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Shear Stress in Smooth Rectangular Open-Channel Flows

Junke Guo
1

and Pierre Y. Julien
2

Abstract: The average bed and sidewall shear stresses in smooth rectangular open-channel flows are determined after solving the

continuity and momentum equations. The analysis shows that the shear stresses are function of three components: (1) gravitational; (2)

secondary flows; and (3) interfacial shear stress. An analytical solution in terms of series expansion is obtained for the case of constant

eddy viscosity without secondary currents. In comparison with laboratory measurements, it slightly overestimates the average bed shear

stress measurements but underestimates the average sidewall shear stress by 17% when the width–depth ratio becomes large. A second

approximation is formulated after introducing two empirical correction factors. The second approximation agrees very well (R2�0.99 and

average relative error less than 6%) with experimental measurements over a wide range of width–depth ratios.
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Introduction

The problem of separating the bed shear stress and the side-wall

shear stress is very important in almost all studies of open-

channel flows. For example, one must know boundary shear stress

to study a velocity profile (Guo and Julien 2001; Babaeyan-

Koopaei et al. 2002). One must separate the bed shear stress from

the total shear stress to estimate bed-load transport in open-

channel flows. Similarly, to study channel migration or to prevent

bank erosion, one must know the side-wall shear stress. More-

over, a side-wall correction procedure is often needed in labora-

tory flume studies of velocity profiles, bedform resistance and

sediment transport (Julien 1995; Cheng 2002; Berlamont et al.

2003). Wall shear stress measurement techniques were also re-

cently reviewed by Bocchiola et al. (2003). This paper aims at

determining the average boundary shear stress in smooth rectan-

gular open channels from continuity and momentum equations.

Seven decades ago, Leighly (1932) proposed the idea of using

conformal mapping to study the boundary shear stress distribution

in open-channel flows. He pointed out that, in the absence of

secondary currents, the boundary shear stress acting on the bed

must be balanced by the downstream component of the weight of

water contained within the bounding orthogonals. This idea has

not rendered any conclusive results (Graf 1971, p. 107), though

Lundgren and Jonsson (1964) extended the logarithmic law to a

parabolic cross-sectional open channel and proposed a method to

determine the shear stress and velocity distribution. Chiu and his

associates (Chiu and Lin 1983; Chiu and Chiou 1986) investi-

gated the complex interaction between primary and secondary

flows, shear stress distribution, channel characteristics (rough-

ness, slope, and geometry), and other related variables in open

channels. The difficulty is that the calculation of boundary shear

stress requires the knowledge of velocity profile.

Keulegan (1938) and Johnson (1942) contributed to the early

development of this subject, and Einstein’s (1942) hydraulic ra-

dius separation method (Chien and Wan 1999, p. 266) is still

widely used in laboratory studies and engineering practice. Ein-

stein divided a cross-sectional area into two areas Ab and Aw, as

shown in Fig. 1. He assumed that the downstream component of

the fluid weight in area Ab is balanced by the resistance of the
bed. Likewise, the downstream component of the fluid weight in
area Aw is balanced by the resistance of the two side walls. There
is no friction at the interface between the two areas Ab and Aw. In
terms of energy, the potential energy provided by area Ab is dis-
sipated by the channel bed, and the potential energy provided by
area Aw is dissipated by the two side walls. Following this idea,
Yang and Lim (1997, 1998) recently proposed an analytical
method to delineate the two areas. However, their method is in-
convenient for applications because of its implicit and segmental
form (Guo 1999) except without considering the effects of sec-
ondary currents.

Since the 1960s, several experimental studies have been re-
ported by Cruff (1965), Ghosh and Roy (1970), Kartha and
Leutheusser (1970), Myers (1978), Knight and Macdonald
(1979), Knight (1981), Noutsopoulos and Hadjipanos (1982),
Knight et al. (1984), Hu (1985), and others. Knight and his asso-
ciates collected a great deal of experimental data about the effect
of the side walls at different width–depth ratios. With these data,
they proposed several empirical relations which are very helpful
in the studies of open-channel flow and sediment transport.

Starting with the continuity and momentum equations for a
steady uniform flow, the objective of this paper is first to formu-
late a theoretical basis for the boundary shear stress in rectangular
open channels. As a first approximation, the boundary shear stress
will be solved by using conformal mapping, after neglecting sec-
ondary currents and assuming a constant eddy viscosity. A second
approximation is then presented by introducing two lumped em-
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pirical correction factors for the effects of secondary currents,
variable eddy viscosity and other possible effects. Both approxi-
mations will be compared with the existing experimental data.
Finally, the implication to flume velocity profile studies will be
briefly discussed.

