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Abstract Aqueous solutions with polymer additives often used to improve the macro-

scopic sweep efficiency in oil recovery typically exhibit non-Newtonian rheology. In order to

predict the Darcy-scale effective viscosity μeff required for practical applications often, semi-

empirical correlations such as the Cannella or Blake–Kozeny correlation are employed. These

correlations employ an empirical constant (“C-factor”) that varies over three orders of magni-

tude with explicit dependency on porosity, permeability, fluid rheology and other parameters.

The exact reasons for this dependency are not very well understood. The semi-empirical cor-

relations are derived under the assumption that the porous media can be approximated by a

capillary bundle for which exact analytical solutions exist. The effective viscosity μeff (vDarcy)

as a function of flow velocity is then approximated by a cross-sectional average of the local

flow field resulting in a linear relationship between shear rate γ and flow velocity. Only with

such a linear relationship, the effective viscosity can be expressed as a function of an average

flow rate instead of an average shear rate. The local flow field, however, does in general not

exhibit such a linear relationship. Particularly for capillary tubes, the velocity is maximum at

the center, while the shear rate is maximum at the tube wall indicating that shear rate and flow

velocity are rather anti-correlated. The local flow field for a sphere pack is somewhat more

compatible with a linear relationship. However, as hydrodynamic flow simulations (using

Newtonian fluids for simplicity) performed directly on pore-scale resolved digital images

suggest, flow fields for sandstone rock fall between the two limiting cases of capillary tubes

and sphere packs and do in general not exhibit a linear relationship between shear rate and

flow velocity. This indicates that some of the shortcomings of the semi-empirical correla-

tions originate from the approximation of the shear rate by a linear relationship with the

flow velocity which is not very well compatible with flow fields from direct hydrodynamic

calculations. The study also indicates that flow fields in 3D rock are not very well represented

by capillary tubes.
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1 Introduction

Conventional water floods have an overall recovery efficiency up to 35–40%. Significant

amount of oil is left behind in the reservoir partially as residual oil is trapped in the pore space

because of capillarity, but also because of bypassing caused by well placement, heterogeneity

or viscous fingering instabilities. Improved oil recovery (IOR) and enhanced oil recovery

(EOR) approaches aim at improving the overall recovery efficiency (Lake 1989). Many

different approaches exist. To give an example, surfactant flooding targets the residual oil

by enhancing the microscopic displacement efficiency. Polymer flooding on the other hand

mainly targets the bypassed oil by improving the macroscopic sweep efficiency (Reuvers and

Golombok 2009; van der Plas and Golombok 2015). There is also an effect on the microscopic

displacement efficiency which can have also significant economic benefit. However, the main

purpose of the polymer is reduce the mobility of the displacing phase. That is achieved mainly

by increasing the viscosity of the aqueous phase, which improves both the mobility ratio but

also the sweep because of changed pressure gradients and viscous cross-flow. Furthermore,

it suppresses the viscous fingering instability (Saffman and Taylor 1958) which is largely

controlled by the shock front mobility ratio (Berg and Ott 2012).

In order to increase the mobility of the displacing aqueous phase, a variety of different

additives are considered where hydrosoluble polymer is the most prominent class. More

specifically, hydrolyzed polyacrylamide (HPAM) is one of the most suitable polymers con-

sidered, and substantial amount of work on that matter has been conducted over the past

years. However, there are also biopolymers like Xanthan (Cannella et al. 1988) and other

polysaccharides considered. In the framework of Darcy-scale description of multiphase flow

in porous media which is typically used for reservoir engineering, the mobility of the aque-

ous phase is the ratio of the permeability/viscosity. The predominant effect of the polymer to

mobility reduction in the aqueous phase is the increase in viscosity, but there is also a reduc-

tion in permeability through polymer adsorption and entrapment and a polymer depletion

layer causing a slip boundary condition.

The permeability of the porous medium can be significantly reduced by adsorption

(Aghabozorgi and Rostami 2016) and entrapment of polymer in the pore space which can

lead to plugging of smaller pores and a diversion of the pore-scale flow pattern (Sorbie 1991).

A polymer-depleted layer close to the pore wall (Chauvetau 1982; Rodriguez et al. 2014) can

cause a slip boundary condition (Berg et al. 2008) which in a Darcy-scale formulation would

diminish an effective viscosity. It can also lead to hydrodynamic acceleration of the polymer

component. Depending on the polymer formulation, these effects sometimes play a signifi-

cant role in controlling the mobility reduction factor (Sorbie 1991; Rodriguez et al. 2014). The

increase in in situ viscosity is a combination of rheological effects such as shear-dependent

fluid viscosity, extensional viscosity (Koroteev et al. 2013; van der Plas and Golombok 2015)

and visco-elasticity (Wang et al. 2010). Polymer in general and more specifically aqueous

solutions of hydrosoluble polymer including HPAM exhibit a shear rate-dependent bulk vis-

cosity (Delshad et al. 2008). The exact dependency of the shear viscosity μ on the shear

rate γ , i.e., μ = μ(γ ) depends on various parameters such as polymer type, concentration,

salinity, molecular weight and predominantly the molecular weight distribution, degree of

hydrolysis and cross-linking state. For practical applications, where reservoir simulation is

performed in order to model the chemical EOR floods in advance, these dependencies need

to be implemented into the respective simulator (Delshad et al. 2008).

