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We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We

combine local velocity and concentration measurements using magnetic resonance imaging with macro-

scopic rheometry experiments. In steady state, we observe that the material is heterogeneous, and we find

that the local rheology presents a continuous transition at low shear rate from a viscous to a shear

thickening, Bagnoldian, behavior with shear stresses proportional to the shear rate squared, as predicted

by a scaling analysis. We show that the heterogeneity results from an unexpectedly fast migration of

grains, which we attribute to the emergence of the Bagnoldian rheology. The migration process is

observed to be accompanied by macroscopic transient discontinuous shear thickening, which is con-

sequently not an intrinsic property of granular suspensions.

DOI: 10.1103/PhysRevLett.105.268303 PACS numbers: 83.80.Hj, 83.60.Fg

The realm of complex fluids encompasses biological
liquids such as blood, many liquid foodstuffs, building
materials, glasses and plastics, crude oil, etc. Despite their
importance, the most basic, quintessential question about
the flow of these fluids has remained unanswered: it is
generally impossible to predict their flow resistance, and
it is even unclear why most fluids shear thin, whereas only
some shear thicken. Understanding shear thickening, i.e.,
the increase of the apparent viscosity of materials with
increasing flow rate, is thus an important issue in complex
fluids with in addition a strong impact on energy consump-
tion in industrial processes [1]. It is observed in dense
colloidal suspensions [1,2], where it has been related to
the formation of dense clusters of particles [2–4]. The
viscosity rise with the shear rate is then usually reversible
(it is a steady-state property), continuous, and is sharper at
higher volume fractions [2–4]. For colloids, the competi-
tion between shear-induced cluster formation and
Brownian motion that homogenizes the suspensions then
naturally determines a critical shear rate for the onset of
shear thickening.

As Brownian motion is absent in pastes made of large
particles, the sharp shear thickening transition observed in,
for instance, cornstarch suspensions [5] is highly surprising.
In fact, the conditions of emergence of shear thickening in
non-Brownian suspensions remains ill-characterized: in
some systems, thickening was observed at low shear rates
[1,5–7], while in others no shear thickening (only viscous
behavior) is observed whatsoever, even close to jamming
[8–10]. Up to now it is thus impossible to predict whether a
given system will shear thicken or not.

In systems for which it is observed, a more pronounced
shear thickening [6,7] is observed near jamming, similarly
to colloidal suspensions, and is attributed to aggregation of
hydroclusters into a percolating network [4,11]. However,

one should question whether these observations of sharp
and discontinuous shear thickening reflect an intrinsic
(local, steady-state) property of materials. For example,
an important effect of confinement on shear thickening was
recently evidenced in both colloidal [12] and noncolloidal
[5] suspensions. In channel flows [12], the macroscopic
shear thickened state was shown to form a plug flow and
was not observed in large channels, which shows that local
observations are crucial to get a better insight into shear
thickening.
In this Letter, we address these puzzles by studying the

emergence of shear thickening in the simplest of systems:
model density-matched suspensions of non-Brownian par-
ticles in water. We use a wide-gap Couette geometry to
avoid confinement effects, and we access the intrinsic
material behavior by measuring the local flow properties
and particle concentration using magnetic resonance imag-
ing. In steady state, we show that the material is heteroge-
neous, and that the local rheology presents a continuous
transition from a viscous to a shear thickening, Bagnoldian,
behavior (shear stresses proportional to the shear rate
squared) at any fixed volume fraction, as predicted by a
scaling analysis. The heterogeneity is shown to result from
an unexpectedly fast migration of grains during the tran-
sient, which is attributed to the emergence of the
Bagnoldian rheology. The migration process is accompa-
nied by macroscopic transient discontinuous shear thick-
ening, which is thus not an intrinsic property of granular
suspensions.
Materials and methods.—We study dense suspensions of

noncolloidal monodisperse spherical particles immersed in
a Newtonian fluid. We use polystyrene beads (diameter
40 �m, polydispersity <5%, density 1:05 g � cm�3) sus-
pended in aqueous solutions of NaI to match the solvent
and particle densities; the solution viscosity is 1 mPa � s.
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The density matching ensures that there are no gravity-
induced contacts [13] and that the only source of normal
stresses is shear [14,15]. We focus on results obtained at a
59% mean volume fraction as experiments at other high
volume fractions show similar features. The material be-
havior is studied with a wide-gap Couette rheometer (inner
radius, 4.1 cm; outer radius, 6 cm; height of sheared fluid,
11 cm) inserted in a magnetic resonance imaging scanner,
allowing us to access local velocity and particle volume
fraction profiles in the flowing sample [9,16,17].
Sandpaper is glued to the walls and there is no significant
slip on the velocity profiles. The inner cylinder velocity is
controlled, and we record the torque exerted by the mate-
rial on the inner cylinder with a Bohlin rheometer.

