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ABSTRACT

This article aims to make a detailed analysis of co-flowing plane Couette flows. Particularly, the variation of flow quantities from the turbulent
to non-turbulent region is studied. While the enstrophy exhibits a sharp jump, the other quantities (e.g., mean velocity, Reynolds normal stress,
and kinetic energy) show a continuous variation across the interface. The budget analysis of Reynolds normal stresses reveals that the terms
playing a key role in turbulence transportation vary depending on the Reynolds normal stress under study. The terms production, diffusion,
and redistribution play an important role in streamwise Reynolds stress ðu0u0 Þ. In the spanwise Reynolds stress ðv0v0 Þ, the diffusion terms play
a significant role. In the wall-normal Reynolds stress ðw0w0 Þ, only the redistribution term is significant. The influence of one flow over another
in the co-flow state was observed through the additional mean velocity and Reynolds normal stress found in the system compared to a standard
plane Couette flow (pCf). Comparing the co-flow system with a conventional pCf system, the former exhibits greater vorticity, vortex stretching,
and kinetic energy. A detailed analysis on the geometry and topology of flow structures was studied using flow invariants.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0107519

I. INTRODUCTION

There exist numerous flow systems where turbulent and non-
turbulent flows are adjacent to each other (e.g., jets, wakes, plumes,
and boundary layers). Most studies often limit to studying the turbu-
lent region, to understand turbulence dynamics of the flow system.
However, this leaves an important aspect unattended—how does the
flow transit from a turbulent to non-turbulent region? Relatively fewer
studies approached this problem by studying the interface region,1–5

which revealed some fundamental characteristics of the interface and
the flow physics in the region. The interface is an extremely thin region
with a thickness of order Taylor length scale,6,7 comprised of two
layers—the laminar superlayer or viscous superlayer (VSL) and the
turbulent sub-layer (TSL). The theoretical and computational argu-
ments about the existence of these layers were discussed by da Silva
et al.3 The observation of the viscous sub-layer (VSL) was first made
by Taveira and da Silva.8 Figure 1(a) shows a schematic of the three
regions—turbulent, irrotational, and the interface. The figure further
shows the two sub-layers of the interface—VSL and TSL. The VSL lies
adjacent to the irrotational region, and the TSL lies adjacent to the tur-
bulent region. The primary purpose of the existence of VSL is to
induce vorticity, which is achieved through a process called viscous
diffusion.9 The genesis of vorticity in the VSL helps to smoothly

match the vorticity from zero (in the irrotational region) to a finite
value (in the TSL). The vorticity increases as we go into the inter-
face region (from VSL to turbulent region, through TSL). The
extremely small thickness of the interface results in sharp vorticity
gradients in the region, which is proposed to be a characteristic fea-
ture of TNT flows of all classes (jets,10–13 plumes,14 wakes,1 and
boundary layers5,15,16).

A great amount of work was particularly done in the class of jets.
In the work by Teixeira and da Silva,10 adjacent isotropic turbulent
and non-turbulent regions were studied analytically and computation-
ally using Rapid Distortion Theory (RDT) and direct numerical simu-
lation (DNS), respectively. In their work, da Silva and Pereira11 have
simulated a turbulent plane jet and studied the topology of turbulent
structures and the dynamics of flow across the turbulent non-
turbulent interface (TNTI) using invariants of velocity gradients, rate-
of-strain, and rate-of-rotation. The same plane jet configuration was
used by Taveira and da Silva to study the kinetic energy and perform
budget analysis.4 Breda and Buxton17 have studied the TNTI region
and compared the dynamics between a round jet and fractal jet. The
study on TNTI dynamics in wakes behind a flat plate was done by
Bisset et al.1 The article elaborates on various global and local dynam-
ics like turbulent kinetic energy, entrainment, etc., giving an overview
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of various aspects. The work done by Krug et al.14 gave a holistic view
on kinetic energy and entrainment dynamics in turbulent plumes. In
the class of wall-bounded flows, TNT studies were largely made in the
boundary layer flows. Chauhan et al.5 studied the dynamics and
entrainment process in boundary layer flows.

Most of the studies are limited to only the open flows like jets
and wakes, and the study of such adjacent turbulent/non-turbulent
systems remains obscure in semi-confined and confined flows. Except
the preliminary studies by Narasimhamurthy et al.18,19 and Teja
et al.,20,21 no significant work has been done in this class of flows.
Figure 1(b) shows the flow configuration used by Narasimhamurthy
et al. and Teja et al. In the work by Teja et al.,20 two plane Couette
flows (pCfs) at different Reynolds numbers ðReh ¼ 500; Rel ¼ 100Þ
are made to flow adjacent to each other in the same direction. Here,
Reh and Rel correspond to the Reynolds number of flow sheared by
plates moving at velocities Uh and Ul. Reynolds number in the current
flow is defined based on half channel height (h) and half the plate
velocity. Thus, Reh ¼ Uhh

2� and Rel ¼ Ulh
2� . Previous studies on pCf

reported the critical Reynolds number to be approximately 500.22,23

This was also confirmed by Teja et al.20 Thus, the Reynolds number
combination ðReh;RelÞ ¼ ð500; 100Þ represents the co-flow of turbu-
lent and laminar pCfs. Teja et al.20 presented the kinematic analysis of
adjacent turbulent/non-turbulent flows for different Reynolds number
combinations (Reh, Rel) and Reynolds number ratios ðr ¼ Reh=RelÞ.
However, several dynamical aspects like the effect of one flow over the
other, energy budget analysis24–26 of the flow system, vorticity dynam-
ics,24,27,28 and topology29 still remain unexplored. This article is aimed
toward extending the study of Teja et al.20 using the same data to ana-
lyze further, studying the dynamics of unstable co-flowing plane
Couette flow for a particular Reynolds number combination
ðReh;RelÞ ¼ ð500; 100Þ. A qualitative visualization of the base flow
(defined in Teja et al.20) and co-flow can be seen in Fig. 6.

It is important to understand the novelty of the current flow sys-
tem relative to other systems studied so far. In the other flow systems
(like jets, wakes, boundary-layers, etc.), the non-turbulent region is
quiescent and unbounded, and, thus, the turbulence tends to freely dif-
fuse into surroundings, leading to flow dynamics like the entrain-
ment.30 In the current system, the flow is forced to remain at a specific
sub-critical Reynolds number ðRel ¼ 100Þ (and thus in viscous domi-
nated region) through the top plate velocity ðUlÞ. Any turbulence
transported from the adjacent turbulent region is thereby subjected to
viscous effects. This prohibits the turbulence entrainment. In addition,
the entire system is semi-confined by walls (on the top and the bot-
tom). One of the applications of the plane Couette flows31 and the cur-
rent flow configuration is the movement of ships in the sea. Gourley32

considered the keel of a flat bottomed ship as the moving top plate of a
plane Couette flow and the sea bed as the stationary bottom plate of
the plane Couette flow. The fluid motion between them resembles the
flow characteristics of the plane Couette flow. The current problem of
co-flowing plane Couette flows replicates the scenario of ship-to-ship
cargo transfer operation. During this process, a daughter vessel
approaches the mother vessel. During the approach and departure of a
daughter ship, the two vessels have different velocities, thus resembling
the scenario of two co-flowing plane Couette flows with different top
plate velocities.

