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V. CONCLUSION 

Since the wavelet transform is actually the constant-Q special 
case of the generalized short-time Fourier transform, results which 
apply to the GSTFT can also be applied to the WT. The wavelet 
magnitude analysis theorem is one specific example of how (preex- 
isting) GSTFT research can be beneficially applied to wavelet anal- 
ysis. The theorem shows that scalograms are similar to analysis by 
a particular type of filteddetector bank. As a consequence, it is 
possible to define appropriate scalogram sampling rates for com- 
putation and data reduction purposes. Other GSTFT results which 
predate wavelet analysis can also be applied, thereby accelerating 
the development of wavelet theory as a field of study. 
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orthonormal bases have attracted substantial interest for representing 
nonstationary signals. However, these representations are limited in 
that they are based on rectangular tessellations of the time-frequency 
plane. While much effort has gone into methods for designing nice 
wavelet and window functions for these frameworks, little considera- 
tion has been given to methods for constructing orthonormal bases em- 
ploying nonrectangular time-frequency tilings. In this note, we take a 
first step in this direction by deriving two new families of orthonormal 
bases and frames employing elements that shear, or chirp, in the time- 
frequency plane, in addition to translate and scale. The new scale-shear 
fun bases and shift-shear chevron bases are obtained by operating on 
an existing wavelet, Gabor, or Wilson basis set with two special unitary 
warping transformations. In addition to the theoretical benefit of 
broadening the class of valid time-frequency plane tilings, these new 
bases could possibly also be useful for representing certain types of 
signals, such as chirping and dispersed signals. 

I. INTRODUCTION 

The continuous wavelet transform and the short-time Fourier 
transform are multidimensional functionals that map one-dimen- 
sional signals to the two-dimensional time-frequency plane [ I ] .  
Both have been utilized in numerous signal processing applications 
to analyze the time-varying frequency content of nonstationary sig- 
nals. 

Attention has focused recently on using these transforms to con- 
struct orthonormal bases and frames for the signal space of square- 
integrable functions L2(1,“‘).’ A function (or signal) s from L2(h?) can 
be represented in terms of a doubly-indexed, orthonormal basis set 
{ b m , n J  using2 

Each expansion coefficient cm, is computed by projecting the sig- 
nal onto the corresponding basis element; that is cm.n = ( s, bm,n) ,  
where (f, g )  = Sf (u)g*(u)  du denotes the inner product forL2(R). 

The elements of a wavelet basis are obtained by translating and 
scaling a single nonarbitrary but fixed wavelet function gwavelet 

with tOaO = 2 and m ,  n E 1. The basis elements can be interpreted 
as “tiling” the time-frequency plane in a proportional-bandwidth 
(constant-Q) fashion; the tiling for an identified wavelet basis is 
depicted in Fig. l(a). A class of wavelets having both compact 
support and arbitrarily high regulari ty  (smoothness) has been de- 
rived by Daubechies [4]. 

Short-time Fourier transform bases are often referred to as Gabor 
bases, because they share the same form as the seminal transform 
of Gabor [ 5 ] .  The elements of a Gabor basis are obtained by trans- 
lating and modulating a single nonarbitrary but fixed window func- 
tion gGabor 

(3) bGabor 
m , n  (0 = gCabor(t - nto) exp ( j 2 r m f o t )  

with to& = 1 and m ,  n E A. A Gabor basis tiles the time-frequency 
plane in a contant-bandwidth fashion; the tiling for an idealized 
basis is pictured in Fig. l(b). Windows generating Gabor bases 
have been constructed by Balian [6], Jensen, Hqholdt, and Justesen 

‘To be concrete, we will discuss only orthonormal bases for the Hilbert 
space L2(,:  ) in this note. Note, however, that all results apply also to the 
more general frame case 121 and that many results can be extended to more 
general Banach spaces 13). From this point on, we will also simply use the 
term basis to mean orthonormal basis. 

’All sums and integrals are assumed to go from --CO to -CO unless other- 
wise stated. 
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Fig. 1 .  Idealized tiling of the timeefrequency plane by (a) the elements 
(b,~~;,""} of a wavelet orthonormal basis and (b) the elements (bz"} of a 
Gabor orthonormal basis. 