Theoretical Analysis

Consider steady uniform flow in a rectangular open channel. The
flow direction defines the axis x, and the cross-sectional plane
y–z is shown in Fig. 2. Accordingly, the main flow velocity in the
axis x is denoted as u, and the secondary currents in the plane y–z

are v and w, respectively. One can show that the corresponding
continuity and momentum equations in the flow direction x are

�v

�y
+

�w

�z
= 0 �1�

��v

�u

�y
+ w

�u

�z
� = �gS +

��yx

�y
+

��zx

�z
�2�

in which �=mass density of water; g=gravitational acceleration;
S=channel slope; and �yx and �zx=shear stresses in the flow di-
rection x applied on the z–x plane and the y–x plane, respec-
tively. The convective accelerations on the left-hand side of Eq.
(2) account for secondary currents. The first term on the right-
hand side is the gravity component in the flow direction, and the
other two are net shear stresses applied on a differential element
of fluid. The momentum equation in terms of shear stress is used
since this study focuses on boundary shear stresses instead of
velocity distributions.

Multiplying Eq. (1) by �u and adding it to the left-hand side of
Eq. (2) gives

���uv�

�y
+

���uw�

�z
= �gS +

��yx

�y
+

��zx

�z
�3�

The corresponding volume integral equation to the above equa-
tion is

�
V

� ���uv�

�y
+

���uw�

�z
�dV =�

V

�gS dV +�
V

� ��yx

�y
+

��zx

�z
�dV

�4�

in which V=arbitrary volume with surface A. Applying Gauss’s
theorem to the left-hand side and the second integration on the
right hand side results in

�
A

�u�v

�y

�n
+ w

�z

�n
�dA = �gVS +�

A

��yx

�y

�n
+ �zx

�z

�n
�dA �5�

in which �y /�n=cosine of the angle between the axis y and the
normal vector n pointing outside of the control volume; and simi-
larly �z /�n=cosine of the angle between the axis z and the normal
vector n. The left-hand side of the above equation is the net
momentum flux out of the control surface A. The first term of the
right-hand side is the gravity component of the control volume,
and the second term of the right-hand side is the shear force on
the control surface A. Eq. (5) will be used to formulate the bound-
ary shear stress equation.

Average Bed Shear Stress Equation

Consider a control volume BCHGB in Fig. 1 that has a unit length
in the flow direction x. The delimitations BG and CH are sym-
metric with respect to the axis z. The momentum flux in Eq. (5) is
then

Fig. 1. Partition of cross-sectional area for bed shear stress and side-wall shear stress

Fig. 2. Coordinate system in open-channel flows
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�
A

�u�v

�y

�n
+ w

�z

�n
�dA =�

BC

+�
CH

+ �
HG

+�
GB

�6�

in which

�
BC

=�
BC

�u�v

�y

�n
+ w

�z

�n
�dA = 0 �7�

because v=w=0 (no-slip condition), �y /�n=0, and �z /�n=−1 at
the channel bed

�
GB

=�
CH

=�
CH

�u�v

�y

�n
+ w

�z

�n
�dA

=�
CH

�u�v

�y

�n
+ w

�z

�n
�dl

=�
CH

�u�v dz − w dy� �8�

because dz=�y /�n ·dl, −dy=�z /�n ·dl, dA=dl ·1=dl, in which
dl=differential length along delimitation CH, shown in Fig. 1,
“1” means a unit length in the flow direction x, and the symmetric
condition has been used for the integration over the curve GB;
and

�
HG

=�
HG

�u�v

�y

�n
+ w

�z

�n
�dA = = 0 �9�

because �y /�n=0, �z /�n=1, v�0, and w=0 at the free surface.
Substituting Eqs. (7)–(9) into Eq. (6) yields

�
A

�u�v

�y

�n
+ w

�z

�n
�dA = 2�

CH

�u�v dz − w dy� �10�

The gravity term in Eq. (5) becomes

�gSV = �gSAb �11�

in which V=Ab ·1=Ab that is the flow area corresponding to the
channel bed.