Several attempts have been made to model polymer rheology. None are fundamentally

satisfactory. Therefore, in most practical cases, the μ=μ(γ ) relationship is measured in
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Fig. 1 Simplified illustration showing how shear rate (γ̇ )-dependent shear viscosity (μ = μ(γ̇ )) on the pore

scale (left) is upscaled to the effective shear viscosity as a function of Darcy velocity μeff = μeff (vDarcy) on

the Darcy scale (middle) which is used in reservoir simulations in a layered formation (right). Note that most

geologies are more complex and interconnectivity plays an important role which makes the transition from

Darcy to reservoir scale also more complex

laboratory tests by a shear rheometer. In porous media flows which exhibit a complex flow

field on the pore scale, the shear rate has a spatial variation, and therefore, also the shear

rate-dependent bulk viscosity μ=μ(γ ) varies from pore to pore. However, for practical

reservoir engineering purpose, usually only the Darcy-scale effective viscosity is considered.

Since the shear rate is a pore scale property, the effective viscosity (often termed also in situ

rheology or in situ viscosity) is seen as a property depending on the Darcy velocity, i.e.,

μeff = μeff (vDarcy). This is sketched in Fig. 1.

For most practical purpose, i.e., for practical field applications, typically a specific μeff =
μeff (vDarcy) relationship is required for the field of interest. For optimization of the field

application, typically polymer type, concentration and molecular weight are varied which

results in a large number of polymer formulations which have to be tested. For typical

application-relevant polymers including biopolymers such as Xanthan and HPAM, the shear

rheology effects dominate below a critical Deborah number (ratio of the stress relaxation time

of the polymer and the time scale of the flow) showing shear-thinning behavior over a large

range of flow velocities. After initial assessment of the bulk rheology μ = μ(γ ), eventually

core flooding experiments are be conducted where the μeff = μeff (vDarcy) relationship is

measured in laboratory experiments for the most promising formulations by conducting core

floods by varying the flow rate. Since core flooding experiments with hydrosoluble polymer

are usually destructive, i.e., polymer remains inside the rock that cannot be removed (unless

aggressive cleaning procedures are used that likely also alter the rock itself), and rock samples

from the field of interest are often very scarce, the first set of core flooding experiments is

conducted on analog rock samples. These are often taken from outcrop rock which has in

most cases different porosity and permeability than the rock from the field. In order to obtain

the response μeff = μeff (vDarcy) of the respective formulations in the field rock, one would

need to either translate the bulk rheology μ = μ(γ ) directly to μeff = μeff (vDarcy) for the

rock material of interest or at least translate the μeff = μeff (vDarcy) determined from the

analog rock material (which is available in unlimited quantity) to the scarce field cores.

Therefore, the main objective of a large body of research is to establish a relationship

between bulk rheology μ = μ(γ ) and effective viscosity μeff = μeff (vDarcy) to be used in

Darcy-type flow simulators.

A direct link between the bulk viscosity μ = μ(γ ) and Darcy scale μeff = μeff (vDarcy)

can be made by using approximate analytical models (Fayed et al. 2016) or hydrodynamic

simulation of the pore-scale flow field for the non-Newtonian rheology (Balhoff 2000; Afshar-
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poor et al. 2012; Clemens et al. 2012; Afsharpoor and Balhoff 2013; Tosco et al. 2013).

Even though these approaches become more and more available, the most commonly used

approach are semi-empirical correlations for the Darcy-scale effective shear rate (Delshad

et al. 2008). These semi-empirical correlations are based on the Cannella or Blake–Kozeny

equation (Meter and Bird 1964; Cannella et al. 1988; Sorbie 1991) which was originally

developed for capillary bundles. They are semi-empirical and contain empirical factors such

as the shear rate coefficient, often also termed the “C factor”, which in the framework of

the correlation is a constant. When comparing with experimental measurements, the “C-

factor” depends on parameters like permeability and varies case by case over three orders

of magnitude (Wreath et al. 1990). That is not supposed to be because the Cannella equa-

tion already contains porosity and permeability as explicit parameters such that C should be

independent of permeability. However, the experimental evidence suggests otherwise which

makes it difficult to translate the effective viscosity determined experimentally, for instance,

in a more readily available model or outcrop rock to the reservoir rock of interest for a field

development.

The question is now what causes this explicit dependency of the “C-factor” on porosity and

permeability. In general discrepancies between the correlation and experimental data on the

Darcy scale can be caused by multiple effects. Polymer-related effects such as adsorption and

mechanical entrapment can cause a permeability reduction of the rock. The in situ rheology

can be more complex than shear thinning or a shear rheology alone. Also possibly the structure

of the flow field and the relation between flow velocity and shear rate could be different from

what is assumed in the semi-empirical correlation. For polymer systems, it is very difficult

to distinguish the different effects. Therefore, in this work, polymer adsorption and rheology

effects are excluded by considering only Newtonian fluids. Pore-scale simulations of Stokes

flow on pore structures of sandstone rock and model geometries are used to investigate the

relation between flow velocity and shear rate field and assess how that impacts the ability of

the Blake–Kozeny correlation to predict shear rate.