IEEE TRANSACTIONS ON SLGNAL PROCESSING, VOL. 41, NO. 12, DECEMBER 1993 

new bases may produce better results (packing more energy into 
fewer expansion coefficients, for example) than existing bases for 
certain types of signals, since the chirping action can be used to 
better match the basis elements to these signals. 

The remainder of this note is organized into two major sections, 
one for the generalization of the proportional-bandwidth (wavelet) 
bases and one for the generalization of the constant-bandwidth (Ga- 
bor, Wilson) bases. In Section 11, we construct a special warping 
operator that remaps orthonormal wavelet bases into fun bases, 
whose elements scale and shear in  the time-frequency plane. Then, 
in Section 111, we apply a similar procedure to the Gabor and Wil- 
son bases to yield two types of chevron bases, whose elements 
translate and shear in the time-frequency plane. Results on the reg- 
ularity of these new basis constructions follow in Section IV. A 
discussion and conclusion are offered in the final section. 

[7], Tolimieri and Orr [SI, and Coifman, Meyer, and Wickerhauser 
[9]. Recently, constant-bandwidth bases of the Wilson type have 
been proposed as a well-localized alternative to the Gabor bases 
U O I .  

With the wavelet, Cabor, and Wilson bases, we have two dis- 
parate tilings of the time-frequency plane, each of which is well 
suited for representing certain classes of signals. However, what if 
the signals we wish to decompose are not well modeled by either 
a proportional-bandwidth or a constant-bandwidth analysis? For 
example, the energy of a frequency modulated signal will be spread 
over many basis coefficients in both types of expansions, since i t  
traces a path in the time-frequency plane that is not well modeled 
by either of the basis tilings shown in Fig. l(a) or (b). Clearly, to 
best match signals of this sort, we must find more flexible bases 
whose elements are not restricted to a strictly rectangular geometry 
in the time-frequency plane. 

While much effort has gone into methods for designing nice 
wavelet and window functions g for the wavelet, Gabor, and Wil- 
son bases, little consideration has been given to methods for con- 
structing orthonormal bases and frames employing nonrectangular, 
"non-Manhattan'' tessellations of the time-frequency plane. In this 
correspondence, we take a first step in this direction and present 
two new families of orthonormal bases employing elements that 
shear, or chirp, in  the time-frequency plane in addition to translate 
and scale. These new bases can be interpreted as generalizing the 
wavelet, Gabor, and Wilson basis constructions to allow chirping 
elements. Besides the theoretical benefit of expanding the class of 
time-frequency tilings available through current techniques, these 

11. GENERALIZED WAVELET BASES: THE FAN BASES 

A .  Basis Elements 

The key to the construction of the scale-shear fan bases is in  the 
Fourier transform of a wavelet basis element: 

B,::a""(f) = (Fb:a;l") ( f )  = aP2Gwavelet (adlf) 

. exp ( - j  2rnt0u;;'f). (4) 

Here F denotes the Fourier transform operator and G,,,,l,, repre- 
sents the Fourier transform of gwavelel; we will use capital letters to 
denote the Fourier transforms of functions. Recall that a wavelet 
expansion is valid only for wavelets g,,,,l,, E L2(: I ) that satisfy the 
admissibility condition 

This condition can also be expressed as G,,,,,,, E K, (  ), where 
K,( ) is the "weighted L'" Hilbert space defined as 

Note that KO(, # )  = L'( ,) .  
The scale-shear fan bases are constructed simply by replacing 

the l inearfterms in the exponential of (4) with another power of 

B!,"n,(f) = r t ' 2 G f a n ( r t f )  exp [-j2anpo) r t f l '  sign ( f ) l .  
f :  

C E  , c f O .  (7) 

Taking the inverse Fourier transform of B:",, yields the proposed 
fan basis element of order c: 

bc:,, ( t )  = (F'B:? , , )  ( t )  = r ~ " ' / 2 ( C ~ p , g , , )  (r{"Y). (8) 

Here the operator C ;  represents convolution with a hyper-chirp 
function of order c and chirp rate k ,  that is 

