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Shear Stress Intensity Factors for 
a Planar Crack With Slightly 
Curved Front 
Recent work (Rice, 1985a) has presented the calculations of the first order variation 
in an elastic displacement field associated with arbitrary incremental planar advance 
of the location of the front of a half-plane crack in a loaded elastic full space. That 
work also indicated the relation of such calculations to a three-dimensional weight 
function theory for crack analysis and derived an expression for the distribution of 
the tensile mode stress intensity factor along a slightly curved crack front, to first 
order accuracy in the deviation of the crack front location from a reference straight 
line. Here we extend the results on stress intensity factors to the shear modes, solving 
to similar first order accuracy for the in-plane [Mode 2) and antiplane (Mode 3) 
shear stress intensity factors along a slightly curved crack front. Implications of 
results for the configurational stability of a straight crack front are discussed. It is 
also shown that the concept of line tension, while qualitatively useful in characteriz
ing the crack extension force (energy release rate) distribution exerted on a tough 
heterogeneity along a fracture path as the crack front begins to curve around it, does 
not agree with the exact first order effect that is derived here. 

Introduction 
For a half-plane crack lying in an infinite space, the stress 

intensity factors due to point force pairs acting on the crack 
surface have been derived by many authors (Uflyand, 1965; 
Sih and Liebowitz, 1968; Kassir and Sin, 1973; Bueckner, 
1977; Meade and Keer, 1984a; etc) in the case when the crack 
front lies along a straight line. Hence, by integration, the solu
tion due to arbitrary loading on the crack surface can be 
found. 

Rice (1985a) showed how the knowledge of such solutions 
enables one to calculate the changes in crack surface displace
ment distribution, exact to the first order in the deviation of 
the crack front position from a reference straight line, when 
the crack front position is altered slightly to lie along a general 
curved arc in the same plane as that of the crack. He gave full 
details for the case of tensile (Mode 1) loading and derived an 
expression for the stress intensity factor Kx along such a 
nonstraight crack front (again, exact to the first order). The 
latter work was motivated by the interesting approach to the 
wavy crack front problem based on asymptotic expansions by 
Meade and Keer (1984b), although it turned out that their 
results required correction. 
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Here we carry through details of the slightly curved crack 
front analysis for general shear loading, deriving the 
analogous expressions for the inplane (Mode 2) and antiplane 
(Mode 3) stress intensity 
nonstraight crack front. 

factors, K2 and K3, along a 

Crack Surface Displacement 
We now present the basic equation for crack surface 

displacements associated with incremental crack growth, 
following Rice (1985a). 

An infinite, homogeneous, isotropic elastic solid contains a 
half-plane crack with a straight crack front and is subjected to 
an "original" load system, consisting of some fixed forces 
and/or imposed boundary displacements, that induces mixed 
modes with distributions K^(z') of stress intensity factors 
along the crack front. Here a = 1, 2, 3 and z' denotes the 
location along the crack front. A Cartesian x, y, z coordinate 
system is attached such that the crack plane lies on y = 0 and 
the z axis lies along the crack front (Fig. 1). 

Now imagine that the original loading is supplemented by a 
set of concentrated force pairs ±Pj, j = x, y, z, acting at x, 
0+ , z and x, 0" , z resulting in opening, inplane shear and an
tiplane shear relative displacements of the crack surface. Let 
Auj (x, z) be the relative displacements of crack surfaces at the 
load location. (These are unbounded for point forces; see Rice 
(1985a) for a refinement of the argument by distributing the 
forces over finite discs whose radius is later allowed to ap
proach zero.) Suppose that under the combined load system 
described, the crack front is advanced normal to itself by some 
infinitesimal variable distance ba(z'), where z' is the location 
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Fig. 1 Half-plane crack on y = 0 in an infinite elastic body. Reference 
straight crack front along 2 axis; z' denotes location along front and 
ia(z') denotes advance of crack location in the plane y = 0 

along the front. The change in strain energy [ /plus the poten
tial energy V0 of the fixed forces of the "original load 
system", associated with incremental crack growth a n d / o r 
variation of the point force amplitudes Pjt is 

HU+ V0) = PJ8[AUJ(X,Z)]- \ G{z')8a(z')dz' 
J —00 

(1) 