Though the system is unstable and periodic in nature, the objec-
tive of the current study is to understand the influence of a turbulent
flow on the adjacent co-flowing non-turbulent flow. In order to under-
stand the large scale dynamics of the shear-layer, the analysis of mean
quantities is considered. Upon averaging, the mean quantities have no
wave characteristics (see Fig. 2). It is, hence, considered to neglect the
wave analysis of the flow in the current study. Thus, the interface is
statistically a straight line at y � 8:4h. However, this does not imply
that the wave has no impact on flow variables, but the wave effect has

FIG. 1. (a) Schematic representation of turbulent/non-turbulent interface region and its sub-layers sandwiched between the turbulent and non-turbulent regions, (b) current flow
configuration and the dimensions of computational flow system. x, y, and z represent the streamwise, spanwise, and wall-normal directions, respectively. The Uh and Ul
represent the velocities of the two adjacent top plates.

FIG. 2. Contours of (a) mean streamwise
velocity, (b) turbulent kinetic energy ð�kÞ at
z¼ 1h. Here, �k is defined as �k ¼ 1

2ðu0u0
þv0v0 þw 0w 0 Þ. The x and y represent the
streamwise and spanwise directions,
respectively, and are normalized by h.
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been observed through the higher order statistical quantities. While
including the wave dynamics would make the problem more compre-
hensive and interesting, however, this is beyond the scope of current
investigation.

Since the interface is fixed at y � 8:4h, for a clear distinction
between the turbulent and non-turbulent regions, a modified y-axis
(yI) is used for analysis of the mean quantities. yI is obtained by
subtracting the interface location from y, i.e., ðyI ¼ 8:4h� yÞ. The
negative and positive values of yI correspond to the turbulent and
non-turbulent regions, respectively.

The article introduces the computational code, the domain, and
grid details in Sec. II. Subsections IIIA and IIIA2 discuss the vortex
dynamics of the flow problem. A comparison between the base flow
(plane Couette flow) and the co-flow is made wherever relevant.
Subsection IIIB uses the invariant analysis to understand the flow topol-
ogy observed in Secs. IIIA and IIIA2. Subsection IIIC explains the
effect of turbulent pCf on the adjacent non-turbulent pCf through
mean and turbulent quantities. The analysis of turbulence transporta-
tion through the budget analysis of the turbulent normal stress compo-
nents is explained in Subsection IIID. Section IV reports the summary
of the findings.

II. NUMERICAL METHODOLOGY

In the present direct numerical simulation (DNS) study, the com-
plete Navier–Stokes equation for an isothermal and incompressible
flow was solved using a parallel finite volume code, MGLET.33 The
solver adopts staggered Cartesian mesh. The spatial discretization of
convective and diffusive fluxes is performed using a second-order
accurate central differencing method. The momentum equations are
marched in time by a fractional time-stepping method using a second-
order accurate Adams–Bashforth method. Finally, the Poisson equation
is numerically solved by a multi-grid technique based on point-wise
velocity-pressure iterations.

In this study, a computational domain of lengths 50:24h; 16:80h;
and 2h along the streamwise (x), spanwise (y), and wall-normal (z)
directions, respectively, is taken. The same domain was used in the
previous studies of Narasimhamurthy et al.18,19 and Teja et al.20,21

Figure 1(b) shows the computational domain and its orientation. The
boundary conditions for the top and the bottom walls were given as
no-slip, while the other sides were given the periodic boundary condi-
tion. In a physical sense, this configuration corresponds to a spanwise
arrangement of multiple plane Couette flows with alternating high

and low Reynolds numbers. Thus, the present domain in Fig. 1(b)
shows two interface zones—one at the start or end of the domain
(y ¼ 0h or 16:8h), and one at the center of the domain (y ¼ 8:4h)
along the spanwise direction.

A structured grid consisting of 256, 256, and 64 grid points along
the x, y, and z directions, respectively, is taken. While the grid is uni-
formly spaced along the x and y directions, it is stretched along the
wall-normal z-direction. The mesh is kept fine close to the walls, and it
is stretched as we move toward the channel center. For the base state
Reynolds number (as defined in Teja et al.20) Re¼ 500, the grid resolu-
tion (in terms of viscous wall units) along the x and y directions is 7.34
and 2.46, respectively, and it varies from 0.9 at the walls to 1.48 at the
channel center along the z-direction. Figures 3(a) and 3(c) show the
profiles of streamwise and spanwise averaged Taylor and Kolmogorov
length scales for the base state Reynolds number (see Teja et al.20) of

500, respectively. The Taylor length scale is defined as k ¼
ffiffiffiffiffiffiffiffiffiffi
hu0u0i
h@u0@x @u

0
@x i

r
.34

Figures 3(a) and 3(b) shows the variation of Taylor length scale ðkÞ
and Reynolds number (calculated based on k using the formula
Rek ¼ vrmsk

� ) across the wall-normal direction, respectively. Figure 3(b)
shows the flow Reynolds numbers calculated based on length scales
that are most significant. The Kolmogorov length scale is defined as

g ¼
ffiffiffiffiffiffiffi
�3

� 4
q

. The value of g in the current case varies approximately

between 0.043 and 0.048 in the domain [see Fig. 3(c)]. A detailed study
on the adequacy of the current grid and domain has been explained in
Teja et al.20

III. RESULTS
A. Vorticity

One of the most effective ways to distinguish the turbulent and
non-turbulent regions and the transition between the regions is by
using the enstrophy. Enstrophy is defined as the dot product of instan-
taneous vorticities ðxixiÞ. Figure 4 shows the spanwise variation of
enstrophy. The high values of enstrophy between y � ½0; 8� depict that
the region is turbulent. The approximate zero magnitude of enstrophy
between y � ½9; 15� denotes that the region is non-turbulent. The
interface locations ðy � 8:4h; y � 16:8hÞ exhibit a sharp jump signify-
ing the change in the region. Such a jump at turbulent/non-turbulent
interface was also observed in jets, wakes, and boundary layers.3,15,17,35

This indicates that the jump is characteristic feature of TNTI irrespec-
tive of class of flow.

FIG. 3. Profiles of (a) Taylor length scale ðkÞ, (b) Taylor length scale based Reynolds number ðRekÞ, and (c) Kolmogorov length scale ðgÞ for the base state Reynolds number
500 in the plane Couette flow. Data here stem from both time averaging and spatial averaging along the homogeneous streamwise (x) and spanwise (y) directions.
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A non-turbulent region is characterized by zero vorticity (and
hence zero enstrophy). However, Fig. 4 shows a near zero enstrophy
in the non-turbulent region. We hypothesize that such a non-zero ens-
trophy could be due to walls (studied in Sec. IIIA 1) and/or due to tur-
bulence transportation (explored later in the article).

1. Variation of enstrophy and wave characteristics
along wall-normal direction

To understand the origins of enstrophy in the non-turbulent
region, instantaneous enstrophy contours plotted at different wall-
normal locations in Fig. 5. We notice that the magnitude of enstrophy in
the non-turbulent region is large close to the bottom wall [see Fig. 5(e)]
and decreases as one moves toward the top wall [see Fig. 5(a)]. This
suggests that the enstrophy could have possibly originated at the sta-
tionary bottom wall z¼ 0 due to irrotational/potential vorticity.