2 The Cannella or Blake–Kozeny Correlation

A central element of this work is to assess the correlation (at same position �x) between

flow velocity �u(�x) and shear rate γ (�x) fields, where velocity is a vector and shear rate is

derived from a tensor. The main motivation for looking at shear rates originates from polymer

flooding. Even though all calculations in this work are performed with Newtonian fluids, for

the motivation we have to go back to non-Newtonian fluids as relevant for polymer flooding.

Their rheological behavior is typically parameterized as a function of shear rate. Hydrosoluble

polymer systems considered for polymer flooding often exhibit rheological behavior with

a Newtonian plateau up to a certain shear rate and then a shear-thinning behavior which is

often parameterized using for instance the Carreau model (Delshad et al. 2008; Fayed et al.

2016). The shear viscosity μ as a function of shear rate γ is expressed as

μ − μ∞
μ0 − μ∞

=
[

1 + (λγ )α
](n−1)/α

(1)

where μ∞ the shear viscosity at infinite shear rate, μ0 the shear viscosity at zero shear share

and λ, α and n are material parameters (Delshad et al. 2008). n is the power law exponent in

the shear-thinning regime, i.e., n ≤ 1.

Equation (1) describes bulk rheology, i.e., continuum mechanics rheology in bulk outside

the porous medium. The effective rheology inside a porous medium μeff on the Darcy scale
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is interpreted via Darcy’s law which relates the Darcy velocity uDarcy (which is essentially

a cross section A averaged flux Q of the aqueous phase, i.e., uDarcy = uw = Q/A) to the

applied pressure gradient ∇ p via

uDarcy = uw = K

μeff
∇ p (2)

where K is the permeability of the porous medium. In this Darcy-scale picture, the effective

shear viscosity μeff is then related to the (Darcy scale) effective shear rate γeff using the same

functional form of the Carreau model from Eq. (1)

μeff − μ∞
μ0 − μ∞

=
[

1 + (λγeff )
α
](n−1)/α

(3)

but replacing the bulk shear viscosity μ and γ with the effective viscosity μeff and effective

shear rate γeff .

The effective shear rate γeff is then related to the Darcy flow rate by using semi-empirical

correlations (Delshad et al. 2008) based on the Blake–Kozeny or Cannella equation (Sorbie

1991; Cannella et al. 1988) which was originally developed for capillary bundles

γeff = C

[

3n + 1

4n

]n/(n−1)
[

4√
8

uw
√

kr,w K Swφ

]

(4)

n is again the power-law exponent of the fluid, uw the Darcy velocity of the water phase, kr,w

the water relative permeability, K the absolute permeability, Sw the water saturation and φ the

porosity. Note that the computation of the effective shear rate in the capillary bundle model

from Eq. (4) assumes a no-slip boundary condition (Berg et al. 2008). For each capillary, the

shear rate is computed analytically from the parabolic (Poiseuille) velocity profile taking the

derivative of the flow velocity perpendicular to the main flow direction [for details see later

Eq. (13)]. Slip effects caused by the polymer depletion layer (Rodriguez et al. 2014) are not

included.

C is an empirical constant which in the original derivation of the capillary-tube-based

model is C = 6.0 or “around 6” for Xanthan polymer (Cannella et al. 1988) but can assume

other values for different systems. Taking the larger body of literature into account, C is

reported to vary between 10−1 and 103 (Wreath et al. 1990). Often a major unknown is the

fluid rheology and, contrary to the capillary bundle model, C is not a constant but shows to

depend on permeability K and porosity φ (Delshad et al. 2008) and other parameters. That

raises the question where the dependency on porosity and permeability originates from and

to which extent it is caused by the underlying assumptions in the correlation from Eq. (4).

One potential source is rock heterogeneity. A homogenization approach applied to het-

erogeneous rock on the Darcy scale showed an explicit dependency on tortuosity T , porosity

φ, power law fluid index n, and more general the pore size /permeability distribution and

correlations structure of the heterogeneity (Fadili et al. 2002). However, a large variation of

the C-factor is also observed for relatively homogeneous rock which still raises the question

about its origin.

In order to exclude potential polymer-specific effects such as permeability reduction by

polymer adsorption, and more complex rheology on the pore scale such as extensional vis-

cosity (Koroteev et al. 2013), in the following only Newtonian fluids are considered, i.e., the

power law index n = 1. The situation is further simplified to single-phase flow, i.e., Sw = 1,
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kr,w = 1. As a consequence, the term

lim
n→1

[

3n + 1

4n

]n/(n−1)

≈ 0.78 (5)

Combining the factor of 4/
√

8 =
√

2 = 1.41 and the factor of 0.78 from Eq. (5), we arrive

at a total pre-factor around 1.41 × 0.78 ≈ 1.1 which given the range of C-factors from 10−1

to 103 sufficiently close to one (given that C can range over four orders of magnitude). That

simplifies Eq. (4) to

γeff = C
uw√
Kφ

(6)

Estimating uw from Darcy’s law, for typical field velocities of 1 ft/day, we obtain for Berea

sandstone in the next section effective shear rates γeff between 2 and 6 s−1. This effective

shear rate is compared with the mean shear rate Ŵmean computed from the flow field as

explained in the next section.