(9) (Cig)(t)  = ( g  * h i ) ( t )  

with 

h;( t )  = ( F - '  exp [ - j 2 7 r k l f l '  sign ( f ) ] ) ( t )  

Equation (8)  indicates that the building blocks of a fan basis are 
obtained by convolving a fixed function gfan with a chirp function 
of rate np, and then scaling the result. The chirp convolution causes 
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the basis elements to shear in the time direction in the time-fre- 
quency plane. Different values of the order parameter c correspond 
to different types of chirps and, hence, produce completely differ- 
ent time-frequency plane tilings: c = 1 yields the usual wavelet 
transform, c = 2 yields bases employing linear chirps, c = 3 yields 
bases employing parabolic chirps, and so on. The tiling for an 
idealized fan basis for the c = 2,  linear chirp case is illustrated in 
Fig. 2. The tilt of the elements in the fan suggests that these bases 
could prove useful for representing linear chirp signals. 

B. The Axis Warping Operator A, 
We now establish the validity of the proposed fan basis given in 

(8). Remarkably, a simple change of variable will yield all gener- 
alized wavelets gfa, that generate fan orthonormal bases. 

Dejinition 1: The axis warping operator A,. on L2( - )  is given 
by 

(A , z ) (u )  = ~ C \ " ~ ~ Z , ~ ( ' ~ ~ ) / ~  z ( (z1 '  sign (U)), 

C E  - , c  f 0. (1 1) 

The inverse axis warping operator is 

(A , ' z ) (u )  = ~ C ~ ~ " ~ ~ Z ~ ~ " - ' ~ ' ~ ~ ~ ( ~ Z J ~ ' ~ ~  sign ( U ) ) .  (12) 

In this section, we will apply this warping operator to the Fourier 
transform of a wavelet basis element to construct a fan basis ele- 
ment. Note that A, maps the complex Fourier-domain sinusoid e'2nf 
to the chirp function exp [ j 2 r l f J r  sign (f)]. A fun- 
damental property of the axis warping operator is that it is an iso- 
metric isomorphism from the space ICr( .&,)  onto K<?(Y).~ 

Roughly speaking, if two vector spaces 3c and y are isometri- 
cally isomorphic, then they are structurally equivalent in the sense 
that the points in y are simply relabeled versions of the points in 
X (and vice versa). An isometric isomorphism Tthat links a space 
3c with itself, that is, T X + X, is termed unitary. A very im- 
portant unitary operator is the Fourier transform, which maps L2( ) 
onto itself. We now state the key result of this section. 

Theorem 1: The axis warping operator A< is an isometric iso- 
morphism from the Hilbert space Kr( :  ) onto K < r ( : , )  for all r ,  c E 

.:., c f 0.  
Proof.. The linearity, isometry, and bijectivity of Ac are easily 

verified using the simple change of variable U = / U ( '  sign ( U )  in 
each case. 0 

Since the Fourier transform operator F is an isometric isomor- 
phism from L2(.= ) onto L2(L ), the three-part operator 8, = F- lh , .  F 
formed by composing F with the axis warping operator is also an 
isometric isomorphism. The following diagram summarizes an im- 
portant set of spaces that are linked isometrically and isomorphi- 
cally by these operators: 

F A F - 1  

Q - h c K l ( , - )  - & c K , (  ) - a3. (13) 

The set Q signifies the set of all admissible wavelets in L2(F)  that 
generate wavelet bases. The Fourier transform maps the admissible 
wavelets to the set h containing functions: 1 )  that satisfy the 
wavelet admissibility condition G E K , ( . " )  and 2) whose inverse 
Fourier transforms generate wavelet bases. The map A< takes these 
Fourier transforms and warps them, yielding a function in the set 

'Two vector spaces, 3c and 9, are said to be isomorphic if there is a 
one-to-one, linear mapping Tof 'X onto 2 [ 1 I ] .  Two normed vector spaces, 
'X and y, are isometric& isomorphic if they are isomorphic and if the 
corresponding mapping Tis isometric; that is if I( Txl( 2 = lIxl/ Xs where 
1 1 . 1 1  'U represents the norm in the space 'I. 

time 
Fig. 2. Idealized tiling of the time-frequency plane by the elements 
{b::,,} of a fan orthonormal basis for the case c = 2 (linear chirp). The 
tiling is generated from a single, fixed wavelet function via scaling and 
shears in time. 