Figure 5 also shows the variation in wave characteristics along z.
This depicts the bilateral nature of the flow instability. The influence
of bilateral nature of the flow problem can also be seen in turbulent
kinetic energy (see Fig. 17 in Sec. IIID4). However, a detailed analysis
of this feature is not in the scope of current article and could be inter-
esting for a future research.

2. Comparison of vorticity between base flow
and present co-flow

A qualitative comparison of vorticity is made using the three-
dimensional iso-contours to understand how the co-flow system dif-
fers from the base flow (standard pCf). Figures 6(a) and 6(b) compare
the iso-contours of streamwise component of vorticity ðxxÞ between
the base flow (left) and co-flow (right). The positive values of xx are
clockwise rotating vortices and are colored in green. The structures
with a negative value of xx are colored red and represent the counter-
clockwise rotating vortices. While the structures are small and dense
in the base flow, the structures are bulky and sparse in the co-flow.
The wide and long structure of vortices in co-flow could be due to the
shear effect.

Similarly, Figs. 6(c) and 6(d) compare the iso-contours of span-
wise component of vorticity ðxyÞ between the base flow (left) and the
co-flow (right). The structures with positive values of xy rotating in
the clockwise direction are colored in yellow. The blue-colored struc-
tures are the vortices with counterclockwise rotation and have negative
values of xy. While the structures in base flow are dense and evenly
distributed, the structures in co-flow are sparsely distributed.
Furthermore, we observe that the turbulent region is dominated by

FIG. 5. Instantaneous enstrophy ðxixiÞ
contours plotted at different wall-normal (z)
locations: (a) z ¼ 1:9h; (b) z ¼ 1:5h; (c)
z ¼ 1h; (d) z ¼ 0:5h; and (e) z ¼ 0:1h.
The x and y represent the streamwise and
spanwise directions, respectively.

FIG. 4. Variation of instantaneous enstro-
phy ðxixiÞ along the spanwise ðyIÞ direc-
tion. The variation is plotted for all the
streamwise (x) locations (each location
represented by a different colored line)
and at mid wall-normal plane ðz ¼ 1hÞ.
The enstrophy is normalized by Uh=h, and
x and y are normalized by h.
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clockwise vortices. While the counterclockwise vortices tend to appear
upon decreasing the iso-contour value, they are significantly less in
number. Thus, the turbulent flow predominantly contains the clock-
wise vortices.

We see that the vortical structures in Fig. 6 are in the form of
sheets. This is particularly clear in the co-flow [Figs. 6(b) and 6(d)]. A
more detailed analysis on this flow topology and geometry is done
using invariant analysis in Sec. III B.

a. Vorticity dynamics. Due to the co-flow of pCfs at different
Reynolds numbers, it is possible that the shear could influence the vorti-
ces, of particular interest here is the straining of vortices. This is studied
in the base state and co-flow states using the vortex stretching. The origin
of this term from the vorticity equation can be seen in Appendix A.

Vortex stretching is the elongation of vortices in the fluid due to the
mean flow. The termxj

@Ui
@xj

in the vorticity equation [Eq. (A1)] numeri-

cally represents this phenomenon. The elongation of vortices is accom-
panied by increase in the strength of the vortex.

3. Comparison of vortex stretching between base flow
and co-flow

Figures 7(a) and 7(b) show the three-dimensional iso-contours of
streamwise component of vortex stretching (xj

@U
@xj
) between a standard

pCf (left) and a co-flowing turbulent and non-turbulent flows (right).
A comparison of turbulent structures between the streamwise vorticity
[Figs. 6(a) and 6(b)] and the streamwise vortex stretching [Figs. 7(a)
and 7(b)] shows that the vortical structures are thinner and elongated.

FIG. 6. Three-dimensional iso-contours showing: (a) and (b) streamwise component of vorticity ðxxÞ and (c) and (d) spanwise component of vorticity ðxyÞ. The contours on
the left and right show the base state (pCf) and co-flow state, respectively. The flow Reynolds number of the base flow is 500, and the Reynolds number combination of co-flow
is (500, 100). The red and blue colored structures indicate the negative iso-contour value, and green and yellow colored structures indicate the positive iso-contour value.

FIG. 7. Three-dimensional iso-contours showing the (a) and (b) streamwise component of vortex stretching (xj
@U
@xj
) and (c) and (d) spanwise component of vortex stretching

(xj
@V
@xj
). The contours on the left and right show the base state (pCf) and co-flow state, respectively. The flow Reynolds number of the base flow is 500, and the Reynolds num-

ber combination of co-flow is (500, 100). The red and blue colored structures indicate the negative iso-contour value, and green and yellow colored structures indicate the posi-
tive iso-contour value.
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A similar effect can be observed in co-flow, except that the structures
are more elongated than base flow. This demonstrates the straining of
vortical structures.

Similarly, Figs. 7(c) and 7(d) show the spanwise component of
vortex stretching (xj

@V
@xj
). Unlike Figs. 7(a) and 7(b), the contours

barely show stretching along the spanwise direction [compare Figs.
7(c) and 7(d) with 6(c) and 6(d)]. This is due to the small magnitude
of @V@xj, which barely stretches the vortex xj. On the contrary, they are

much thinner than structures in Figs. 6(c) and 6(d). This tells that the
thinning due to streamwise elongation is more dominant than the
elongation due to spanwise velocity.

B. Invariants analysis

We have noticed that the vortical structures showed a sheet-like
structure in Fig. 6. To further understand the topology, we use the
invariants of velocity gradient tensor ðUi;jÞ and its components—the
rate of strain ðSijÞ and the rate of rotation ðXijÞ tensors. This helps to
understand not only the topology but also the geometry and dynamics
at local level. The reader is referred to Appendix B for a theoretical
understanding of the invariant analysis and how it helps to determine
the topology, dynamics on flow structures. The invariants are robust
tools for the analysis since they are intrinsic part of the flow system
and independent of the coordinate-axis.36 Furthermore, the invariant
maps aid in understanding the topological and geometric details that
are abstruse in contour plots.

1. Quantifying the invariants

Since the invariants in the current study are calculated from the
mean quantities, they are homogeneous along x and can be averaged
along the same. Figure 8 shows the spanwise variation of various
invariants plotted at mid-channel location ðz ¼ 1hÞ. We notice that
QX and Qs are the most dominant quantities representing that the
flow is characterized by high enstrophy and relatively dominated by
the dissipation process. A plot comparing the three invariants
ð�Q; �R;RsÞ shows that �Q has relatively significant magnitude, but other
quantities can be neglected.

2. Comparison of invariant maps between base flow
and co-flow

In order to understand how the geometry, topology, and dynam-
ics in co-flow differ from conventional pCf, invariant maps obtained
from the mean quantities are compared against each other. The left
[(a)–(c)] and right [(d)–(f)] panels of Fig. 9 show the invariant maps
of turbulent pCf (base flow) and co-flowing pCfs, respectively.