(J = x> y< z\ summation implied on repeated j.) 
Here G is the energy release rate per unit crack area of 

elastic fracture mechanics, and by Irwin's relation 

G = (1 - v2)(K\ +K\)/E+ (1 + v)K\/E (2) 

[E = Young's modulus , v = Poisson 's ratio.) 
Since U and V0 can depend only on the Pj (or Auj) and the 

location of the crack front, the right-hand side of equation (1) 
is a perfect differential. Rice (1985a) then showed, using a 
Legendre t ransformation and the reciprocal property of coef
ficients in perfect differentials, that the variation of surface 
displacemnets due to incremental crack front advance under 
fixed applied forces is 

dG(Pjiz') 

dP, 
8a(z')dz' d[Auj(x,z)]=\+_C

a 

+ K2(PjX') 
dK2{Pj-z') 

dP, 

+ 2-
1 + v w*') dKi7.z))5a(z')dz' (3) 

Here the derivations of G and the Ka with respect to the Pj are 
taken with a fixed position of the crack front. Letting the Pj 
= 0, one has 

Ka(0;z') = K°a(z') 

dKa(0;z')/dPj = kaj(z';x,z) 

(a = 1, 2, 3, j = x, y, z) where K°a (z') is the mode a stress in
tensity factor induced along the reference straight crack front 
by the original loading while kv- is the mode a stress intensity 
factor induced by a unit force pair at (x, 0 + , z) and (x, 0~ , z) 
in the ±j directions. Thus equation (3) becomes 

2 ( 1 _ " } [ky(z';x,z)K<i(z') 5 [ A « , ( x , z ) ] = j ^ ™ ( -

2(1 + v) 

E 

+ k2J(z';x,z)K°2(.z')] 

ky(z';x,z)K°3(z'))8a(z')dz' (4) 

Equat ion (4) is the first order variation of Auj (x,z) when the 
crack advances by 8a{z') in presence of the original load 

system only. In fact, equation (4) can be regarded as a special 
version of a general three-dimensional relation in Rice's (1972) 
formulation (see Rice 1985 a, b also), based on displacement 
field variations associated with incremental crack growth, of 
the theory of Bueckner 's (1970, 1972, 1977) "weight func
t i ons" for crack analysis. 

As we stated before, kaJ can be found for the present half-
plane crack configuration from many sources in the literature, 
and they are also listed in the form 

k\x = * iz — k2y = kiy = 0 

( - 2 X / T T 3 ) 1 / 2 

• • - [ 

k-).7 — % — 

[x2 + (z'-z)2} 

2v x2-(z' ~z)2 

2-v x2 + (z'-z)2 

2v x2-{z'-z)2 

2-v x2 + (z'-z)2 

4v x(z'-z) 
k (5) lz "3X 2-v Xi + (Z'-Z)2 

by Rice (1985a). 

Shear M o d e Stress Intensity Factors 

Substituting equations (5) into equation (4), for the shear 
displacements we obtain 

8(1- i ' 2 ) XTA , u 8(1 ~ . 2 ) / n w [ l f + » K°2(z') 

+ (z'-zf 

( ' • 
2v x2 - (z' - z)2 

2-v x2 + (z'-z)2 

2v r + 0 ° K%(z')x(z'-z) 

•\ba(z')dz' 

— a ir(2-v)(l-v) J-•» [x2 + (z'-z)1]2 

5[Auz(X,z)]=—^(-—) [ _ j _ < B - r - ^ 7 -

" <z'-z)2 

8a(z')dz' 

(z'-z)2 

1 
2v 

2-v x2 + (z' -z)2 • 

2v(\-v) (•+» K°2(.z')x(z'-z) 

ba(z')dz' 

5a(z')dz' (6) 
TT(2-V) J-OC [x2 + (z'-z)2]2 

correct to first order in 8a(z'). 
Very near the crack front the stress intensity factors are 

related to the relative displacements by the asymptotic 
formulae 

Aun (x,z) = 

Aut(x,z) = 

8(1 - v2) 

8(1 + v) (i) 

+ 0[(r)3/2] 