The term of shear force in Eq. (5) becomes

�
A

��yx

�y

�n
+ �zx

�z

�n
�dA =�

BC

+�
CH

+�
HG

+�
GB

�12�

in which

�
BC

=�
BC

��yx

�y

�n
+ �zx

�z

�n
�dA = − �̄bb �13�

because �y /�n=0, �z /�n=−1, �zx= �̄b (note that �zx is positive in
the negative direction of a negative plane y–x, according to the
sign conventions of shear stresses) that is the average bed shear
stress, and the area of the channel bed is A=b ·1=b

�
GB

=�
CH

=�
CH

��yx

�y

�n
+ �zx

�z

�n
�dA

=�
CH

��yx

�y

�n
+ �zx

�z

�n
�dl

=�
CH

��yx dz − �zx dy� �14�

because dz=�y /�n ·dl and −dy=�z /�n ·dl; and

�
HG

=�
HG

��yx

�y

�n
+ �zx

�z

�n
�dA = 0 �15�

because �y /�n=0, �z /�n=1, and �yx=�zx=0 at the free surface.
Substituting Eqs. (13)–(15) into Eq. (12) gives

�
A

��yx

�y

�n
+ �zx

�z

�n
�dA = − �̄bb + 2�

CH

��yx dz − �zx dy� �16�

Substituting Eqs. (10), (11), and (16) into (5) produces

2�
CH

�u�v dz − w dy� = �gSAb − �̄bb + 2�
CH

��yx dz − �zx dy�

�17�

which results in

�̄b =
�gSAb

b
−

2

b
�

CH

�u�v dz − w dy� +
2

b
�

CH

��yx dz − �zx dy�

�18�

This is the theoretical equation of the average bed shear stress.
The first term of the right-hand side describes the gravitational
component. The second term is associated with secondary cur-
rents and the last term represents the shear stress at the interface
CH.

Average Side-Wall Shear Stress Equation

Similarly, the average side-wall shear stress �̄w can be formulated
by applying Eq. (5) to the control volume BGEB or CFHC in Fig.
1. However, a short way to derive the average side-wall shear
stress is to consider the overall force balance in the flow direction.
That is

2h�̄w + b�̄b = �gbhS �19�

in which the first term on the left-hand side is the shear force on
the two side walls, the second term is the shear force on the
channel bed, and the right-hand side is the component of water
gravity in the flow direction. Applying Eq. (18) in Eq. (19) gives
the average side-wall shear stress as

�̄w =
�gbhS − b�̄b

2h

=
�gSAw

2h
+

1

h
�

CH

�u�v dz − w dy� −
1

h
�

CH

��yx dz − �zx dy�

�20�

in which Aw=bh−Ab has been used.
To summarize Eqs. (18) and (20), one can see that the bound-

ary shear stress consists of three components: the first term is the
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gravity contribution, the second term is the effect of secondary
currents, and the third term is the effect of fluid shear stresses
that, in turn, reflect the effect of eddy viscosity in turbulent flows.
The first term is the dominant term with small contributions from
the second and third terms on the right-hand side of Eqs. (18) and
(20). Note that although Eqs. (18) and (20) are here derived for
smooth rectangular open channels, they are valid for all types of
cross sections as long as BG and CH are symmetrical.

First Approximation Without Secondary Currents

To estimate the boundary shear stresses from Eqs. (18) and (20),
one must know the main velocity u and secondary currents v and
w, the shear stresses �yx and �zx, and the integration path CH. On
the other hand, to solve for velocity field, one must know the
boundary shear stresses. This interaction between velocity and
shear stress makes the solution of boundary shear stresses or ve-
locity profiles very complicated, as shown by Chiu and Chiou
(1986). As a first approximation, one may neglect the effects of
secondary currents and the fluid shear stresses. Thus, Eq. (18)

becomes

�̄b =
�gSAb

b
�21a�

or

�̄b

�ghS
=

Ab

bh
�21b�

and Eq. (20) becomes

�̄w =
�gSAw

2h
�22a�

or

�̄w

�ghS
=

Aw

2h2
�22b�

The remaining problem is to find the areas Ab and Aw, which is
equivalent to find the delimitations BG and CH in Fig. 1.