The blue and red colored triangles in Figs. 9(d)–9(f) represent the
non-turbulent and turbulent regions, respectively. Clearly, except the
ðQX ;QsÞ invariant map, the other invariant maps differ significantly
between the base state flow and co-flow state. The ð�R; �QÞ map for the
base state [Fig. 9(a)] shows that �Q is predominantly positive, and,
hence, it is dominated by vortical structures. The value of �R being both
positive and negative, and the vortical structures undergo both elonga-
tion and compression. A greater number of points with positive �R sig-
nify that a greater number of vortical structures undergo compression
than elongation. In contrast, the co-flow has both positive and negative
values of �Q and hence has both vortical and dissipative structures.
Unlike the base state, a greater proportion of points in co-flow have
negative �R, implying that more structures undergo elongation than
compression. This is in agreement with the observation in Sec. IIIA 2
and could be due to shearing effect present in co-flow. The ðQX ;�QsÞ
maps show that both the base state and co-flow state have vortex sheet
structures, i.e., the viscous dissipation and enstrophy are equally
dominant.

To understand how the flow dynamics, geometry, and topologi-
cal features in co-flow state change with wall normal location, the
invariant maps are plotted at different z for the co-flow state. Figures
10(a)–10(c) show the invariant maps close to stationary bottom wall
ðz ¼ 0:2hÞ, and Figs. 10(d)–10(f) show maps close to the moving top
wall ðz ¼ 1:8hÞ. The invariant maps at channel core ðz ¼ 1hÞ can be
seen from Figs. 9(d)–9(f). The ð�R; �QÞ maps show the presence of both
vortical and dissipation structures close to walls. However, in the chan-
nel core, we only find the vortical structures. The dominant dissipation
happening at walls could be responsible for the appearance of dissipa-
tive structures at z ¼ 0:2h and z ¼ 1:8h. The presence and absence of
vortical structures in the non-turbulent region at different heights
(seen in Fig. 5) can also be seen from ð�R; �QÞ invariant maps. In
Fig. 10(d), the non-turbulent region has no positive Q, thus signifying
the absence of vortical structures in the non-turbulent region. The
ðRs ;QsÞ invariant maps at different wall-normal location show that
the fluid elements in the turbulent region undergo only expansion
close to the bottom wall and predominantly compression in the chan-
nel core. At the top wall, we see both the compression and expansion
of vortical structures. The elements in the laminar region, however,
exhibit a monotonous decrease in deformation (compression) as we
move from bottom wall to top wall. The ðQx ;QsÞ maps show that the
vortical structures remain vortex sheets at all wall-normal locations.

C. First-order and second-order statistics

The influence of one flow over another is understood through
the mean quantities of co-flow, which are plotted at various spanwise

FIG. 8. Spanwise variation of invariants:
(a) h�Q ix ; h�Rix ; hQs ix ; hRs ix ; hQX ix ;
(b) h�Qix ; h�Rix ; hRs ix . The invariants are
plotted based on mean statistics and
are streamwise averaged. The figures are
plotted at mid z-plane ðz ¼ 1hÞ.
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locations, and the profile is compared with the plane Couette flow
(pCf). The mean streamwise velocity and streamwise Reynolds normal
stress profiles for the base flow and co-flow are plotted in Fig. 11. A
comparison of mean streamwise velocity for the base flow [Fig. 11(a)]
and turbulent co-flow [Fig. 11(c)] shows a similar “S” shaped profile
in the turbulent region. However, it is interesting to see that the mean
velocity of the non-turbulent region of co-flow shows a curved profile.
Recall that the mean streamwise velocity of a laminar pCf has a linear
variation.37 A comparison of mean velocity profiles between the con-
ventional pCf and co-flowing pCf in the laminar regime is plotted in
Fig. 12. The figure shows the additional momentum existing in the co-
flow system. Furthermore, in Fig. 11(c), one can see that the mean
velocity is much higher at the boundary of the non-turbulent region

than the core (also shown in Fig. 12). This continuous variation in
mean velocity along y leads to shearing across multiple layers in the
spanwise direction. The enhanced momentum in the non-turbulent
region could possibly due to the adjacent high Reynolds number flow.

Figure 11(b) shows the wall-normal variation of u0u0 for the base
flow (turbulent pCf at Reynolds number 500). The profile of u0u0 for a
turbulent pCf is symmetric about channel centerline ðz ¼ 1hÞ.
However, this symmetry is not observed in the turbulent region of co-
flowing pCf, and the profile is more skewed toward the top plate [see
Fig. 11(d)], i.e., the magnitude of u0u0 is higher at the top wall and
lower at the bottom wall. Furthermore, Fig. 11(d) also shows the pres-
ence of u0u0 in the non-turbulent zone. Such an observation was also
made in previous studies like Xavier et al.38 and Philips.39 This implies

FIG. 9. Comparison of ð�R ; �QÞ; ðRs ;Qs Þ, and ðQX ;Qs Þ invariant maps between base flow and co-flow. (a)–(c) show the three invariant maps for the base flow (pCf at Re
500), and (d)–(f) show the three invariant maps for the co-flowing pCfs. The figures are plotted along the spanwise direction (each triangle representing a spanwise grid-point)
at mid streamwise and wall-normal plane ðx ¼ 25:12h; z ¼ 1hÞ.
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that the turbulence is being transported from the turbulent region to
the non-turbulent region. Similarly, the profile of v0v0 and w0w0

showed non-zero magnitudes in the non-turbulent region. The pres-
ence of Reynolds normal stresses in the non-turbulent region demands
further investigation, and the budget analysis of Reynolds normal
stress terms is done toward this end.

D. Budget analysis

The reader is referred to Appendix C to see the derivation of the
turbulent budget equation. This section focuses on budget analysis of
the three Reynolds normal stress terms. The budget equation for each
term is obtained by inserting desired values of i and k in Eq. (C1).
Since our current interest is to study the dynamics across the interface,
we plot the variation of each term along the spanwise axis. Each term
of the budget equation being homogeneous along x is averaged in that

direction. The resulting planar data are taken, and budget analysis is
done at a particular wall-normal location, here at z ¼ 1h.

1. u0u0 budget

The budget equation for u0u0 is obtained by taking i ¼ k ¼ 1 in
Eq. (C1). Since we deal with mean quantities, the temporal term
becomes zero, and the spatial derivative along x becomes zero. Based
on the above conditions, the u0u0 budget equation simplifies to

0 ¼� �U j
@u0u0

@xj
� 2 u0u0j

@ �U
@xj

" #
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@u0u0ju
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; j 2 2; 3½ �8j 2 N: (1)

FIG. 10. Comparison of invariants for co-flowing plane Couette flows at different wall-normal planes. (a)–(c) ð�R ; �QÞ; ðRs ;Qs Þ, and ðQX ;Qs Þ invariant maps at z � 0:2h
(bottom plate); (d)–(f) represents the same maps at z � 1:8h (top plate).
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Figure 13(a) shows the variation of each term with yI. We see
that the convection, viscous diffusion, and pressure diffusion (PD)
terms are approximately zero all along the yI. A closer look at the vari-
ation of the three terms along yI can be observed from Fig. 13(b). We
see that the viscous diffusion and the convection term vary at an order
less compared to the other terms. However, the pressure diffusion
varies only at an order of 10�7 and, hence, is insignificant. The other
terms—production, dissipation, and redistribution, which are signifi-
cant in the turbulent region, undergo a “U” shaped variation in the
non-turbulent region, decreasing gradually as they move from turbu-
lent to the non-turbulent region (at the interface yI¼ 0) and increasing
gradually as we move from non-turbulent to turbulent regions (at the
interface yI ¼ 8:4h). Note that the terms do not reach absolute zero
anywhere in the non-turbulent region. The other term, turbulent diffu-
sion (TD), which is significant in the turbulent region, drops to
approximate zero right at the interface yI ¼ 0. The turbulent diffusion
does not remain uniform all along the non-turbulent region but raises
to a maximum value gradually till yI � 4:2h (i.e., half the non-