Macroscopic versus local behavior.—We first focus on
the macroscopic behavior [Fig. 1(a)]. The torque T values
measured during a slow ramp in rotational velocity �
(logarithmic ramp, 45 s=decade of shear) are shown as
black circles. At the beginning of the ramp, T increases
linearly with�, as expected for a homogeneous, Newtonian
suspension [9,10]. Around�c � 2:5 rpm (corresponding to
a low average shear rate of 0:6 s�1), T presents a sudden
increase—by a factor of 20—which is a usual signature of
‘‘discontinuous’’ shear thickening, following which T con-
tinues to increase with�, yet at a slower pace. At the end of
the ramp, � is kept constant and T reaches a stationary
value. Subsequent slow changes (down or up) of the rota-
tional velocity then drive the system reversibly along the

curve Tð�Þ in open symbols; i.e., the system has reached
steady state. This curve presents very smooth, moderate,
‘‘continuous’’ shear thickening.
We now turn to local measurements. During the initial

increasing velocity ramp, at a low rotational velocity,
� ¼ 2 rpm (<�c), the density �ðRÞ remains uniform
[Fig. 1(b)] while the flow [Fig. 1(d)] is homogeneous—
there is no jammed region [5]. The velocity profile VðRÞ
closely matches that of a Newtonian fluid [Fig. 1(d)]
[9,18], consistent with the initial linear behavior of
the torque. Shortly after shear thickening occurs (here at
� ¼ 9 rpm) we observe that the material has become
strongly heterogeneous [Fig. 1(b)] while the velocity pro-
files present a jammed region near the outer cylinder. This
change is irreversible: the density profiles subsequently
remain similar, even when� is increased further and, later,
decreased below �c.
Clearly, the discontinuous shear thickening observed

during the initial ramp-up is a transient phenomenon asso-
ciated with a large-scale reorganization of the material,
which involves shear-induced migration from low to high
shear zones. While migration is expected in dense suspen-
sions [9,19–21], it is particularly striking here that the
change in �ðRÞ occurs over a very short time interval,
corresponding to a small total strain of order 100. Such a
rapid migration is a puzzle as it is not predicted by classical
theories [9].
Constitutive behavior.—We now analyze the steady-

state behavior. We first note that density and velocity
profiles are in steady state whenever the torque is.
Moreover, while �ðRÞ is � independent in steady state,
the dimensionless velocity profiles VðR;�Þ=VðRi;�Þ
measured at various � do not superpose, implying that
the local behavior is not simply viscous [9,18]. Finally, the
flow is always strictly localized: for all �, there is a
jammed region beyond a critical radius Rm ¼ 5:7 cm;
this corresponds to a density threshold of �ðRÞ>�m �
60:5% above which the material is jammed [9].
The material and flow being heterogeneous, macro-

scopic torque measurements Tð�Þ are not sufficient to
infer the intrinsic constitutive behavior, in particular, the
stress-strain rate relationship in the shear thickening re-
gime. This intrinsic behavior can, however, be obtained
using our local measurements. The key point [9] is that the
steady-state density profile �ðRÞ is independent of �; a
change of variables can then be performed between radius
R and �ðRÞ. In addition, the stress profile is prescribed by
momentum balance �ðRÞ ¼ T=ð2�HR2Þ while the local
shear rate can be extracted from the velocity profile VðRÞ
via _�ðRÞ ¼ RdðV=RÞ=dR. A local stress-strain rate curve
�ð _�;�Þ—at fixed and well-defined density �—is then
obtained by collecting all measurements of local stress
�ðRÞ and shear rate _�ðRÞ for a fixed R and varying �.
The results of this local analysis [Fig. 2(a)] show