3 Pore-Scale Flow Simulation

Single-phase pore-scale Stokes flow simulations are performed using OpenFOAM (Raeini

et al. 2014) and the SimpleFFT solver of the GeoDICT package (version 2014; Fraunhofer

ITWM, Math2Market GmbH, Kaiserslautern, Germany) (Becker et al. 2008; Berg et al.

2016). In both cases, the simulations were performed for water using a constant viscosity

μ = 1 mPa s as a Newtonian fluid in order to exclude uncertainties originating from rheology

effects.

While the specific solvers and details of the numerical approaches differ, both simulation

packages effectively simulate steady-state (fully developed) Stokes flow directly on the pore

space of the porous medium, i.e., solve the flow field �u for an applied pressure drop �p over

the porous domain for Newtonian incompressible fluids which can be expressed (neglecting

gravity) as

μ∇2 �u − ∇ p = 0

∇ · �u = 0
(7)

where the first equation represents the momentum balance and the second equation incom-

pressibility.

In the momentum balance, the term μ∇2 �u is already a simplification of the divergence of

the viscous stress tensor ∇ · τ

∇ · τ = μ∇2 �u (8)

The viscous stress tensor τ is a symmetric, second rank tensor which can be expressed for an

incompressible Newtonian fluid as product of the shear viscosity μ (which for a Newtonian

fluid is constant) and the rate of strain tensor Ŵ as (Deen 1998)

τ = μ

[

�∇�v + ( �∇�v)t
]

= 2μŴ (9)

The scalar shear rate γ is represented by the magnitude of the rate of strain tensor Ŵ

γ = Ŵ =
√

1

2
(Ŵ : Ŵ) (10)

123



Shear Rate Determination from Pore-Scale Flow Fields

which is the key parameter for simple non-Newtonian rheology models such as the Carreau

model for non-Newtonian fluids from Eq. (1). The computation of Ŵ has been performed in

Avizo (FEI) computing first the rate of strain tensor Ŵ using the gradient functionality on

each velocity vector component and then its magnitude Ŵ.

3.1 Pore-Scale Flow and Shear Rate Fields Sandstone Rock

In the following, pore-scale flow fields are computed for two different sandstone rocks. The

first rock is a Berea sandstone with a porosity of 19.6% and a permeability of 1193 mD in z-

direction. The digital image with a domain size of (400)3 voxels and a resolution of 5.345µm

was taken from the Imperial College website (Raeini et al. 2014). Flow simulations have been

performed with OpenFOAM applying a pressure drop of 1 Pa in the z-direction (Raeini et al.

2014).

In order to check how representative the examples from the Berea sandstone are, a second

rock sample “RS1” was used which is a sandstone reservoir rock with a porosity of 14.8% and

a permeability of 50–200 mD. The digital image has been obtained from X-ray computed

micro-tomography at 2.05µm resolution. The image has been first filtered with a nonlo-

cal means filter and then segmented using a watershed segmentation method using Avizo

(Leu et al. 2014). The image was then down sampled by factor of 2 (obtaining an effec-

tive resolution of 4.1µm), and the flow simulations were performed on a 600×600×950

subdomain with the SimpleFFT solver of GeoDICT by applying a pressure drop of 1 Pa in

z-direction.

The properties of the rock and resulting quantities are listed in Table 1. The results of

the Berea sandstone and the reservoir rock are qualitatively very similar with very minor

quantitative differences originating from the differences in porosity and permeability.

The results of the pore-scale Stokes flow calculations for a (200)3 voxel subdomain of

the Berea sample are displayed in Fig. 2. Panel (A) shows the flow field (i.e., the magnitude

u = |�u|) and panel (B) the pressure field which has been obtained by numerically solving Eq.

(7). The pressure field shows (when averaged over the pore space in the x–y plane) an overall

linear decrease from inlet to outlet in z-direction (not shown). Panel (C) shows the shear rate

or magnitude of rate of strain tensor Ŵ computed from the flow field by using Eq. (10). Flow

field and shear rate field show a much larger variation with the largest flow velocities and

shear rates encountered in pore throats.