FIG. 11. Wall-normal (z) variation of (a) and (c) mean streamwise velocity and (b) and (d) Reynolds normal stress term. The top panel (a) and (b) shows the results for base
state flow (Re¼ 500). The bottom panel (c) and (d) shows results for co-flow ðReh;RelÞ ¼ ð500; 100Þ. Flow variables are spatially averaged in homogeneous directions—for
the base state along x, y and for the co-flow state along the x direction. Quantities are plotted for different spanwise (y) locations. The turbulent core, non-turbulent core, and
interface regions are shown clearly. The dashed lines correspond to the turbulent core region, the solid lines correspond to the interface, and the dotted lines correspond to the
non-turbulent region. The overline represents the temporal averaging, and subscript represents the spatial averaging directions.

FIG. 12. Demonstration of momentum difference between an ideal laminar flow and
the present non-turbulent region of co-flow. The dashed dot line shows profile at
the non-turbulent core region ðy ¼ 12:56hÞ, and dashed and dotted lines represent
the profiles at interface locations ðy ¼ 8:43h; y ¼ 16:7hÞ.
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turbulent region) and then decreases till the other interface at
yI ¼ 8:4h. This variation can be seen from Fig. 13(b). Thus, the analy-
sis suggests that the primary reason for the existence of u0u0 in the
non-turbulent region could be the production, which is due to the
non-zero gradient of mean streamwise velocity.

The process of turbulence generation can be understood from
the production term (P), which is given by the formula

Pu0u0 ¼ �2 u0u0j
@ �U
@xj

" #
: (2)

Despite the negative sign before the term, we see that the term is
positive [see Fig. 13(a)], which implies that u0u0j and

@ �U
@xj

are negatively

correlated, i.e., turbulence is being produced at the expense of energy
from the mean velocity gradient. With the pressure diffusion being
insignificant and viscous diffusion contributing to a very small extent,
the transportation of the turbulence is predominantly due to turbulent
diffusion. This is true for the whole turbulent flow field and the non-
turbulent core region. However, inside the non-turbulent region, close
to the interface regions ðyI � 0; yI � 8:4hÞ, we see that viscous diffusion
is as much important as the turbulent diffusion [see Fig. 13(b)] and is
negatively correlated. The turbulent diffusion (TD) is defined as follows:

T Du0u0 ¼ �
@u0u0ju

0

@xj
: (3)

The positive and negative values of turbulence diffusion and vis-
cous diffusion terms represent transportation of turbulence from non-
turbulent to turbulent, and from turbulent to non-turbulent region,
respectively. The redistribution and dissipation play an equally impor-
tant role, i.e., while about half of the total available turbulent energy in
the u0u0 is redistributed into other directions, the other half is dissi-
pated. The redistribution or pressure-strain rate (PSR) and the dissipa-
tion (D) terms are given by

PSRu0u0 ¼ 2
p0

q
@u0

@x

" #
;Du0u0 ¼ 2�

@u0i
@xj

@u0i
@xj

: (4)

With these terms playing important terms relatively to others, it
is reasonable to assume that the energy balance in the turbulent region
can be written in the form

Pu0u0 þ T Du0u0 þ Du0u0 þ PSRu0u0 � 0: (5)

In the non-turbulent regime, significant mean velocity acts as a
source for the development of turbulence. It is interesting to note that
the turbulence on the non-turbulent side is mainly due to production
than diffusion. The turbulence diffusion drops rapidly to near zero
value close to the interface, and the viscous diffusion continues to
remain insignificant, making the role of diffusion in transporting the
turbulence to the non-turbulent side negligible. However, the produc-
tion term drops gradually, and we see that the term is still significant
in the non-turbulent region. The turbulence being produced is trans-
ported and destructed through the redistribution and dissipation pro-
cesses, respectively. As we move along the spanwise direction toward
the other interface at yI ¼ 8:4h, the production again raises after a
minimum in the non-turbulent core. The redistribution and dissipa-
tion come back into play. The turbulent diffusion remains insignificant
in the whole non-turbulent region, which starts to grow only after the
interface yI ¼ 8:4h. Hence, the energy balance here becomes

Pu0u0 þ Du0u0 þ PSRu0u0 � 0: (6)

2. v0v0 budget

To obtain the budget equation for v0v0 , we take i ¼ k ¼ 2. The
simplifications applied above are implemented here which result in an
equation as follows:
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The variation of each term of the v0v0 budget equation against
the yI was plotted in Fig. 14(a). We notice that all the terms, except the
viscous diffusion, are considerable in the v0v0 budget. The viscous dif-
fusion (VD) still remains approximately zero all along the spanwise
direction,

VDv0v0 ¼ �
@2v0v0

@x2j
: (8)

FIG. 13. Spanwise variation of (a) different budget terms and (b) convection, viscous diffusion, and pressure diffusion terms in the budget analysis of Reynolds stress term
hu0u0 ix for the Reynolds number combination (500, 100). The over-line and subscript represent the temporal and spatial x averaging. A modified y-axis (represented as yI) is
used here to differentiate turbulent and non-turbulent regions. Negative yI represents the turbulent region, and positive yI represents the non-turbulent region.
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The convection though non-zero has only minimal contribution.
This is due to the fact that �V and �W are small nullifying the term’s
contribution,

Cv0v0 ¼ ��U j
@v0v0

@xj
; j ¼ 2; 3: (9)

Contrast to the u0u0 budget, the production given by

Pv0v0 ¼ �2 v0u0j
@ �V
@xj

" #
(10)

is no more the significant term in v0v0 budget since the source of tur-
bulence production here (which is @ �V

@y ) is smaller. The most significant

contributors in the v0v0 budget are the diffusion terms—pressure dif-
fusion (PD) and turbulent diffusion (TD) terms,

PDv0v0 ¼ �
@v0u0jv

0

@xj
; T Dv0v0 ¼ �

2
q
@p0v0

@y
: (11)

Unlike in the u0u0 budget, the pressure diffusion in the v0v0 budget
does not go to zero since the term is gradient of y here. The two terms
though exhibit a similar pattern, they are negatively correlated.
However, the overall diffusion (i.e., the sum of pressure, turbulent, and
viscous dissipation) is positive which can be seen in Fig. 14(b). The pres-
sure diffusion and turbulent diffusion terms exhibit a sinusoidal varia-
tion in the turbulent region. The production being less and diffusion
being dominant, the transportation is mainly due to diffusion, and the
redistribution process becomes less significant. Further the positive value
of redistribution tells that the turbulent energy received is more than the
energy distributed. Redistribution or pressure strain-rate is given by

PSRv0v0 ¼ 2
p0

q
@v0

@xj

" #
: (12)

The profile of dissipation in the v0v0 budget remains qualitatively
similar to that of u0u0 budget; however, the magnitude of dissipation
varies according to the magnitudes of production and redistribution.
The dissipation of v0v0 turbulence energy is given as follows:

Dv0v0 ¼ �2�
@v0

@xj

@v0

@xj
: (13)

Considering the major players, the budget equation of v0v0 can
be written as

Dv0v0 þ Pv0v0 þ T Dv0v0 þ PDv0v0 þ PSRv0v0 � 0: (14)

However, as we enter the non-turbulent region, we see that vis-
cous diffusion, convection, and production drop to near zero at the
interface yI ¼ 0 and remain insignificant all along the non-turbulent
region (till yI ¼ 8:4h). While the redistribution and dissipation terms
gradually decrease, the two diffusion terms show a peculiar trend. The
diffusion increases as we enter the non-turbulent region and is maxi-
mum at a point close to the interface inside the non-turbulent region.
The increase in diffusion terms shows their active role in the transpor-
tation of turbulence energy at the interface. Beyond the maximum
point, the terms drop quickly to zero and remain insignificant all along
the core region. These terms start to grow as they approach the inter-
face yI ¼ 8:4h. With the rise in turbulence energy due to redistribu-
tion, the diffusion and dissipation mechanisms start to play their role.
The turbulent diffusion and pressure diffusion terms continue to
remain anti-correlated in the non-turbulent region. The net negative
diffusion [see Fig. 14(b)] close to the interface ðyI � 0Þ represents dif-
fusion from neighboring turbulent region to non-turbulent region.
The budget equation in the non-turbulent regions truncates to

Dv0v0 þ T Dv0v0 þ PDv0v0 þ PSRv0v0 � 0: (15)

3. w 0w 0 budget

To obtain the budget equation for w0w0 , we take i ¼ k ¼ 3. The
same simplifications are applied which results the equation as follows:
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The budget plot of w0w0 (see Fig. 15) shows that the redistribution is the
most dominant term. The predominant flow direction being x and the
wave being planar in x and y, and the only source of turbulence in the z
direction is redistribution of turbulence from u0u0 and v0v0 budget.
This makes redistribution the most important term in the budget

FIG. 14. Spanwise variation of (a) different budget terms and (b) various diffusion terms (turbulent diffusion, pressure diffusion, and viscous diffusion) in the budget analysis of
Reynolds stress term hv0v0 ix for the Reynolds number combination (500, 100). The over-line and subscript represent the temporal and spatial x averaging. See Fig. 13 cap-
tion for more details.
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analysis. The positive value of redistribution tells that the energy is
being received. The other terms are quantitatively much lesser. Though
the production produces turbulence to some extent, it is much lesser
(due to the same reason mentioned in v0v0 budget case) than the tur-
bulence obtained through redistribution. The terms diffusion and dissi-
pation control the turbulence. The convective part and the viscous
diffusion terms are approximately zero. In the non-turbulent region
too, all terms drop rapidly to zero. Though there exists turbulence
activity close to interface regions ðyI ¼ 0 and yI ¼ 8:4hÞ, it can be
neglected without affecting the physics.

The other components of Reynolds stresses ðu0v0 ; u0w0 ; v0w0 Þ
have smaller magnitudes (by an order of magnitude), and, hence, are
not presented in the current manuscript for brevity.

4. Turbulent kinetic energy

The combination of the three individual Reynolds normal
stresses gives turbulent kinetic energy (TKE), which is defined as

�k ¼ 1
2
ðu0u0 þ v0v0 þ w0w0 Þ: (17)

Figure 16 shows the variation of each turbulent quantity along the
spanwise direction. We see that the quantities hv0v0 ix; hu0u0 ix , and
hence h�kix have significant value in the non-turbulent region. We also

notice that the quantities drop and raise gradually in the non-turbulent
region forming a “U” shaped variation. As expected, the major contribu-
tion to h�kix is from hu0u0 ix , followed by hv0v0 ix and hw0w0 ix . The
higher magnitude of hv0v0 ix compared to hw0w0 ix could be due to the
instability wave.

Figure 16(b) shows the spanwise variation of turbulent kinetic
energy ðh�kixÞ and Reynolds normal stresses
ðhu0u0 ix;hv0v0 ix;hw0w0 ixÞ. A comparison of these quantities between
the base state (plotted in blue) and the co-flow state (plotted in red)
shows that the TKE is higher in the co-flow state compared to the base
state. The enhanced TKE in co-flow is predominantly due to the
hv0v0 ix . While the magnitude of hu0u0 ix is approximately the same in
both the cases, the magnitude of hw0w0 ix;hv0v0 ix is higher in co-flow
compared to base flow. The quantities are almost twice their base state
magnitude on the turbulent side and half the base state magnitude on
the non-turbulent side. We believe that the enhancement of hv0v0 ix in
the co-flow state is due to the shear layer instability. However, the
increase in hw0w0 ix may not be due to the instability wave since the
wave is planar (existing in the xy-plane). The increase in hw0w0 ix is
possibly due to the additional redistribution in co-flow.

Figure 17(a) shows the spanwise variation of h�kix at different
wall-normal locations. We observe the monotonic increase in h�kix on
the turbulent side with z till z¼1:55h, which drops beyond z¼1:55h.
The TKE at z¼1:79h is less than that at z¼1:55h. As we move along
z, the drop between turbulent and non-turbulent regions becomes
steeper and close to the top wall, and TKE drops abruptly at the inter-
face. This could be due to the decrease in the width of the mixing layer
with z (see Fig. 5), which is elucidated in Sec. IIIA1.

Furthermore, the article has so far discusses the statistics for a spe-
cific Reynolds number ratio [r¼ 5 corresponding to Reynolds number
combination (500,100)]. However, previous study by Teja et al.20 has
shown that the Reynolds number ratio has considerable effect on flow
physics. To explore the effect of “r” on turbulent kinetic energy, Fig.
17(b) was plotted to understand the spanwise variation of x� averaged
turbulent kinetic energy ðh�kixÞ for different Reynolds number ratios
ðr ¼ Reh=RelÞ 10, 7.5, 5, 3.5, and 2, corresponding to Reynolds number
combinations (Reh, Rel) (500,50), (500,66), (500,100), (500,143), and
(500,250). We see that cases r¼ 10 and r¼ 7.5 have the same magni-
tude, and the cases r¼ 3.5 and r¼ 2 have an approximately same mag-
nitude. The kinetic energy of r¼ 5 case has an intermediate value.

To investigate the kinetic energy deeper, a budget analysis of the
turbulent kinetic energy ð�kÞ is done. Figure 18 shows the spanwise var-
iation of various budget terms of �k. We see that the turbulent diffusion

FIG. 15. Spanwise variation of different budget terms in the budget analysis of
Reynolds stress term hw 0w 0 ix for the Reynolds number combination (500, 100).
The over-line and subscript represent the temporal and spatial x averaging, respec-
tively. See Fig. 13 caption for more details.