Delimitations BG and CH

The first approximation assumes that: (1) secondary currents are
neglected; and (2) the eddy viscosity �t is constant. Applying
these two assumptions to Eq. (2) gives

�
2u

�y2
+

�
2u

�z2
= −

gS

� + �t

= const �23�

in which �yx=���+�t��u /�y; �zx=���+�t��u /�z; and �=water ki-
nematic viscosity. The above equation is the Poisson equation and
can be solved by a conformal mapping method (White 1991, p.
115). That is, the orthogonals of the velocity contours can be used
to delineate BG and CH in Fig. 1. Although the solution of Eq.
(23) gives a laminar velocity profile, the orthogonals provide a
first approximation of the boundary shear stress. According to the
Schwarz–Christoffel transformation (Spiegel 1993, p. 204), the
delimitation CH is found as (Guo 1998; Guo and Julien 2002)

sin
�y

b
cosh

�z

b
= 1 �24�

which is identical to

tan
�y

2b
= exp�−

�z

b
� �25a�

or

�y

2b
= tan−1 exp�−

�z

b
� �25b�

which is shown in Fig. 1.

Average Bed Shear Stress

With reference to Fig. 1, after considering symmetry with respect
to the channel centerline, the area Ab can be estimated as follows:

Ab = 2�
0

h

ydz =
4b

�
�

0

h

tan−1 exp�−
�z

b
�dz �26�

Expanding the integrand of Eq. (26) in terms of exp�−�z /b� and
integrating it yields

Ab =
4b2

�2 �− �t − 1� +
t3 − 1

32 −
t5 − 1

52 +
t7 − 1

72 − ¯ �
=

4b2

�2 �
n=1

�

�− 1�n
t2n−1 − 1

�2n − 1�2 �27�

in which t=exp�−�h /b�. Substituting Eq. (27) into Eq. (21b)

gives the average bed shear stress as

�̄b

�ghS
=

4

�2

b

h
�
n=1

�

�− 1�n
t2n−1 − 1

�2n − 1�2 �28�

which is the first approximation of the average bed shear stress.

Average Side-Wall Shear Stress

The area Aw corresponding to the side walls can be found by

Aw = bh − Ab �29�

Substituting Eq. (27) into the above gives that

Aw = bh�1 −
4

�2

b

h
�
n=1

�

�− 1�n
t2n−1 − 1

�2n − 1�2� �30�

Furthermore, the average side-wall shear stress �̄w from Eq. (22b)

becomes

�̄w

�ghS
=

Aw

2h2
=

b

2h
�1 −

4

�2

b

h
�
n=1

�

�− 1�n
t2n−1 − 1

�2n − 1�2� �31a�

or

�̄w

�ghS
=

b

2h
�1 −

�̄b

�ghS
� �31b�

in which �̄b / ��ghS� is estimated by Eq. (28).

Second Approximation with Correction Factors

The first approximation also implies that the maximum velocity
occurs at the water surface. However, experiments (Tracy 1965;
Imamoto and Ishigaki 1988; Nezu and Nakagawa 1993, p. 98)

and numerical simulations (Naot and Rodi 1982) showed that in
narrow channels, the maximum velocity occurs below the water
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surface, shown in Fig. 3. This is called the velocity dip phenom-
enon that is caused by secondary currents (Graf 1971, p. 107;
Chiu and Chiou 1986). The second approximation aims at im-
proving upon the first approximation by introducing two lumped
empirical correction factors in the first approximation.

Substituting Eq. (26) into Eq. (21b) gives

�̄b

�ghS
=

4

�

1

h
�

0

h

tan−1 exp�−
�z

b
�dz �32�

Applying the theorem of integration by parts to the above gives

�̄b

�ghS
=

4

�
tan−1exp�−

�h

b
� +

4

bh
�

0

h
z exp�− �z/b�

1 + exp�− 2�z/b�
dz

�33�

Considering that 1�1+exp�−2�z /b��2, one may approximate
the second term of Eq. (33) as

�
0

h
z exp�− �z/b�

1 + exp�− 2�z/b�
dz 	�

0

h

z exp�−
�z

b
�dz

	 h · ��h�exp�−
��h

b
� �34�

in which the mean value theorem for integrals has been applied
and 0	�	1.

To include the effects of secondary currents, variable eddy
viscosity and other possible effects, two lumped empirical correc-
tion factors �1 and �2 are introduced in Eq. (34). In other words,
from Eqs. (33) and (34) one can assume

�̄b

�ghS
=

4

�
tan−1 exp�−

�h

b
� +

�1h

b
exp�−

��2h

b
� �35�

Substituting Eq. (35) into Eq. (31b) gives the second approxima-
tion for the average side-wall shear stress