From the flow velocity and shear rate fields, respective histograms are computed using

the histogram functionality of Avizo. The results are shown in Fig. 3 where on the left hand

Table 1 Average flow velocity uw , effective shear rates γeff computed from the Blake Kozeny equation and

the mean shear rate Ŵmean computed from the flow field, for Berea sandstone and a reservoir rock sandstone

“RS1”

Sample Flow solver K φ Lz �P μw av. uw γeff Ŵmean C’

(mD) (m) (Pa) (Pa s) (m/s) (s−1) (s−1)

Berea OpenFOAM 1193 0.196 0.002 1 0.001 5.6 × 10−7 6.9 4.5 × 10−1 0.4

RS1 GeoDICT 146.3 0.149 0.002 1 0.001 7.1 × 10−8 2.9 9.1 × 10−2 0.2

Capillaries GeoDICT 6742 0.55 0.0005 1 0.001 1.4 × 10−5 44 2.82 0.4

Spheres GeoDICT 1037 0.52 0.0005 1 0.001 2.1 × 10−6 18 0.97 0.4
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Fig. 2 a Pore-scale flow field u = |�u|, b pressure p and c shear rate magnitude Ŵ for a (200)3 subdomain

for the Berea sandstone sample. For the flow velocity and shear rate, the magnitude increases from blue (low)

over green to red (high). For the pressure field red represents high pressure (1 Pa) and blue low pressure (0 Pa)

side the histogram of the flow velocity magnitude u = |�u| is displayed and on the right hand

side the histogram of the shear rate magnitude Ŵ =
√

1
2
(Ŵ : Ŵ).

In the velocity magnitude histogram in Fig. 3a, the average velocity is close to (the

interstitial velocity corresponding to a Darcy velocity of) 1 ft/day indicating that the simulated

flow field is relevant for field conditions. In the shear rate histogram in Fig. 3b, the estimate

from the Blake–Kozeny correlation from Eq. (6) for C = 6 (Delshad et al. 2008) is at the

upper end of the range of shear rates and about a factor of 15 larger than the average shear rate.

The results of the reservoir rock sandstone sample “RS1” are qualitatively very similar to

Berea and therefore not displayed. All results are summarized in Table 1. The mean share

rates Ŵmean are typically a factor 15–32 smaller than the estimates from the Blake–Kozeny

correlation in Eq. (6) for C = 6. That in itself is not really surprising because it is well

understood from the literature that the “C-factor” can vary by three orders of magnitude

(Wreath et al. 1990). By adjusting the “C-factor” from Eq. (6), these can be brought to a

match within the range of values reported in the literature. The respective modified C-factor is

then termed C‘ and is listed in the last column of Table 1. The magnitude is close to the value

of C = 0.69 as reported by Hirasaki and Pope (1974). For all considered structures, i.e., the

two sandstone rocks, capillary bundle and sphere pack, C‘ is actually very similar, ranging

between 0.2 and 0.4. It does not exhibit the large variation over several orders of magnitude

as observed in experiments with polymer (Wreath et al. 1990). Possible reasons are that in

this study polymer-related and rheology-specific effects and uncertainties are excluded which
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Fig. 3 Histograms of the velocity field u = |�u| (a) and shear rate Ŵ =
√

1
2 (Ŵ : Ŵ) (b) of the Berea sandstone.

In the velocity histogram, the vertical red line represents the interstitial velocity for a 1 ft/day Darcy velocity

indicating that the simulated flow field is in the same range of field-relevant flow rates. The vertical gray line

represents the average velocity of the flow field. In the shear rate histogram, the gray line represents the average

from the histogram, and the vertical red line the estimate from the Blake–Kozeny (or Cannella) correlation

from Eq. (6) using C = 6

are present in the experimental studies (Wreath et al. 1990). Another possible reason is that

for the considered structures the permeability varies within one order of magnitude, while in

natural rock usually several orders of magnitude are encountered. Nevertheless, the data in

Table 1 show the smallest C’ for the smallest permeability indicating a possible trend of C’

with permeability compatible with reports in the literature (Wreath et al. 1990).

3.2 Relationship Between Flow Velocity and Shear Rate in Model Geometries

The fundamental question is why the C-factor adjustment is required and whether there

is a more fundamental mismatch between the correlation and its underlying assumptions.

This is a long standing question that has been articulated already in Wreath et al. (1990).

Teeuw and Hesselink (1980) argued that C depends on the ratios of the radii and lengths

of the contractions and dilations in the underlying porous media which would in practice

have a direct impact on the pore-scale flow field. Therefore, in the following, we inspect

the pore-scale flow fields in more detail in particular with respect to the relation between

shear rate and flow velocity. For that purpose, 2D correlation histograms between the flow

velocity magnitude u = |�u| from the flow simulation and the shear rate Ŵ =
√

1
2
(Ŵ : Ŵ)

are computed using the 2D histogram functionality of Avizo. We begin with considering

the model geometries of sphere packs and capillary bundles which are often used as model

systems for porous media. The flow fields have been computed in a similar way as the

flow fields for the sandstone rocks. The respective flow and shear rate fields and the shear

rate histograms are displayed in Fig. 4. Effective shear rates and the comparison with the

correlation are listed in Table 1. The respective 2D shear rate versus flow velocity correlation

histograms are displayed in Fig. 5.

The shear rate histogram of the capillary tubes case shown in Fig. 4e extends over a much

narrower range and is overall very different from the sandstone case in Fig. 3. Therefore, for

comparison, also the model structure of a sphere pack was considered. The respective flow
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Fig. 4 a Pore-scale flow field u = |�u| and c shear rate γ for a pack of capillary tubes with radius R = 10 µm

and for a sphere pack with sphere radius R = 10 µm (b) and (d), respectively. Flow simulations have been

performed with the SimpleFFT solver of GeoDICT under similar conditions as the reservoir sandstone RS1

from Table 1. e and f show the respective histograms of the shear rate γ

field, shear rate field and shear rate histogram are displayed in Fig. 4b, d, f. For the sphere

pack, the shear rate histogram from Fig. 4f is somewhat closer to the sandstone case from

Fig. 3. The respective 2D correlation histogram is displayed in Fig. 5b.