that, for a fixed volume fraction �, a clear transition
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FIG. 1. (a) Torque versus rotational velocity � when shearing
a 59% suspension: increasing velocity ramp (filled circles) and
stationary state (empty circles); the line is a viscous law.
(b) Volume fraction versus radius R, for various �, during an
increasing velocity ramp. (c) Critical strain needed to complete
migration in a 59% suspension versus �; the dotted line in-
dicates the _�= _�2 transition on the 59% suspension. The line is a
1= _� scaling. (d) Dimensionless velocity versus R (empty sym-
bols, before migration; filled symbols, various� after migration;
line, Newtonian velocity profile).
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from a � / _� (Newtonian) to a � / _�2 (Bagnoldian) re-
gime occurs at a critical shear rate _�cð�Þ [Fig. 2(b)]. Such
a transition has been predicted to be a generic property of
noncolloidal suspensions on the basis of theoretical dimen-
sional arguments [22,23]. The _�2 scaling signals a regime
where particle inertia dominates over viscous forces [8,23],
leading to a behavior analogous to that of dry granular
materials (it need not be associated with collision-
dominated flows as Bagnold suggested [24]). It is particu-
larly striking that inertial scaling arises in our dense, highly
damped, suspension, with particles of size of only
�10 �m. Moreover, the critical shear rate _�c (i) is rather
low (of order 1 s�1), (ii) vanishes almost linearly as the
volume fraction tends to �c � 60:5%, which (iii) is iden-
tical—within the experimental accuracy—to the threshold
�m at which the material jams.

Viscous-inertial transition.—To understand what con-
trols these scaling regimes, following [22,23], we write
Newton’s equations for a set of rigid particles. For the
particles’ centers of mass ri these read md2ri=dt

2 ¼
P

jFij þ Fvisc
i , where Fij denote rigid contact forces and

Fvisc
i hydrodynamic forces whichwe suppose linear in terms

of all the velocities entering into the problem.No other force
is supposed to be involved. The key of the analysis is to
remark that rigid forces Fij do not introduce, by definition,

any force or length scale [22,23]. Two limiting cases can
then be identified: ‘‘viscous’’ (V) when viscous forces are
dominant over grain inertia 0 ¼ P

jFij þ Fvisc
i and ‘‘iner-

tial’’ (I)when grain inertia is dominantmd2ri=dt
2 ¼ P

jFij.

Both expressions verify exact scale invariance by a change
of time and force units [23], guaranteeingFij / _� in (V) and

Fij / _�2 in (I), with identical scaling with _� for all compo-

nents of the stress tensor as rigorously shown in [23]. The
full problem then reduces to ðVÞ [ðIÞ] at low (high) _�, which
explains the existence of a crossover between the two simple
scaling regimes � / _� (viscous) and � / _�2 (inertial).

This formalism now helps us understand why the critical
shear rate _�cð�Þ can be so low and vanishes precisely at�m.
In the viscous (V) and inertial (I) regimes, the stresses are,

respectively, of the form � ¼ �0 _��Vð�Þ and � ¼
�d2 _�2�Ið�Þ. Numerical simulations [25] indicate that
�Vð�Þ and �Ið�Þ should diverge at the same (jamming)
packing fraction �m and read �Vð�Þ / ð�m ��Þ��V ,
�Ið�Þ / ð�m ��Þ��I , where � and d are the particle
density and diameter, and�0 is the interstitial fluid viscosity.
The crossover between the viscous and inertial regimes is
found by equating the two expressions for the stress, finally
leading to _�cð�Þ / ð�0=�d

2Þð�m ��Þ�I��V . Together
with the values �I ¼ 2, �V ¼ 1 proposed in the literature
[26,27], this equation explains, as observed, that _�cð�Þ
vanishes (i) linearly with �, (ii) at the jamming packing
fraction�m. Moreover, the crossover stress verifies �cð�Þ /
ð�2

0=�d
2Þð�m ��Þ�I�2�V , which, together with the same

values of �I, �V as above, suggests that �c should indeed be
independent of volume fraction. Although our stress mea-
surements are not sufficiently accurate to assert that
�cð�Þ � const, we then note in Fig. 2(a) that, indeed, in
the experiments �c does not vary much. We finally conclude
that it is the difference in singular behavior of the inertial
and viscous stresses �d2 _�2�Ið�Þ and �0 _��Vð�Þ at the
approach of jamming (i.e., when � ! �m) which leads to
the linear vanishing of _�cð�Þ, and hence permits this tran-
sition to take place at low strain rates.
Accelerated shear-induced migration.—We now show