�̄w

�ghS
=

b

2h
�1 −

4

�
tan−1 exp�−

�h

b
� −

�1h

b
exp�−

��2h

b
��

�36�

To ensure the validation of the above two equations in both
narrow and wide channels, one can choose one condition from
narrow channel and one-condition from wide channel to deter-
mine the values of �1 and �2. According to Knight et al. (1984),
for b /h=2 (narrow channel), the experiments showed that the

average bed shear stress �̄b is approximately equal to the average

side-wall shear stress �̄w. Thus, one assumes

�̄b = �̄w at b/h = 2 �37�

On the other hand, according to Knight et al. (1984), when b /h

→� (wide channel), one has

�̄w

�ghS
= 0.61 �38�

To incorporate the condition Eq. (38), one can consider Eq.
(36) for the case b /h→�. Since

4

�
tan−1 exp�−

�h

b
� →

4

�
tan−1�1 −

�h

b
�

→
4

�
��

4
−

�h

2b
� = 1 −

2h

b
�39�

and

�1h

b
exp�−

��2h

b
� →

�1h

b
�40�

substituting the above two relations into Eq. (36) gives

�̄w

�ghS
→

b

2h
�1 − �1 −

2h

b
� −

�1h

b
� = 1 −

1

2
�1 �41�

Combining Eq. (38) and Eq. (41) yields

�1 = 0.78 

�

4
�42�

Applying the condition Eq. (37) in Eqs. (35) and (36) at b /h=2,
one has

4

�
tan−1 exp�−

�

2
� +

�

8
exp�−

��2

2
� =

1

2
�43�

in which Eq. (42) has been applied. Solving the above equation
gives

�2 = 0.316 

1

�
�44�

Finally, with Eqs. (42) and (44), the second approximation of the
average bed shear stress Eq. (35) reduces to

�̄b

�ghS
=

4

�
tan−1 exp�−

�h

b
� +

�

4

h

b
exp�−

h

b
� �45�

and the side-wall shear stress Eq. (36) reduces to

�̄w

�ghS
=

b

2h
�1 −

4

�
tan−1 exp�−

�h

b
� −

�

4

h

b
exp�−

h

b
�� �46�

One can demonstrate that for a very wide channel where b /h

→�, the second term of Eq. (45) vanishes and tan−11=� /4,

which reduces Eq. (45) to �̄b→�ghS. This coincides with the
result in a two-dimensional flow. However, the average side-wall
shear stress Eq. (46) for large width–depth ratios is not zero,
which can be clearly seen from Eq. (41).

Fig. 3. Comparison of model delimitation with measured delimita-

tion where b /h=2 [line ABM is measured according to Nezu and

Nakagawa (1993, p. 98), and dashed line ABC is first approximation]
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Comparison with Experimental Data

The existing experimental data in smooth open channels have
been well documented by Knight et al. (1984). This data set in-
cludes those of Cruff (1965), Ghosh and Roy (1970), Kartha and
Leutheusser (1970), Myers (1978), Knight and Macdonald
(1979), and Noutsopoulos and Hadjipanos (1982). In terms of the
average bed shear stress, comparison between Eq. (28) and the
experimental measurements is shown in Fig. 4 with the dashed
line. One can see that the first approximation Eq. (28) slightly
overestimates the average bed shear stress. This demonstrates that
except for gravity, the effects of secondary currents and interface
shear stress should be considered at least empirically. The second
approximation Eq. (45), denoted with the solid line, agrees very
well with the experimental data. The correlation coefficient be-
tween Eq. (45) and the data is about 0.994. If one defines the
relative error as

err = � calculated − measured

measured
� �47�

then the average relative error is about 5.6%. If the three largest
relative errors are excluded, then the average relative error re-
duces to 3.1%.

In terms of the side-wall shear stress, comparison between the
first approximation Eq. (31a) and the measurements of Knight et
al. (1984) is shown in Fig. 5. Unlike those of the average bed
shear stress, the first approximation, denoted with the dashed line,
is 17% less than the experimental data when the width–depth
ratio becomes large. This shows that the first approximation is not
good for the average side-wall shear stress. However, the second
approximation Eq. (46) improves the first approximation greatly,
as denoted with the solid line in Fig. 5.