K3+0[(r)V2] (7) 

where n and t are the normal and tangential directions along 
the curved crack front (Fig. 2), with n lying in the x, z plane, 
and r is the distance as measured from the crack front in the 
negative normal direction (Fig. 2). Denoting the angle between 
the normal and the x direction (very small) by </>, we find from 
geometric relations that 

-rcos<t>=x—8a(z), tan (f> = d[8a(z)]/dz (8) 

Now consider a particular z at which 8a(z) = 0 but 
d[8a(z)]/dz exists. Then the first of equations (6) becomes, 
when x — 0 ~ , 

8[Aux(x,z)]-
8(1 -v2) (-£) [• - •] 
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^ x 

curved crack front 

Fig. 2 Normal (n) and tangential (f) directions for deviated half-plane 
crack 

where now the bracketed terms of equation (6) have reduced 
to 

1 2 - 3 ? 

2-7T 2 — V 
PV 

\ : 
K°2(z')8a(z') 

• *§<* ) 

(z'-z)2 

d[8a(z)] 

dz' 

(9) 
(2-v)(l-v) J " " dz 

and where the PV'm the first term of equation (9) denotes the 
principal value in the Cauchy sense. 

Equation (9) can be proven as follows. Breaking the {IS in 
the first of equation (6) into ji~„' + \\t\ + JZT,. the [ J r i + 
J++°;] part, when letting x - 0" and then t) - 0, gives the PV 
term in (9) above, whereas the remaining J ^ part of the 
bracketed term in equation (6) becomes 

1 
~2T iz-r, X2 + (Z'-Z)2 L 

2v x2-(z'-z)2 

2v 

2-v x2 + (z'-z)2 

•'+i K°i(z')x(z' -z) 

-]da(z')dz' 

ir(2-v)(l-v) 

Let us now observe that 

rz + r, jq 

Jz-v [X 2 + (z'-z)2]2 8a(z')dz' 

K(z')8a(z')^a(z) ^ ^ (z' -z) + 0[(z' -z)2] 

and that the error term O [(z' - z)2] will have a bound of 
form IO[(z' - z)2]l < B(z' - z)2 onz - ij < z ' < z + 17 
for some finite 5 > 0. Then since the term linear in (z' - z) 
gives zero contribution to the first integral above, i.e., to the 
integral involving K%, we have 

I 1 r*+" lCj(z') [", . 2P x2-(z'-zf -> 

I'STJ*— ^ ^ ' ' - ' ^ 

2*-J 

, x2 + ( z ' - z ) 2 

U ' - z ) 2 

1 + 

Z + 1J 

2 - i / x2 + ( z ' - z ) 2 J 

2v 1 . . 2+v 

8a(z')dz' 

[I+TT]*'-
B 

2% }z-r, X2 + ( Z ' - Z ) 2 

for any x. Hence, letting x - 0~ and then i; - 0, the upper 
bound on the first integral, and therefore the integral itself,. 
vanishes. In the same limit the second integral, involving K%, 
becomes with the substitution z ' - z = —tx 

2v f 

w(2-v)(l-v) J-°° (1+/2)^ 
dtK°3(z) 

d[8a(z)] 

(2-v)(\-v) 
K°i(z) 

dz 

d[5a(z)] 

dz 

We thus have the two contributions noted in equation (9), 
the PKterm from [ f r j + J++™ ] (?? - 0 + ) , which represents 
the influence of the rest of the nonstraight crack front on the 
special point z at which 8a(z) = 0, and the term involving 
K% (z) from fet* which represents the coupling effect due to 
local slope. The sum of these two is given as equation (9). In 
the above argument we have implicitly assumed, in writing the 
error terms as O [(z' - z)2], that K°a (z')8a(z') has a good se
cond derivative at z. However, the steps leading to equation 
(9) above, and equation (10) below, may be justified under 
weaker assumption that the first derivative of K°a(z')8a(z') 
exists and is merely Holder continuous at z, such that the 
bounded term above may be written as B iz ' - zl1+e where 0 
< e < 1. 

