suggesting that forRi > 1/4 it is
not possible forc to have an imaginary part. This fact can be established rigorously,
following the same lines as in the classical proof by Miles [13] for shear-instability
of planar flows. Instead, we mimic the alternative, simpler proof by L. Howard [4]
in the paper immediately following Miles’ in the same issue.Returning to equation
(3.7), and making the change of variables

Mξ =
(√

u−c
)

φ ,

equation (3.7) adopts the self–adjoint form

(

(u−c)φ ′)′ +

(

1
2

u′′− Mρρ + 1
4u′2

u−c

)

φ = 0.

Multiplying by φ̄ and integrating, one obtains
∫

[

−(u−c)|φ ′|2 +

(

1
2

u′′− Mρρ + 1
4u′2

u−c

)

|φ |2
]

dρ = 0.

The imaginary part of this expression is

(4.2) ci

∫

[

|φ ′|2− Mρρ + 1
4u′2

|u−c|2 |φ |2
]

dρ = 0.

It follows that, forci not to vanish,

(4.3) Ri = −Mρρ

u′2
<

1
4

.

Hence, for an hydrostatically balanced flow to be ill-posed (elliptic) it is nec-
essary that the local Richardson number be smaller than one quarter, a result that
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extends the range of validity of Miles’ and Howard’s beyond steady, planar strati-
fication profiles.

Similar computations can be carried out for multilayer flows. First, we prove
that instability can only arise when there are critical layers. In the discrete case,
this means that the real part of the unstable eigenvalue has to lie within the range
of the velocities. To show this, the equation for simple waves (corresponding to
(3.7) in the continuous case) is

[

(u j −c) ∆2 +
1−Sj

u j −c

]

Mξ , j = 0.

Multiplying by M̄ξ , j and summing by parts, one obtains

N

∑
1

∣

∣∆+Mξ , j

∣

∣

2− 1−Sj

(u j −c)2

∣

∣Mξ , j

∣

∣

2
= 0.

The imaginary part is

−2ci

N

∑
1

(u j −cr)
1−Sj

|u j −c|4
∣

∣Mξ , j

∣

∣

2
= 0,

and, clearly ifci 6= 0, thenu j −cr has to change sign, and hencecr is in the range
of theu j .

To make an argument similar to Howard’s in the discrete case,one introduces

φ j =
Mξ , j√
uj−c, multipllies (4) by φ̄ j√

uj−c and adds by parts, yielding

N

∑
1

[
√

(u j −c)(u j+1−c)
∣

∣∆+φ j
∣

∣

2

−
(

1−Sj

u j −c
+
√

u j −c∆2
√

u j −c

)

∣

∣φ j
∣

∣

2
]

= 0,

wherec= cr + ici. The real part ofc can be absorbed in theu j ’s, and the imaginary
part of the equation becomes

N

∑
1

Im

[

√

(u j − ici) (u j+1− ici)

]

∣

∣∆+φ j
∣

∣

2

−
(

1−Sj

u2
j +c2

i

ci + Im
[√

u j − ici ∆2
√

u j − ici
]

)

∣

∣φ j

∣

∣

2
= 0,

or, if ci 6= 0,

N

∑
1

F(ũ j , ũ j+1)
∣

∣∆+φ j
∣

∣

2
+

(

1−Sj

c2
i (ũ

2
j +1)

+2−F(ũ j , ũ j+1)−F(ũ j , ũ j−1)

)

∣

∣φ j
∣

∣

2
= 0,

where

ũ j =
u j

ci
, F(u,v) =

1√
2

√

1−uv+
√

(1+u2) (1+v2) .
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This expression can be simplified further by changing variables to u = sinh(x),
v = sinh(y). ThenF(u(x),v(x)) = coshx−y

2 , and, in terms of

(4.4) θ j = sinh−1
(

u j

ci

)

,

one obtains
N

∑
1

cosh
θ j −θ j+1

2

∣

∣∆+φ j
∣

∣

2

+

(

1−Sj

c2
i cosh2 (θ j)

−2sinh2
(

θ j −θ j−1

4

)

−2sinh2
(

θ j −θ j+1

4

)

)

∣

∣φ j
∣

∣

2
= 0,

the discrete equivalent to (4.2).
In fact, if one considers the differences inθ ’s to be small and performs the

corresponding truncated Taylor expansion, one recovers (4.2) exactly. However, it
is not clear how to go beyond this heuristics, and obtain a necessary condition for
instability as in the continuous case.

The problem is that theθ differences are not necessarily small even if those in
theu’s are: the occurrence ofci in (4.4) amplifies, whenci is small, the effect of the
shear. Because of this difficulty, we analyze the stability of multilayer flows on a
case by case basis in [14, 2], concentrating on two and three-layer systems. These
are not only the cases that appear most frequently in applications, but also consti-
tute, in a certain sense, the discrete equivalent of (4.1), the expansion near a critical
layer: one is not allowed in the multilayer case to Taylor-expand the fields, but
may instead attempt to capture the presumably “local” character of the instability,
by concentrating on the layers between which the sign of(u j −ci) changes.

5 Conclusions

This article formulates a unified description of stratified flows in hydrostatic
balance, including both multilayered and continuously stratified flows. Remov-
ing the mean stratification profile from the independent variables allows one to
consider vertically periodic fluctuations around a background stratification profile.
These periodic flows provide a simpler setting for analytical considerations than
flows bounded in the vertical by lids or free surfaces.

By adopting a multilayered–isopycnal approach, one can think of the equations
as a system of conservation laws indexed by the density. Thisrealization permits
computing nonlinear simple waves up to their breaking time,and to introduce a
novel characterization of stability, based on the local type (hyperbolic or elliptic) of
the system. With this characterization, one can to re-interpret classical theorems on
shear instability of stratified flows and extend them into therealm of non-uniform,
unsteady flows.
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The methodology and results described in this article form one point of depar-
ture for the study of mixing, the onset of which can be attributed frequently to shear
instability and breaking waves.
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