Implication to Flume Velocity Profile Study

Traditionally the bed shear velocity is determined by fitting the
near bed velocity profile to the logarithmic law when studying
turbulent velocity profiles in flume experiments (Nezu and Naka-
gawa 1993). Eq. (45), which is independent of velocity profiles,
can simplify this process in smooth rectangular flumes. Table 1
examines this application where the measured values were re-
ported in literature (Coleman 1986; Lyn 1986, 2000; Muste and
Patel 1997), and the calculated values are from Eq. (45) according

to u*b=��̄b /�. Note that the three data sources are independent of
those in Fig. 4. One can see that the measured shear velocities are
slightly larger than those from Eq. (45). This is because the mea-

Table 1. Comparison of Calculated Bed Shear Velocities with Measurements in Smooth Flumes

Parameter

Coleman’s

(1986)

Run 1

Lyn’s (1986, 2000) Muste and Patel’s (1997)

C1 C2 C3 C4 CW01 CW02 CW03

Slope S �
10−3� 2.00 2.06 2.70 2.96 4.01 0.739 0.768 8.13

Temperature T (°C) 21.1 18.7 21.3 21.0 21.3 18.4 17.2 17.4

Depth h (cm) 17.2 6.54 6.53 5.75 5.69 13.00 12.8 12.70

Average velocity V (m/s) 1.050 0.658 0.772 0.734 0.868 0.624 0.628 0.634

Hydraulic radius R (cm) 8.75 4.39 4.38 4.02 3.99 10.10 10.00 9.90

Reynolds numer R=VR /� �
104� 9.17 2.73 3.41 2.96 3.50 6.00 5.80 5.80

Froude number F=V /�gh 0.80 0.82 0.97 0.97 1.16 0.55 0.56 0.57

Width–depth ratio b /h 2.00 4.08 4.09 4.64 4.69 7.00 7.10 7.16

Bed shear velocity u*b (cm/s), from Eq. (45) 4.14 3.05 3.49 3.50 4.06 2.78 2.82 2.89

Measured shear velocity u*b (cm/s) 4.10 3.10 3.70 3.60 4.30 2.92 2.92 2.98

Fig. 4. Comparison of first approximation and second approximation

for average bed shear stress with experimental data

Fig. 5. Comparison of first approximation and second approximation

for average side-wall shear stress with experimental data
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sured values are local shear velocities while the calculated are the
average bed shear velocities. In general, the calculated values are
considered comparable with those reported in the literature.

Summary and Conclusions

This analysis defines the average bed and sidewall shear stresses
for steady uniform flow in smooth rectangular channels. An
analysis of the continuity and momentum equations yields a for-
mulation for average bed shear stress in Eq. (18) and average
sidewall shear stress in Eq. (20). Both formulations show the
importance of three main terms in the shear stress analysis: (1) a
gravitational term; (2) a secondary flow term; and (3) a shear
stress term at the interface. An analytical solution is possible for
the case where the eddy viscosity is constant and secondary flows
are negligible. This analytical solution is obtained after consider-
ing the Schwarz–Christoffel transformation. This leads to the first
approximation in terms of series expansion for the bed shear
stress in Eq. (28) and sidewall shear stress in Eq. (31).

When comparing with experimental measurements in Fig. 4,
this first approximation slightly overestimates the measured aver-
age bed shear stresses. Most important is that in Fig. 5, the first
approximation underestimates the side-wall shear stress measure-
ments by about 17% when the channel width–depth ratio is large.
A second approximation is then proposed after introducing two
empirical coefficients. The second approximation [Eqs. (45) and
(46)] yields a better agreement with the experimental measure-
ments with R2�0.99 and an average relative error less than 6%
for the average bed shear stress. This second approximation is
therefore recommended in practice.
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Notation

The following symbols are used in this paper:

A � area of control volume surface;
Ab,Aw � areas corresponding to bed shear stress and

side-wall shear stress, respectively;
b � width of channel;
F � Froude number;
g � gravitational acceleration;
h � flow depth;
l � integration length;

n � normal vector pointing outside of control volume;
R � global Reynolds number;
R � hydraulic radius or correlation coefficient;
S � channel slope;
T � temperature (°C);
t � interim variable t=exp�−�h /b�;
u � downstream flow velocity in x direction;

u*b � average bed shear velocity;
V � average velocity of cross section;
V � volume of control volume;

v � velocity in lateral direction y;
w � velocity in z direction;

x � coordinate of downstream flow direction;
y � coordinate of lateral direction;
z � coordinate that is perpendicular to flow direction x

and lateral direction y;
� � angle between coordinate z and normal vector n

pointing outside of control volume;
 � angle of channel slope S=sin ;

�,�1,�2 � correction factors;
�,�t � kinematic viscosity of water and eddy viscosity,

respectively;
� � mass density of water;

�̄b,�̄w � average bed shear stress and side-wall shear stress,
respectively; and

�yx,�zx � shear stresses in flow direction x applied on z–x

plane and y–x plane, respectively.
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