Similary, when x - 0" the second of equation (6) reduces 
to 

1 + v ( x \ 1/2
 r 

8[Auz(x,z)] —{-^) l • -] 

E 

where now 

1 
[• • .]=• 

2+v rv[
+c° K°i(z')8a(z') 

2TT 2-v J - » (z'-z)2 dz' 

dz 
(10) 

in which we can also observe the coupling due to local slope. 
To find 8[Aux (x, z)] and d[Auz (x, z)] near some location z 

along the crack front where 5a(z) * 0, we use the concept 
developed by Rice (1985a) of relocating the reference straight 
crack front by moving it along the x direction an amount equal 
to 8a(z). Then, redefining the origin of the x axis so that x = 
0 along the relocated reference straight crack tip, we have 
8a(z) = 0 at the location z considered and can use the results 
just given above. Note that the reference straight crack loca
tion is aribtrary, so that we can locate it at will. In other words 
we always choose the reference straight crack as the one that 
when x — 0" we approach simultaneously both the reference 
straight crack and the actual front. This is equivalent to inter
preting 8a(z') in the above formulae as a(z') - a(z) , where* 
= a(z) is the slightly curved arc describing the crack front 
location relative to any convenient choice of origin for the x 
axis, and interpreting d[8a(z)]/dz as da(z)/dz. In using this 
notation one also needs expressions for the stress intensity fac
tors induced at location z along the crack front when the front 
is straight but located at a general x coordinate, say, x = a. 
We let the functions K°a[z;a], <* = 1, 2, 3, denote these 
distributions. Then, at a given point x, z on the crack faces, 
equations (9) and (10) become 

8(1 -v2) ra(z)-x-\m 

8[Aux(x,z)]~ „ [ 2v J X 
E 

• 1 2 - 3 ? 

-2ir 2 — v 
PV 

' + - K°2[z';a(z)]la(z')-a(z)] 

(z'-z)2 dz' 

• K°3[z;a(z)] 

and 

8[Auz{x,z)] 

C 1 2 + v 

(2-v)(\-v) 

8(1 + v) Ya(z)-x^ln 

da(zY 

dz -

UTT 2-
PV 

E L 2TT 

-+" K°i[z';a(z)][a(z')-a(z)] 

+ 4L^*o[z;fl(z)] 

(z'-z)2 

da(z)~ 

dz' 

(11) 
(2-v) " ^ ' ^" dz J 

to first order in a(z') - a(z) and in da(z)/dz. These last 
equations are now understood to represent the change in sur-
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face displacement at a point x, z very near crack front in going 
from the hypothetical reference state, in which the crack front 
is everywhere straight and of depth equal to that at z, to the 
actual state in which the crack front is curved. 

Referring to Fig. 2, we can get the relative displacement 
components in the normal and tangential directions along the 
crack front in terms of Auz (x, z) and Aux (x, z), 

Aun(x,z) = Aux(x,z)cos <t> — Auz(x,z)sin (j> 

Aut(x,z) =Aux(x,z)sm<t> + Auz(x,z)cos(j> (12) 

As 4> is small for a small perturbation we have to the first order 

Aun(x,z) =Aux-Auzda(z)/dz 

Au,(x,z)=Auz + Auxda(z)/dz (13) 

In equations (13) we now write Aux as (Aux)° + 8(Aux) and 

the x and y dependence; in fact, just the opposite was found to 
be true in the solution developed (without a priori assumptions 
on scaling) by Rice. Similar remarks apply to the Meade and 
Keer results for Modes 2 and 3. 

The results of equations (15) for Ka {z) can be inserted into 
equation (2) to compute the energy release rate G(z) along the 
slightly curved crack front. When this is done and we retain 
only those terms consistent with first order accuracy in 
a(z')-a(z) and da(z)/dz, we find that the cross terms in-
volvig da{z)dz in equations (15) cancel one another. A 
specific illustration of this is given in the next section. 

It may sometimes prove convenient to rewrite the various 
principal value integrals of equation (15) by the rearrange
ment, following from integration by parts, 

K°a[z';a(z)][a(z')-a(z)] 
J -a (z'-z)2 dz' 

i +o 

-<x 

K0
a[z';a(z)]da(z')/dz' + [a(z')-a(z)]dK°a[z';a(z)]/dz' 

(z'-z) 
dz' 

Auz as (Auz)° + 8(Auz), where (Aw.,)0 and (Aw.,)0 are the 
near-tip crack face displacements in the reference straight 
crack front configuration and, again, 8(Aux) and 8(Auz) are 
the variations of equation (11) due to the crack front being 
curved, i.e., due to the crack front advancing by ba(z') = 
a(z') - a(z): 