The 2D correlation histograms in Fig. 5 clearly show that there is no unique linear rela-

tionship between flow velocity magnitude and shear rate in particular not for the capillary

bundle model. Strictly speaking, the correlation from Eq. (6) actually does not suggest such a

linear relationship on the basis of the pore-scale flow field but only on the tube cross-sectional

averaged flux and shear rate in a capillary tubes model. Let us therefore revisit the flow field

in a single capillary tube with radius R as displayed in Fig. 6.
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Fig. 5 2D correlation histograms between u (horizontal axis) and γ (vertical axis) for the capillary bundle

(a) and sphere pack (b) from Fig. 4. The blue line in a is a fit with Eq. (16)

For a single capillary of radius R, the velocity in (z-) flow direction is (Berg et al. 2008)

u = uz(r) = − 1

μ

∂p

∂z

R2

4

(

1 − r2

R2

)

(11)

and the flux

q = Q

A
= 1

π R2

π R4

8μ

∂p

∂z
= R2

8μ

∂p

∂z
= K

μ

∂p

∂z
(12)

with the permeability of the tube K = R2/8. The local shear rate [which is equivalent to the

shear rate magnitude Ŵ, see Eq. (10)] is then

γ = ∂u(r)

∂r
= 1

μ

∂p

∂z

r

2
(13)

which can be expressed in terms of flux Q from Eq. (12) by eliminating the pressure gradient

∂p/∂z obtaining

γ = 4r

R2
q (14)

which is still a local quantity of position r . The cross-sectional averaged shear rate is then

γ̄ = 1

π R2

R
∫

0

2πrγ (r)dr = 1

π R2

R
∫

0

2πr
1

μ

∂p

∂z

r

2
dr = 1

3

1

μ

∂p

∂z
R =

√
8

3

1√
K

q (15)

Fig. 6 Geometry of a capillary

tube with radius R and constant

pressure gradient ∂p/∂z
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which is in essence (up to constant pre-factors) the Blake–Kozeny relationship for Newtonian

fluids from Eq. (6). However, this also shows that the linear relationship is only obtained for

capillary tube cross-sectional averaged flux and shear rate (magnitude). For the local flow

field and shear rate field, such a unique linear relationship does not exist. In order to obtain

the relationship between local shear rate γ (r) and local flow velocity uz(r), one can express

γ in terms of uz by eliminating r using Eq. (11) and substitute in Eq. (13), obtaining

γ = ∂uz(r)

∂r
= 1

μ

√

R2

4

(

∂p

∂z

)2

+ μuz

∂p

∂z
(16)

The structure of Eq. (16) is significantly more complicated than the linear relationship

between cross-sectional averaged shear rate and flux from Eq. (15). The 2D correlation

histogram for the capillary bundle model displayed in Fig. 5a follows the functional form of

Eq. (16) which is superimposed as blue line. Note that deviations of the 2D correlation his-

togram from the analytical model (blue line) originate from discretization issues in numerical

computations and when computing derivatives during postprocessing. In the future, perhaps

more robust methods can be developed.

The reason why we do not observe a linear relationship between shear rate and flow

velocity is that Eq. (16) contains two terms where the first is constant and the second varies

with uz(r) which has a square dependency with the radial position r in the tube, but also

contains implicit dependencies on position, viscosity and permeability. An order of magnitude

estimate indicates that for the typical range of pore sizes R and flow velocities uz , the ratio

of the two terms under the square root can vary between 10−2 and 102. This means that a

large velocity does not necessarily cause a large shear rate and vice versa. According to Eq.

(16), the maximum flow velocity and minimum shear rate γ are encountered for r = 0, while

according to Eq. (13) the maximum shear rate is obtained for r = R where uz is minimal (i.e.,

zero). That can be also clearly seen in the flow simulation for a pack of capillary tubes (with

radius R = 10 µm) displayed in Fig. 4a, c. Note that as Eq. (16) is derived by substituting

Eq. (11) into (13), it leads to the same cross-sectional averaged shear rate as Eq. (15).

The 2D correlation histogram for the sphere pack displayed in Fig. 5b shows clearly a

stronger proportionality between flow velocity u and shear rate γ than for the capillary tubes

case. For the case of capillary tubes, the root cause for the “anti-“correlation between shear

rate and flow field is the no-slip boundary condition at the wall which causes maximum shear

rate ∂uz/∂r at zero velocity uz = 0. For the flow field of the sphere pack, the situation is

different for the regions between the spheres as indicated in Fig. 7.