&, An inverse Fourier transform takes these resulting functions 
back to the time domain. 

Note, as a special case of Theorem 1, that A< is unitary from 
KO(:=,) = L2(E) onto K0(l ' )  = L 2 ( - # ) .  Thus, if the set Q from the 
left side of (13) is expanded to all of L2(::) ,  then the three-part 
operator isometrically and isomorphically links the following 
spaces: 

F 'i < F - '  
L y ; )  + Ly') + L2(.;) + L2('-;). (14) 

This demonstrates that 8, = F - ' A , F  is unitary on L 2 ( k ) .  

C. Fan Bases from Wavelet Bases 

An important property of an isometric isomorphism is that it maps 
orthonormal bases to orthonormal bases. Thus, if we apply the op- 
erator 8, to the elements of an arbitrary wavelet basis for L2(1'), 
the result will be another basis for L2(.' ). It is easy to see that the 
application of 8, to an arbitrary wavelet basis yields the fan basis 
of (7) and (8); that is, we have 

if we make the correspondences gfa, = BC.gwavelet, po = to, and ro 
= a:/'. Hence, every wavelet orthonormal basis for L Z ( 5 )  can be 
mapped into an equivalent fan orthonormal basis of order c for 
L2(.=:) simply by applying the unitary operator 0,. to the wavelet 
gwavelel generating the wavelet basis and then employing (8). Fur- 
thermore, this procedure generates all fan bases of all orders. This 
follows from the fact that the inverse of the three-part operator, 
0,' = F-'A<:' F, is also unitary, and hence, it maps every fan 
basis to a wavelet one. We have thus proved the following funda- 
mental result. 

Theorem 2: The function gwavcle, generates an orthonormal 
wavelet basis for L2(:j) with parameters ao, to, if and only if the 
function g,,, where gf,, = 8Cgwayeletr generates an orthonormal fan 
basis of order c # 0 for L 2 ( b )  as in (8) with parameters ro = a:" 
and po = to. 

Note that the sampling lattices of the two bases in the theorem 
are subtly different. Most conspicuous is the ro = a:" spacing in 
scale in the fan bases (typically a. = 2 for a wavelet basis). In Fig. 
3, we plot the warped function e2g, with g a "Daubechies-2" 
wavelet [4]. This warped function, while no longer compactly 
supported4, generates a valid fan basis of order 2. 

4We do not know at present whether there exist compactly supported 
functions generating fan bases. 
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Fig. 3 .  (a) A "Daubechies-2" wavelet basis element g 141 and (b) a por- 
tion of the warped function Q2g,. The function 8,g generates a valid fan 
basis of order c = 2 when used In  (8). 

Note that since the set 63 in (13) signifies all functions gfa, that 
generate valid fan bases, the set ($3 represents an admissibility con- 
dition for these functions. This condition is Gfa, E Kc(R). For the 
case c = 2, this condition is consistent with the admissibility con- 
dition derived for the continuous-valued scale-shear transform in 
[ W .  

The computation of the coefficients c:Yn for the fan basis expan- 
sion (1) appears cumbersome, but it can be efficiently implemented 
by again utilizing the special properties of the operator Oc. The 
isometry of this operator from L2(Fl) onto L2(?)  allows us to com- 
pute the expansion coefficients by first "prewarping" the signal 
and then computing the wavelet basis coefficients: 

c p n  = (s, 

= e;lb;;n) 

= (OC-'s, b:f;'"'). (16) 

While indicating that the fan basis expansion can be implemented 
just as efficiently (modulo the prewarping) as the original wavelet 
basis expansion, this computation also emphasizes the dual inter- 
pretation that warping a basis set to match a signal is equivalent to 
prewarping the signal to  match the original basis. Efficient com- 
putation of the prewarped signal ec-'s should be possible using 
techniques analogous to the fast Mellin transform, which requires 
a geometric scaling of the transform axis [13]-[15]. 