Au„(x,z) = (Aux)° + 8[Aux]-(Auz)°da(z)/dz 

Au,(x,z) = (Auz)° + 8[Auz] + (Aux)°da(z)/dz (14) 

Everything here is exact to first order in 8a(z). Comparing 
these expressions, as evaluated with the help of equations (11), 
to equations (7) (and recognizing that r = a(z) - x to first 
order) we get the stress intensity factors K2 and K3 to first 
order when the crack front deviates from a reference straight 
line. The results, supplemented for completeness with the 
result for the Mode 1 stress intensity factor derived by Rice 
(1985a), are as follows: 

K1(z)=K°l[z;a(z)] 

+ PV 
2ir 

+ 0° K0
l[z';a(z)][a(z')-a(z)] 

(z'-z)1 dz' 

K2(z)=K0
2[z;a(z)]--2—K°3[z;a(z)}da('Z) 

2-v dz 

1 2 - 3 v 

2ir 2-v 
PV\ 

K°2lz';a(z)][a(z')-a(z)] 

(z'-z)2 dz' 

K3(z)=K°3[z;a(z)]+ 1{l V) K°2[z;a(z)) d°{Z) 

1 2+v 
+ PV 

2-v ZL " " dz 

+ ~ K°3[z';a(z)][a(z')-a{z)} 
dz' (15) 

2TT 2-V ' J-oo (z'-z)2 

Equations (15) are not consistent with the stress intensity 
factors presented for this case by Meade and Keer (1984b) as 

Kl(z) = K°1[z;a(z)} 

K2(z)=K°2[z;a(z)]-K°3[z;a(z)]da(z)/dz 

K3 (z) =K°3[z;a(z)] + K°2[z;a(z)]da(z)/dz (16) 

Rice (1985a, just after his equation (65)), explained the 
source of oversight in the Meade and Keer results for Mode 1, 
in that Meade and Keer assumed in their asymptotic analysis a 
double scaling of the z dependence of the solution but not of 

The last term of the second numerator vanishes when, as in the 
next section, we consider loadings which would induce 
uniform Ka along a straight crack front. 

Cosine-Wave Crack Front; Configurational Stability 

Now we apply the results in equations (15) to the case of a 
wavy crack front with the profile 

a(z) =a0 +A cos(2irz/\) (17) 

where A/\ < < 1, a0 is arbitrary and X > 0. It is assumed for 
convenience that the stress intensity factors induced along the 
reference straight crack are uniform along the crack front i.e., 
K°a[z;a] = K°a[a]. Going through some algebraic calculations 
and further assuming that (AdK°/da)/K° << 1, we get the 
results to the first order in A 

Kl(z)=Klla0H[^^--rK^[a0]/\]AcOs(^) 

K2 (z) =K2[a0] + ^—JUL-—— *lQ[a0]/\\Acos ( — J 

47T 

+ ^ ~ V 

K3(z)=Ki[a0] + 

4TT(1 

(y4A)^[a0]sin 
/2i rz \ 

dK°3[a0] 2 + 

dan 

V X / 

- Trt f>0 ] /Xl 
V J 

v4cos •(£) 
•v) 

K°2[a0}(A/\)sm(-^ (18) 

From equations (18) we observe that when both shear 
modes are present the extremal values of a given shear stress 
intensity factor do not occur at the extremal locations of the 
crack front where cos (27rzA) = ± 1 . 

We may also compute the energy release rate G, defined by 
equation (2), along the perturbed crack front from the results 
just given for the Ka. Consistent with the first order accuracy 
in^4, the result is 

G(z) = G°[a0] + {dG°[a0]/da0 - 2irF[a0]/\)^COS(2TTZ/X) 

(19) 

Here 

G°[a0]=^- ((A?[fl0])2 + (JKS[fl0])2+-j^ r (*§[«oD2] 

(20) 

and 
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h v. 2— y 

+ „ 2 * " \ (tfSk,])2] (2D 
( 2 — P ) ( 1 - P ) J 

Note that the extrema of G (z) do coincide with the extrema of 
a(z) since the sine terms of equation (18) have cancelled one 
another. 