FIG. 16. (a) Spanwise variation of turbulent kinetic energy ðh�kixÞ and the Reynolds stress terms ðhu0u0 ix ; hv0v0 ix ; hw 0w 0 ixÞ in a plane Couette flow (pCf); (b) comparison of
quantities plotted in (a) between pCf and co-flow. The plots are plotted at mid z-location ðz ¼ 1hÞ. The quantities in both the figures are time averaged and x averaged and
are non-dimensionalized with U2

h . See Fig. 13 caption for more details.
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has no contribution to the diffusion process at the interface regions but
plays a significant role at the center of the turbulent flow region far
away from the turbulent/non-turbulent interface regions. Close to the
interface, pressure diffusion has a significant role. At the points of inter-
face yI ¼ 8:4h or�8:4h; and yI¼ 0, we see that the pressure diffusion
takes a negative value, which means that the process tends to diffuse
turbulence from the turbulent region to the non-turbulent region. The
pressure diffusion exhibits a wavy variation in the turbulent region.
The positive value of pressure diffusion tells the transportation of tur-
bulence away from the interface region. Given the negligible produc-
tion of v0v0 and w0w0 , the production of kinetic energy is primarily due
to the u0u0j

@ �U
@xj
ðPu0u0 Þ. Like in every budget analysis, viscous dissipation

has no significant role in the budget analysis of turbulent kinetic
energy.

IV. CONCLUSION

This article presents a detailed analysis on co-flowing turbulent/
non-turbulent plane Couette flows and the effect of one flow on the
other. The enstrophy jump observed at the interface confirms that the
jump is a characteristic feature of TNTI, irrespective of class of flow.
The enstrophy contours at different wall-normal planes confirm the

transportation of vorticity along the wall-normal direction.
Comparing the vortical structures between the co-flow and standard
pCf, the vortices are broader and longer in the co-flow case, signifying
the excessive straining process. This was also confirmed through vor-
tex straining iso-contours. The geometric and topological features
were analyzed using invariant maps. As expected, the channel core
predominantly has vortical structures, and the dissipative structures
appear close to the walls. However, it was found that the vortices have
sheet-like structures irrespective of wall-normal distance in both stan-
dard pCf and co-flow.

The analysis of first and second-order quantities showed that the
non-turbulent flow exhibits higher mean velocity than what one
expects analytically. This additional momentum further varies along
the spanwise location. The momentum is higher close to the interface
and decreases as one moves into the non-turbulent region away from
the interface. The effect of non-turbulent flow on the turbulent flow
can also be seen from the u0u0 profile. While the profile is symmetric
about mid z� plane for a conventional pCf, it becomes skewed toward
the top plate in the co-flowing pCf scenario. Furthermore, the non-
turbulent region has a significant Reynolds stress (u0u0 ), indicating the
transportation of turbulence from turbulent flow to non-turbulent
flow. To dwell into the transportation mechanism of turbulence, a
budget analysis of u0u0 is done, which leads to some interesting obser-
vations. The redistribution and production process played a dominant
role. Similarly, budget analysis carried out for v0v0 showed that the dif-
fusion has a dominant role in transporting turbulence to the non-
turbulent region. The budget analysis of w0w0 shows that the only
source of turbulence in the wall-normal direction is redistribution.
The turbulent kinetic energy (k) budget analysis revealed the local
dominance of pressure and turbulent diffusion. However, most of the
total energy contained in the flow is still contributed by convection.
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APPENDIX A: VORTICITY EQUATION

The vorticity equation is obtained taking the curl of Navier–Stokes
equation. A simplified form of vorticity equation is given as follows:

@xi

@t
þUj

@xi

@xj
¼�xi

@Uj

@xj
þ �ijk

1
q2

@q
@xj

@p
@xk
þxj

@Ui

@xj
þ � @

2xi

@x2j
: (A1)

The first term on the left-hand side (LHS) represents the tem-
poral variation of vorticity. The second term is called the convective
term, which represents the transport of strained vortex. The first
term on the right-hand side (RHS) represents the expansion of the
vorticity field. This term is present only for a compressible flow sce-
nario and becomes zero for an incompressible flow case because of
continuity condition. The second term on the RHS is the torque/
baroclinic term. This term is responsible for the generation of vor-
ticity. However, this term exists only for stratified flow conditions.
The current flow system has a constant density, making the spatial
gradient of density zero, thus making the baroclinic torque term
zero. The third term is the vortex stretching term. This shows the
physical mechanism of elongation of a vortex due to the spatial gra-
dient of velocity. The last term on the RHS shows the viscous diffu-
sion of vorticity. The vorticity equation for a baroclinic,
incompressible flow such as the current case simplifies to

@xi

@t
þ Uj

@xi

@xj
¼ xj

@Ui

@xj
þ � @

2xi

@x2j
: (A2)

APPENDIX B: THEORY OF FLOW INVARIANTS

The invariants are robust tools for the analysis since they are
intrinsic parts of the flow system and independent of the coordinate-
axis. We begin with shedding light on the procedure to obtain the invar-
iants and later use them to obtain information about the flow structures,
and their deformations by plotting the invariant maps. Here on, we use
the notation /i;j to indicate the partial differentiation in tensoral form,

i.e., /i;j ¼ @/i
@xj
, where / is any variable. The deformation matrix ðUi;jÞ

can be split into two terms—a symmetric term (rate of strain tensor, Sij)
and an anti-symmetric term (rate of rotation tensor, Xij),

Ui;j ¼ Sij þ Xij; (B1a)

Sij ¼
1
2
ðUi;j þ Uj;iÞ; (B1b)

Xij ¼
1
2
ðUi;j � Uj;iÞ: (B1c)

1. Obtaining the invariants

The invariants for a second order tensor M3�3 are calculated by
taking the determinant of characteristic matrix (jM � kIj, where I is
the identity matrix of order 3� 3 and k is a variable). Equating the
determinant of characteristic matrix to zero results in a cubic equation
in terms of k, whose solution gives the eigenvalues of the matrixM.

2. Invariants of velocity gradient tensor

The velocity gradient tensor Ui;j is a second order tensor
(U3�3). Invariants for the same are obtained as explained before
(see Appendix B). Alternately, the invariants can be calculated
directly using the following formulas:11

P ¼ �traceðUi;jÞ ¼ �Ui;i; (B2a)

Q ¼ � 1
2
Ui;jUj;i ¼

1
4
ðxixi � 2SijSijÞ; (B2b)

R ¼ � 1
3
Ui;jUj;kUk;i ¼ �

1
3

SijSjkSki þ
3
4
xixjSij

� �
; (B2c)

where xi and xj represent the ith and jth vorticity components,
respectively. The topological features of the velocity gradient tensor
in the (P,Q,R) space have been explained in detail by Chong et al.40

The surface given by the equation 27R2 þ ð4P3 � 18PQÞRþ ð4Q3

�P2Q2Þ ¼ 0 divides the (P,Q,R) space into two regions: one region
having two complex and one real eigenvalues and other having
three real eigenvalues. However, when the flow is incompressible,
the first invariant P becomes zero because of continuity, and the
three dimensional space becomes two dimensional; the data Q and
R on the plane P¼ 0 are studied. This simplifies the three dimen-
sional surface equation to a two dimensional equation
27R2 þ 4Q3 ¼ 0. The value 27R2 þ 4Q3 is called the discriminant
(D). This discriminant line D¼ 0 splits the (Q,R) plane into two
regions. Any point in the region above the discriminant line has
two complex and one real eigenvalue, while the region below the
discriminant line has three distinct real eigenvalues. A point on the
discriminant line has three real eigenvalues of which two are equal.
Figure 19(a) shows the pictorial description of the same. A further
classification is done based on the sign of R. The points in the
region R< 0 have complex eigenvalues with negative real part and
are termed as stable. The points in the region R> 0 have complex
eigenvalues with the positive real part and are termed as unstable.
The points above discriminant line are termed focus, and points
below discriminant line are called saddle. The classification based
on the sign of R is explained in Fig. 19(b). An elaborated explana-
tion on the physical meaning of terms stable, unstable, focus, and
saddle can be read from Chong et al.40

The discriminant line and R¼0 line divide the (Q,R) plane into
four quadrants: R>0;D>0ðQ1Þ;R<0;D>0ðQ2Þ;R<0;D<0ðQ3Þ;
andR>0;D<0ðQ4Þ. Each quadrant tells us the deformation that the
fluid element is undergoing and the structure of the fluid element.
Figure 20 shows the pictorial representation of the same.