Figure 7 represents a cross section along the velocity field uz in a plane outside of where

the spheres touch. In a (red) line perpendicular to the main flow direction (i.e., in y-direction)

at the location where the flow field touches the sphere, we encounter a situation where the

flow velocity uz = 0 and the shear rate ∂uz/∂y is maximum in point (1), similar to the

situation in the capillary tube. However, in the regions between spheres (blue lines in Fig. 7),

the flow field is stagnant with the flow velocity uz < 3 · 10−7 m/s ≈ 0 i.e., practically zero,

and for symmetry reasons ∂uz/∂y = 0 in point (2), i.e., velocity and shear rate converge both

to practically zero. In the vicinity, a proportionality between shear rate and flow velocity is

expected. That is reflected in the 2D correlation histogram in Fig. 5b for up to about half to

two thirds of the velocity range. For increasing velocities further away toward point 3 where

velocities initially keep increasing, eventually the velocity reaches a maximum value and the

shear rate decreases again to zero because point (3) is again a symmetry point. That is also

reflected in the 2D correlation histogram in Fig. 5b for the larger velocity range. It appears as

if one could decompose the sphere pack’s flow field into a stagnant part where flow velocity
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Fig. 7 Cross section through the flow field in the sphere pack from Fig. 4b (showing a plane with a detail of

3×3 spheres). Superimposed in yellow are the streamlines. Where the flow field is in contact with the spheres

(red lines) the flow velocity is zero and the shear rate is maximum in point (1), similar to the situation in the

capillary tube. However, in the regions between spheres (blue line) the flow velocity uz ≈ 0 and shear rate

∂uz/∂r = 0 at the symmetry point (2) between spheres. In the vicinity, a proportionality of flow velocity and

shear rate is expected. Following the blue line, eventually the velocity reaches a maximum value and the shear

rate decreases again to zero because point (3) is again a symmetry point

and shear rate are proportional, and a channel-like part where flow velocity and shear rate are

anti-correlated as in Fig. 5a. One can regard the sphere pack as a network of channels with

cross-flow between them (while the capillary bundle has no cross-flow). Depending on the

flow direction, some regions in the connections between channels that allow for the cross-

flow are stagnant. These stagnant regions cause the proportionality between flow velocity

and shear rate.

Note that even though the flow field and shear rate–velocity correlation are different, for

the average shear rate for the sphere pack, a linear relationship with the Darcy velocity is

expected similar as for the capillary tube bundle.

3.3 Relationship Between Flow Velocity and Shear Rate in Sandstone Rock

The 2D shear rate–flow velocity correlation histograms for the Berea and reservoir sandstone

“RS1” case are displayed in Figs. 8 and 9, respectively.

For both cases, the 2D correlation histograms show a wide spread in the relationship

between flow velocity magnitude u = |�u| on the horizontal axis and the shear rate Ŵ =
√

1
2
(Ŵ : Ŵ) on the vertical axis, but no unique linear correlation, meaning that for the same
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Fig. 8 2D correlation histogram between velocity magnitude v = |�v| on the horizontal axis and shear rate

magnitude Ŵ on the vertical axis for the Berea sandstone case

flow velocity there is a large variation of shear rate, depending on the local geometry (and

hence the local flow field).

Since there is no simple linear relationship between shear rate and flow velocity, this

means that computing an effective viscosity from an average shear rate is not the same as

computing it from an average flow velocity, i.e., μeff (γ (v)) 	= μeff (γ (v)). An empirical

constant can certainly compensate for the mismatch but that constant is porous medium

specific and depends on to which degree the relationship between γ and v is linear. In order

to assess the sensitivity to pore geometry, in the following we consider two model geometries,

i.e., capillary tubes and a sphere pack.

It appears that on the basis of the 2D correlation histograms, the flow fields of capillary

tubes and sphere packs from Fig. 5 are limiting cases at opposite ends of the spectrum.

On the basis of the 2D correlation histograms from Fig. 5 compared with the flow field in

sandstone rock from Figs. 8 and 9, it becomes clear that in terms of flow field, capillaries

are not a good representation of rock. The flow field of rock seems to lie between that of

the capillary tubes case and the sphere pack, or is a combination thereof. In the discussion

of the sphere pack results at the end of the previous section, we already rationalized that the

flow field of a 3D structure can be decomposed into more channel-like regions with capillary

tube-like flow fields and cross-connections between these channels that are stagnant causing

a proportionality between flow velocity and shear rate. The flow field in any 3D structure is

then a combination of those two contributions but the exact partition depends on properties

like the length of pore throats and the aspect ratio of their diameter compared to pore bodies,

and the coordination number.

Elongated pore throats which resemble capillary tubes are expected to have a more

channel-like flow field which resembles more that of capillary tubes in Fig. 5a. That is ulti-
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Fig. 9 2D correlation histogram between velocity magnitude v = |�v| on the horizontal axis and shear rate

magnitude Ŵ on the vertical axis for the reservoir sandstone rock “RS1”

mately the reason why the degree to which μeff (γ (v)) 	= μeff (γ (v)) depends on the actual

pore space morphology, or in other words the “C-factor” varies with the pore structure. In

the Berea sandstone case in Fig. 8, it appears as if the flow field is dominated by stagnant

flow regions because the shear rate converges to zero for decreasing flow velocities. For the

RS1 sandstone, there is a predominant contribution from stagnant flow regions as well but it

has also channel-like elements because we observer a significant shear rate at vanishing flow

velocity. Therefore, the Berea case is somewhat more compatible with a linear relationship

between flow velocity and shear rate than RS1 which is also reflected by the C’ in Table 1

being closer to one for the Berea case compared to RS1.