111. GENERALIZED GABOR AND WILSON BASES: THE RESETTING 
CHEVRON BASES 

A .  Basis Elements 

The mathematical machinery of the previous section can also be 
applied to the Gabor and Wilson bases. Since the axis warping op- 

erator A, of (11) maps functions z ( v )  that vary linearly in  v to 
functions that vary in powers of U, application of Ac to a valid 
Gabor basis generates a basis with elements that employ chirp, 
rather than simply sinusoidal, modulation: 

However, while the set {bL,,n] is an orthonormal basis for L2(.:%), 
the shape of the function in front of the exponential changes with 
each value of n,  and thus, this basis cannot be built from simple 
translates and chirp modulates of a single, fixed window function. 
This limitation results because the action of the time shift by nto 
does not commute with the action of Ac. Therefore, in the next 
section, we will modify the structure of A,. to construct a new axis 
warping operator whose action does commute with time shifts. 

The result is a family of resetting shift-shear bases. Taking to = 

1 (without loss of generality), the elements of the order c resetting 
shift-shear basis derived from a Gabor basis are given by 

C E  , C # O .  (18) 

The term "resetting" is used to indicate that the instantaneous fre- 
quency of the chirp modulation is reset to zero at every integer 
along the time axis. The time-frequency plane tiling for an ideal- 
ized Gabor shift-shear basis is shown in Fig. 4 for the case c = 2 
(linear chirp). Because of the "V" shape of the basis tiling, we 
will refer to these bases as (resetting) chevron bases. Note, that in 
contrast to the scale-shear fan bases, which utilize convolution with 
chirp functions to shear in the time direction in the time-frequency 
plane, the chevron bases shear in the frequency direction by chirp 
modulation. However, like the fan bases, the tilting elements of 
the chevron bases could prove useful for efficiently representing 
chirp signals. 

B. The Resetting Axis Wurping Operator T, 
We now demonstrate that the Gabor resetting chevron bases of 

(18) are valid orthonormal bases for L2( ' ). We begin by modifying 
the axis warping operator A, of Section 11. 

Dejnirion 2 :  The resetting axis warping operator T, is given by 

( T < Z ) ( U )  = (c(1'2(u - Lul  )Ic- " 4 ( ( u  - Lul  )< + Lul  ), 

C E I  , c f O .  (19) 

The inverse resetting axis warping operator is 

The effect of T,. is to periodically (between each integer) warp 
the scale of the function z and multiply it by a periodic u ( ' - ~ ) ' ~  
window. Fig. 5 illustrates the effect of T2 on the Gabor basis ele- 
ment by:?', which was computed using the window constructed in 
[7] for gCabnr. In this case, T2 warps the single sinusoid to resetting 
chirp functions. The resetting axis warping operator shares a key 
property with its cousins A,. and er. 

Theorem 3: The resetting axis warping operator 'Tc is unitary 
from ~ ' ( 1 ' : ) )  onto L ~ (  ,) for aII c E #,, c + 0. 

The proof is very similar to that for Theorem 1 and is therefore 
omitted. 
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time 
Fig. 4. Idealized tiling of the time-frequency plane by the elements 
{bz","'} of a (Gabor) resetting chevron orthonormal basis for the case c = 
2 (linear chirp). The tiling is generated from a single, fixed window func- 
tion via translations in time and shears in frequency. 

1 2 3 4 5 
-1.5 

0 

(b) 

Fig. 5 .  The resetting axis warping operator Tz applied to the Gabor basis 
element bF.$"(f) = g( f ) e '8" ' .  where g is the window function constructed 
in 171. (a) Real part of the Gabor basis element bFp(r). (b)  Real part of 
the resetting chevron basis element b ~ , ~ w t ( / )  = (TZby,ap) ( r ) .  