We have not been able to find an energetic interpretation 
for F in equation (21) but we can confirm that the result de
rived for G(z) in equation (19) is not compatible with a string
like model with a "line tension" effect, as used frequently to 
analyze curved dislocation lines. In particular, G is sometimes 
called the "crack extension force" since it is the generalized 
force, in the sense of equation (1), conjugate to crack growth. 
One might optimistically hope that the effect of curvature on 
the crack extension force would be analogous to the effect of 
curvature on a string under tension. Such would form a useful 
conceptual picture of, e.g., the crack extension force distribu
tion exerted as a crack front meets and begins to surround a 
localized, hard-to-fracture heterogeneity lying in the path of 
the advancing crack. However, while the string model is 
qualitatively correct in predicting the proper sign of the effect 
of curvature shown in equation (19), it fails quantitatively 
since elementary calculations show that a line tension model 
would require a 1/X2 effect for a cosine wave rather than the 
proper 1/X effect that we have derived. 

Rice (1985a) considered the configurational stability of 
quasi-static tensile mode crack growth (e.g., by fatigue or cor
rosion) by observing that if the crack growth rate is an increas
ing function of Kt, then the amplitude of a cosine component 
of a(z) will grow if the maxima of Kl (z) and a(z) are in 
phase but decay if they are out of phase. Thus, from the first 
of equations (18), disturbances of wavelength X in the crack 
front profile will decay in amplitude during crack growth if 

dK°{ [a0]/da0 < -wK^ [a0]/\ (22) 

This is met for all X when dK°{/da0 < 0 and will be met for 
sufficiently small X when dK\/da§ > 0. It generally turns out 
that the critical X values, X„, at which the inequality fails 
(e.g., X„ = 2TTZ, for an edge crack of depth L in a large body 
under remote tensile loading) are sufficiently large that the 
model of a half plane crack in an infinite body is inappropriate 
to analyze perturbations of those wavelengths; the actual 
finite body dimensions must be considered instead for a 
suitable analysis. Thus we conclude that planar crack growth 
should be configurationally stable to perturbations involving 
wavelengths that are small compared to overall body or crack 
dimensions. This seems to be generally in accord with ex
perience in that cracks, when approximately planar, in sub-
critical growth are generally observed to have fronts that lie 
along smoothly curving arcs at the macroscale and to be 
devoid of structure except for that directly relatable to 
microstructure heterogeneity or large scale plastic flow. See, 
e.g., Colangelo and Heiser (1974, chapter 4). 

The stability issue is less readily addressed under general 
mixed-mode loadings as we have analyzed them here since a 
mixed-mode crack will seldom grow along a plane. One case 
which may meet that condition of planarity involves the tec
tonic shear crack whose slip surface is channeled by a pre
existing fault plane. If in that case or others it is approriate to 
describe crack advance under mixed-mode loading by a unique 
(independent of mode combination) increasing relation be

tween G and the crack growth rate, then it is evident by com
paring equations (19) to the first of equation (18) that a similar 
stability condition to that for Mode 1 growth will result. In 
particular, crack position a{z) and G(z) will be out of phase, 
thus smoothing out initial irregularities during growth, for 
wavelengths X satisfying 

dG° [a0]/da0 < 2TrF[a0]/\ (23) 

This reduces to equation (22) for pure Mode 1 conditions. 
Meade and Keer (1984b) emphasized that crack front 

segmentation is observed in laboratory study of brittle 
materials under combined Mode 1 and Mode 3 loading. They 
suggest that this may be attributed to the coupling effect be
tween the shear modes. For example, as is evident from the ex
act first order results in equations (15), or in equations (18) for 
the cosine wave, and as is also seen in the less complete Meade 
and Keer results reported here as equations (16), Mode 3 
loading induces a Mode 2 stress intensity wherever da(z)/dz 
& 0. This induced K2 reverses sign with the change in sign of 
da(z)/dz in going from one side to the other of a localized 
protrusion. This change in sign of K2 is expected to promote 
deviations from plartarity of opposite sense (up versus down 
relative to the y direction) on the two sides of the protrusions 
during tensile crack growth, so that localized protrusions of 
the crack front grow into nonplanar segments. It is not yet 
clear how to test this proposed mechanism against 
observations. 
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