Note that in this study the observed C-factors range between 0.2 and 0.4 (Table 1). The

data suggest a weak dependency of the C-factor on permeability compatible with reports in

the literature (Wreath et al. 1990). However, in this study the permeability range considered

is only roughly one order of magnitude. In order to draw firmer conclusions on the perme-

ability dependency of the C-factor, a variation of permeability by several orders of magnitude

(Wreath et al. 1990) which is in various aspects beyond the scope of this study.

This work is limited to Newtonian rheology. When non-Newtonian rheology effects are

included in the computation of the flow field, it is expected that the flow field is changing and

that consequently the correlations between flow and shear rate are also changing. Compared to

the Newtonian case, for a shear-thinning fluid regions with low shear rates (and consequently

higher viscosity) are expected to have lower flow velocities and regions with high shear rate

(and consequently low viscosity) are expected to have higher flow velocities. Dependent

on the extent of the shear thinning, i.e., the relationship between viscosity and shear rate,

the stagnant regions may become larger and the higher velocity flow paths more localized

compared to the Newtonian case. When including extensional rheology effects, it is expected
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that regions with large variation in pore diameter such as pore throats would be significantly

impacted by higher flow velocities, while the stagnant regions become even more stagnant. It

might be useful to consider the case of the capillary tube bundle and sphere packs as reference

cases for which exact analytical solutions can be computed for certain rheological models

like Carreau fluids using the Weissenberg-Rabinowitsch-Mooney-Schofield integral method

(Sochi 2015). But also a 3D porous rock should be considered as this work clearly showed

that capillary bundles and sphere packs are only limiting cases for flow fields of sandstone

rock. Resulting flow fields can be visualized and categorized by extending the methodology

from this work, i.e., visualizing the flow field, shear rate and strain rate in flow direction

superimposed over a representative volume of the porous rock, and in addition use the 2D

correlation histograms (shear rate vs. flow velocity and strain rate in flow direction vs. flow

velocity).

3.4 Summary and Conclusions

For practical applications in improved oil recovery, often semi-empirical correlations based

on the Cannella or Blake–Kozeny correlation are used. They relate the in situ viscosity

(interpreted from the pressure drop at given flow rate from Darcy’s law) to the fluid’s shear

viscosity of, for instance, a hydrosoluble polymer solution through the use of an effective

shear rate. This semi-empirical correlation, which is based on a capillary tubes model, is

known to require tuning of the phenomenological “C-factor” which is explicitly dependent on

porosity, permeability and polymer-specific properties and effects. The explicit dependency

of the “C factor” on permeability means that a correlation established for a specific polymer

formulation is valid only for one rock type and cannot be generally applied to another rock

type which is a major limitation for practical applications. In order to shed more light on the

underlying cause, the connection between effective viscosity, shear rate and flow velocity

was studied systematically on the basis of pore-scale flow fields from which all quantities

of interest can be computed. In order to exclude rheology and polymer-specific effects, only

Newtonian fluids were considered.

Pore-scale resolved shear rates directly computed from the flow field ranged from 10−2

to 101 s−1 for a 1 ft/day flow velocity typically used in field applications. The Blake–Kozeny

/ Cannella correlation predicted a shear rate that can be brought to an agreement with the

average obtained from pore-scale flow simulation by adjusting the “C-factor” within the 3–4

orders of magnitude range reported in the literature. That is unsatisfactory when trying to

make predictions for an unknown rock type without prior tuning.

The underlying reason is that the relationship between shear rate and velocity is generally

more complicated than the linear relationship employed in the Blake–Kozeny relationship.

In terms of the characteristics of the flow field, capillary tubes and sphere packs represent

limiting cases at opposite ends of the spectrum. For sphere packs, there is a moderate linear

correlation between flow velocity and shear rate but for capillary tubes the correlation is

particularly weak. In capillary tubes where the flow field can be computed analytically, a

linear relationship between flux and shear rate exists only on the basis of cross-sectional

averages but not on the basis of the local flow field. In addition, the shear rate is related

not only to the flow velocity but also the position and hence parameters like the local pore

geometry. That implies that an effective viscosity computed from an average flow velocity

(as used in the Cannella equation) is not the same as the average the viscosity computed on

the basis of the local shear rate. Sandstone rock which lies between two limiting cases also

does not exhibit a particularly strong correlation between local flow velocity and shear rate.

As a consequence, an effective viscosity estimated from an average flow velocity is not the

123



Shear Rate Determination from Pore-Scale Flow Fields

same as from an average shear rate. The degree of the discrepancy depends directly on the

extent to which the relationship between shear rate and flow velocity is linear. Pore-scale

flow simulations conducted on sandstone rock, a sphere pack and a bundle of capillary tubes

showed that the relationship between shear rate and flow velocity strongly depends on the

morphology of the pore space. That is ultimately the reason why the “C-factor” varies from

rock to rock and requires individual tuning.
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