C. Resetting Chevron Buses from Gabor und Wilson Bases 

We can infer from Theorem 3 that T,. maps each orthonormal 
basis for L2(:") to another orthonormal basis for L2( ). Further- 
more, it is simple to show that the application of T, to an arbitrary 
Gabor basis yields a resetting chevron basis of the form (18); that 
is, we have 

b:","" (t)  = (Tcb:ap7 (t)  (21) 

if we make the correspondences gcreaet = Tcgcabor and qo = fo. 
Thus, every Gabor orthonormal basis can be mapped into an equiv- 
alent resetting chevron orthonormal basis of order c (and vice versa) 
simply by applying the unitary operator T, to the window gcabur 

generating the Gabor basis and then employing (18). Furthermore, 
this procedure generates all chevron bases of all orders, since 
T,' is also unitary and, hence, maps every resetting chevron basis 
to a Gabor one. The following theorem summarizes our results. 

Theorem 4: The function gCabor generates an orthonormal Gabor 
basis for L2@) with parameters to = 1, fo = 1 if and only if the 
function gcreset, where gcreser = TcgCabor, generates an orthonormal 
resetting chevron basis of order c # 0 for L2(R) as in (18) with 
parameters to = I ,  qo = 1.  

Note, that while we have emphasized the Gabor case up to this 
point, the operator T, can also be used to construct families of 
resetting chevron bases from the Wilson bases [lo] in exactly the 
same fashion. 

I V .  REGULARITY OF THE NEW BASES 

It has been demonstrated recently that the regularity of the 
wavelet/window is an important performance criterion for a basis, 
since the degree of regularity controls the extent to which errors in 
the basis expansion coefficients are propagated into the resulting 
signal expansion ( 1 )  [4], [16], [17]. Roughly speaking, if a func- 
tion has a regularity order of a ,  then it possesses at least tal  
continuous derivatives. There are several different definitions of 
regularity order; see [ 161, [ 171 for more details. 

Since the fan bases are constructed by applying the axis warping 
operator Ac in the frequency domain to the Fourier transform of a 
wavelet gwavelet, we will find the following definition most conve- 
nient for results on these bases. 

Dejinition 3: A function g has Sobolev regularity order a - 
1 / 2  if the funct ionf"G(f)  EL' ( .  ), where G is the Fourier trans- 

Now, the simple structure of Ac leads directly to a fundamental 
result. 

Theorem 5: Let g,a,,l,, be a function of Sobolev regularity order 
cy - 1 / 2 .  Then, the Sobolev regularity order of the function gtan 
- O(gWaYelet is c a  - 1 / 2 .  

Proof: We must show that the function f ' " ( A c G , , , , ~ , , ) ( f )  E 
L2(.  ,). Using the definition of Sobolev regularity and the change of 
variable U = I f l '  sign ( f ) ,  we have 

form of g. 

- 

Since the regularity order of gWdYelrl is cy - 1/2 ,  this last term is 
finite, and the result follows. 0 

This result demonstrates that fan bases of order c > 1 are more 
regular than the original wavelet bases from which they were de- 
rived. This is due to the fact that, for c > l ,  the frequency axis 
warp Ac compresses the wavelet function in the frequency domain, 
reducing the high frequency content of the resulting time domain 
function gfa, and thus making it smoother. 

Unfortunately, a similar result does not hold for the resetting 
chevron bases. In particular, the warped window g,,,,, constructed 
by the application of the resetting axis warping operator Tc to a 
Gabor or Wilson window function cannot be continuous (see Fig. 
5(b), for example). The source of the problem is the multiplication 
by the resetting window function ( U  - LuJ )('-I)/' in (19). This 
function, while highly regular between integers, is discontinuous 
at each integer. However, we note that while this lack of regularity 
will limit the resulting time and shear bases to applications where 
smoothness is not a prerequisite, this is already somewhat the case 



3548 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41. NO. 12. DECEMBER 1993 

for the Gabor bases, since if a window g generates a Gabor basis, 
then either g or its Fourier transform G is not continuously differ- 
entiable.’ 

V.  CONCLUSIONS 

The proportional-bandwidth and constant-bandwidth signal de- 
compositions of the wavelet, Gabor, and Wilson bases have at- 
tracted substantial interest recently for representing signals with 
time-varying frequency content. However, these representations are 
also limited in that they are based on a rectangular tessellation of 
the time-frequency plane. Since few tools have been developed for 
dealing with the signal classes for which these tilings are ill suited, 
we have explored in this paper some simple nonrectangular time- 
frequency tilings. The most striking feature of the new scale-shear 
fan bases (8) and the shift-shear resetting chevron bases (18) is that 
they represent signals completely in terms of chirp functions. While 
the creation of the two new time-frequency plane tilings in Figs. 
2 and 4 is theoretically interesting, these new bases may also be 
useful for representing certain types of signals, such as chirping 
and dispersed signals. 