The mathematical expressions of the quantities Q and R are
examined keenly to understand their physical interpretation. The
strain rate product SijSij represents the viscous dissipation process
ðe ¼ 2�SijSijÞ. Thus, the second invariant Q compares the viscous
dissipation and enstrophy. A negative Q value represents the local
domination of strain product over enstrophy, while a positive value
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of Q represents the local domination of enstrophy over strain prod-
uct. Hence, the regions with positive Q value provide us informa-
tion about vortex structures, and the regions with negative Q value
provide us information about dissipative structures. The sign of R
depends on Sij. A positive Sij results in a negative R value, which sig-
nifies elongation (positive strain). Similarly, negative Sij makes the
sign of R positive, which signifies compression. Thus, a positive Q
and negative R ðQ2Þ represent the vortex stretching, and a positive
Q and positive R ðQ1Þ represent the vortex compression. On the
other hand, when Q is less than zero, the region is dominated by
viscous dissipation. The structures of intense values of viscous dissi-
pation tend to appear in the form of sheets and ribbons in an isotro-
pic turbulence.41 The regions with positive R have sheet-like
structures, and the regions with negative R have tube-like struc-
tures. Thus, the (Q, R) invariant map tells us the relation between
the flow topology and the dissipation/production of enstrophy by
vortex stretching/compression.

3. Invariants of rate of strain tensor

The invariants for the rate of strain tensor [see Eq. (B1b)] are
obtained as explained in Appendix B 1. Alternately, the invariants
can be obtained by replacing Ui;j with Sij, since Xij ¼ 0 for a strain
flow. Thus, the invariants for Sij become

Ps ¼ traceðSijÞ ¼ Sii; (B3a)

Qs ¼ �
1
2
SijSij; (B3b)

Rs ¼ �
1
3
ðSijSjkSkiÞ: (B3c)

The first invariant of rate of strain tensor becomes zero in the
case of incompressible fluid because of continuity. The second
invariant is related to dissipation of instantaneous kinetic energy
(e ¼ �2�SijSij ¼ 4�Qs). Thus, the regions of high Qs have high dis-
sipation. The third invariant represents the skewness of strain. The
term corresponds to the production term of the transport equation
of SijSij,

11 which is given by

D
Dt

1
2
SijSij

� �
¼�SijSjkSki �

1
4
xixjSij � Sij

@2p
@xi@xj

þ �Sijr2Sij: (B4)

Thus, a positive value of Rs corresponds to production of strain
product term ðSijSijÞ, and a negative value of Rs corresponds to
destruction of strain product. Higher values of Rs are also the
regions of more viscous dissipation and, hence, imply the presence
of structures of form sheets and ribbons as mentioned previously.
The positive value of Rs corresponds to sheet-like structures, and
negative Rs corresponds to tube-like structures. While the structures
in the region with positive Rs undergo expansion, the structures in
the region with negative Rs compress.11 Figure 21(a) shows the
above information pictorially. Thus, the invariant map of (Rs, Qs)
explains the geometry of straining of fluid elements.

4. Invariants of rate of rotation tensor

The invariants for the rate of rotation tensor [see Eq. (B1c)]
are obtained as explained in Appendix B 1. Alternately, the invari-
ants can be obtained by replacing Ui;j with Sij þ Xij and taking Sij
¼ 0. Thus, the invariants for Xij become

PX ¼ traceðXijÞ ¼ 0; (B5a)

QX ¼ �
1
2
xixi; (B5b)

RX ¼ 0; (B5c)

FIG. 19. (a) Nature of eigenvalues based on the sign of discriminant ðD ¼ 27R2 þ 4Q3Þ and (b) nature of point depending on the (Q, R) coordinate location.

FIG. 20. Topological flow features shown by flow structures based on the (R, Q) values.
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where PX become zero as the principal diagonal elements (Xii) are
zeroes. The second invariant is closely related to enstrophy (xixi).
Thus, enstrophy can also be written as �2QX, and, hence, the
regions of high/low QX have high/low enstrophy values, respec-
tively. The invariant map of ðQw;�QsÞ can be used to explain the
topology of dissipation of kinetic energy. The points aligned along
the horizontal line represent large values of QX and represent
regions of high enstrophy and negligible dissipation, and the points
aligned along the vertical line represent large values of Qs and repre-
sent strong dissipation (“irrotational dissipation”). The points with
equally high magnitudes of Qw and Qs are observed in the vortex
sheet structures.11

APPENDIX C: BUDGET EQUATION OF A REYNOLDS
STRESS ðu0iu0k Þ

The budget equation for any given stress component ðu0iu0kÞ
can be obtained as

@u0iu
0
k

@t
¼� �U j

@ðu0iu0kÞ
@xj

� u0iu
0
j
@Uk

@xj
þ u0ku

0
j
@Ui

@xj

" #
�
@u0iu

0
ju
0
k

@xj

� 1
q

@ðp0u0idkj þ p0u0kdijÞ
@xj
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2u0iu

0
k
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q
@u0k
@xi
þ @u

0
i

@xk

� �

� 2�
@u0i
@xj

@u0k
@xj

: (C1)

The term on the LHS of Eq. (C1) is the temporal term, which
remains only for an unsteady case and disappears when the flow is
steady. The first term on the right-hand side (RHS) is the convection
term, which signifies the spatial variation of u0iu

0
k for a moving fluid

element. The second and third RHS terms (given together in the
square brackets) represent the interaction between the turbulence
quantities and the mean flow quantities. The gradient of mean flow
velocity acts on the turbulence terms. This process helps to sustain
the turbulence, which otherwise slowly dies. Hence, the term is
called the production term. The fourth term on the RHS of the

equation, (which could also be written as �u0j
@ðu0iu0kÞ
@xj

), represent, the

diffusion of u0iu
0
k along the jth direction due to fluctuating velocity

u0j. Hence, the term is called the turbulent diffusion. The fifth term
on the RHS represents the diffusion of turbulence due to fluctuating
pressure and is called the pressure diffusion. The sixth term that

could be written as � @
@xj
ð@u

0
iu
0
k

@xj
Þ represents the diffusion due to vis-

cosity, and, hence, the term is called the viscous diffusion. The sev-
enth RHS term shows the interaction between fluctuating pressure
and the fluctuating strain rate. This term is called the pressure strain
rate (PSR) or the redistribution term. This term distributes turbu-
lent energy from one direction to another. The last term is called
the dissipation term, which represents the dissipation of turbulent
energy due to viscosity. Substituting natural numbers between 1
and 3 for the free indices i and k in the above Eq. (C1), we can get
conservation equation for various stress terms u0iu

0
k .
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