Our approach in deriving these two new classes of bases was to 
“bootstrap” the existing wavelet, Gabor, and Wilson basis theory 
to the problem at hand via the special axis warping operators A, 
and TC. In the fan basis case, this approach proved remarkably suc- 
cessful, resulting in a class of bases that not only have the correct 
form, but also have improved regularity properties over the wavelet 
bases from which they were derived. In the chevron basis case, this 
approach proved somewhat less successful. To arrive at a set of 
bases generated by only translations and chirp modulations, we 
were forced to modify the warping operator A, to the resetting axis 
warping operator TC. Unfortunately, the resetting operator is not 
sufficiently smooth to preserve the regularity properties of the Ga- 
bor or Wilson bases, and the resulting resetting chevron bases are 
at best only almost continuous. 

The existence of an isometric isomorphism between the fan bases 
and the wavelet bases is no doubt due to the strong connection 
between their underlying group structures-the group that spawns 
the scale-shear fan transform [12] is isomorphic to the scalar affine 
group that spawns the wavelet transform [I]. On the other hand, 
the lack of strong connections between Gabor bases, which are 
generated by the Weyl-Heisenberg group [ I ] .  an the Wilson and 
chevron bases, which are not generated by any group, makes it 
more understandable why the application of axis warping operators 
to the Gabor and Wilson bases did not create completely satisfying 
chevron bases. 

Note that several of the bases we have considered can be related 
to a discretization of the metuplectic t runsform,  a new transform 
introduced in [19], [20] and studied further in [12]. In the wavelet 
and Gabor bases, the transformations applied to the waveletlwin- 
dow are limited to time-frequency translation and time-frequency 
scaling. The five-dimensional metaplectic transform, on the other 
hand, is constructed to implement a general 2 X 2 unimodular, 
affine transformation, Ax + 6, [AI = 1, in the time-frequency plane. 
The extra degrees of freedom in this transformation allow basis 
elements to not only translate and scale in  time-frequency, but also 
to shear and rotate. It is shown in [12] that the wavelet, Gabor, 
and fan bases (c = 2 case) correspond to discretizations of the 
metaplectic transform along certain two-dimensional planes of its 
five-dimensional analysis space. 

’This fact follows directly from Definition 3 and the Balran-Low Theo- 
rem, which states that if a window g generates a Gabor basis, then either 
t g ( t )  $ LZ(l 9 o r f G ( f )  $ Lz(l ) [61, [I81 

Finally, besides the development of a more general theory for 
nonrectangular time-frequency tilings, this paper leaves many 
questions unanswered. We have not considered chirp basis decom- 
positions for discrete-time signals. One potential problem with dis- 
crete-time signals is that a chirp signal will eventually violate the 
Nyquist criterion and alias. However, there could exist discrete- 
time bases that actually take advantage of this aliasing property. 
Another interesting research direction is the application of more 
general unitary operators for warping bases. Since every unitary 
transformation maps a basis set to another basis set, there seems to 
be no reason to stop with the two axis warping operators employed 
in this paper. This approach is adopted in [21], [22], where it is 
shown that unitary transformations provide a simple means for 
matching basis sets to particular classes of signals. 
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Signal Reconstruction from Modified Auditory 
Wavelet Transform 

Toshio Irino and Hideki Kawahara 

Abstract-We propose a new method for signal modification in au- 
ditory peripheral representation: an auditory wavelet transform and 
algorithms for reconstructing a signal from a modified wavelet trans- 
form. We present the characteristics of signal analysis, synthesis, and 
reconstruction and also the data reduction criteria for signal modifi- 
cation. 

I. INTRODUCTION 

The study of auditory function requires investigation of the role 
of various features observed in auditory peripheral representation. 
Thus we want to develop a signal modification method that pro- 
vides signal analysis for constructing a representation simulating 
the actual human auditory periphery and provides a scheme for syn- 
thesizing signals that can be used in psychophysical experiments. 
The short-time Fourier transform (STFT) is widely used in the 
analysis and synthesis of signals represented on a linear frequency 
axis [ l ] .  In addition to the constant-window STFT, filters like the 
rectangular filter can be defined for analysis and synthesis. The 
STFT and these filters, however, cannot satisfy the first require- 
ment ( I ) .  And although several models simulating the human au- 
ditory periphery have been proposed [2] they cannot satisfy the 
second requirement because they do not provide a scheme for syn- 
thesizing signals from the representation. In this paper, we propose 
the use of the wavelet transform (WT) [3], [4] which simulates the 
characteristics of the auditory periphery when the analyzing wave- 
let is properly selected from the impulse response of an auditory 
model. The auditory wavelet transform (AWT) enables a represen- 
tation of the auditory periphery to be constructed by analyzing sig- 
nals, and it enables signals to be synthesized from the representa- 
tion. “Granular analysis” [5] is a similar analysis and synthesis 
technique proposed for use in speech processing, but the AWT pro- 
vides a representation more similar to the actual auditory filter and 
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is applicable to the following reconstruction algorithm based on the 
wavelet transform theory. 

Although a modified signal can be synthesized from the modified 
wavelet coefficients, the modification is restricted to manipulation 
of the wavelet magnitude coefficients because phase modification 
tends to cause unexpected results. In addition, it is difficult to de- 
termine the phase coefficients in such modification as nonuniform 
time-scaling and partial replacement of wavelet coefficients with 
other ones. It is, therefore, essential to develop a method for de- 
termining the phase or for reconstructing a signal from only the 
magnitude. Thus, we apply algorithms developed for the short-time 
Fourier transform [6]-[9] to reconstruct a signal from its modified 
wavelet transform coefficients, especially from their magnitude. It- 
erative reconstruction from magnitude information may increase 
the variability of signal modification. 

An algorithm using the wavelet transform and the convex pro- 
jection method has been proposed to demonstrate minimal infor- 
mation loss along the auditory pathway [IO]. Although the convex 
function method enables us to derive the wavelet coefficients from 
the reduced data, phase information is essential for synthesizing 
signal because the real wavelet transform is used in the first stage. 
An algorithm for reconstructing a signal from only the wavelet 
magnitude coefficients should thus be developed as an extension of 
the wavelet transform. And for investigating such auditory char- 
acteristics as the time-frequency resolution, it is also important to 
provide signal modification scheme that operates on the reduced 
data. 

11. AUDITORY WAVELET TRANSFORM 

A .  Wavelet Transform 

Let us begin with an overview of the wavelet transform. For a 
signal x ( l ) ,  an arbitrary analyzing wavelet cp (m) (which satisfies 
the admissibility conditions), scaling factors a,, and shift factors 
b,, for each wavelet are defined as 

where a, = a” and where b,, = a,p j  for Nyquist sampling orb,, 
= j for every sampling point corresponding to the signal x ( l ) .  In 
this note, each wavelet has all sampling points (b,, = j ). The dis- 
crete wavelet transform is defined as 

m 

X ( n , j )  = p ( n )  C cop,T,(m)x(m) ( 2 )  
m = -m 

where p ( n )  is the output multiplier for each filter. If p ( n )  = 

a,’’2, the output power of each filter is the same. The inverse wave- 
let transform is 

m m  

XU) = c-‘ C x ( n , j ) c p , , . , ( l ) / ~ ( n )  (3) 
= -1 , = - m 

where C -‘ is a constant value calculated from the Fourier transform 
of the analyzing wavelet. 

B. Cochlear Model 

The model used in this paper consists of a middle ear filter and 
a cochlear model. The middle ear filter, for impedance matching, 
is a 12-dB/oct high-pass filter with cutoff frequency of 1.5 kHz. 
The cochlear response is given as the result of a one-dimensional 
fluid dynamics difference equation [11]-[13]. The distributed re- 
sistance in the cochlear model is chosen to be one-tenth (1 / 10) of 
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