that this transition explains the sudden migration associ-
ated with the macroscopically observed transient discon-
tinuous shear thickening [Fig. 1(a)]. In viscous
suspensions, shear-induced migration is usually thought
to be negligible when small particles are involved.
Indeed, the typical strain scale for migration is very large:
it is expected to be rate independent and to scale as /
ðRo � RiÞ2=a2 [9,19–21], leading to an expected strain of
order 50 000 [9], more than 500 times higher than what we
observe here at the onset of shear thickening. Our obser-
vations may be understood as a strong enhancement of
migration kinetics in the inertial regime.
Within the framework of two-phase models, migration is

driven by gradients of internal normal stresses within the
particle network �p

ii (not the total stress) and requires the

fluid to filter through the granular phase to compensate for
the local changes of packing fraction [20,21]. This filtra-
tion process exerts an average hydrodynamic drag / U on
the particle network, with U the average filtration velocity.
The balance between these two effects controls the
migration-filtration rate, leading to U / r�p

ii. When in-

jected in a mass conservation equation @�=@t ¼ �rð�UÞ,
this leads to a diffusion equation for the particle density �
[20,21]. The local particulate stress �p

ii entering this analy-

sis is expected to display local viscous or inertial scaling
over very short strain scales [22,25,26] compared to those
of the migration process. If �p

ii / _� in the whole system,

the time scale of migration scales as 1= _� and migration is
controlled by a (large) rate-independent strain scale, which
is the classical result [19–21]. Strikingly, the same analysis
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FIG. 2 (color online). (a) Local shear stress versus local shear
rate measured for various local volume fractions when varying
the inner cylinder rotational velocity from 0.1 to 50 rpm (from
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performed in the inertial regime now yields an unexpected
1= _� strain scale for migration: this explains why migration
is much accelerated and manifests itself abruptly when
entering the inertial regime.

To confirm this analysis, we have studied the migration
kinetics at constant �’s, starting each time from a homo-
geneous state. We define the critical strain �migrð�Þ as the
macroscopic strain above which the instantaneous volume
fraction profile matches the steady state one within experi-
mental uncertainty (0.2%). Figure 1(c) shows �migrð�Þ
versus�: it decreases strongly with�. Although the exact
kinetics results from a complex history (as both _� and �
change locally in time), the asymptotic 1= _� decay pre-
dicted by the above scaling analysis in the Bagnoldian
regime is roughly consistent with our observations [see
line in Fig. 1(c)]. Migration theories based on normal
stresses [20,21] are thus shown here to be more generally
applicable than diffusive theories [19].

Macroscopic shear thickening.—To summarize, we pro-
pose the following scenario: (i) the intrinsic behavior of
dense noncolloidal suspension presents a continuous tran-
sition at low strain rates from a viscous to a shear thicken-
ing, Bagnoldian, rheology characterized by shear stresses
/ _�2; (ii) in the Bagnoldian regime, a very fast particle
migration then occurs towards low shear zones; (iii) the
interplay between flow and migration shows up as a sharp
shear thickening of the transient macroscopic stress.

Note that we checked the robustness of the above sce-
nario by verifying that it is not specific to wide-gap Couette
geometry. We have studied the behavior of the same ma-
terial in a parallel plate geometry and have observed simi-
lar phenomenology, i.e., transient discontinuous shear
thickening associated with fast migration due to the / _�2

scaling of stresses.
We here contrast our findings with those of Brown and

Jaeger [7] in a similar system (spheres in a Newtonian
fluid). On the basis of steady-state macroscopic measure-
ments, they find a transition between a roughly viscous and

a shear thickening regime � / _�1=n with n continuously
decreasing for 0.5 to 0 when � ! �m. Here, we find
instead that the local (intrinsic) rheology shows only
viscous or Bagnoldian scalings (i.e., n ¼ 0:5) even when
� ! �m. We insist that in steady-state such systems are
heterogeneous, and that consequently the macroscopic
stress-strain rate relationship cannot be directly related to
the local constitutive behavior, in particular, in the shear
thickening regime.

Let us finally note that our mechanism may also be at
work in Brownian suspensions, in competition with or

as an alternative to hydrodynamic clustering [2]. It is
compatible with the reversibility of the shear thickening
transition usually observed in Brownian suspensions: mi-
gration is indeed expected to be reversible due to the
osmotic pressure. It is therefore particularly striking that
our mechanism leads to a constant critical shear stress,
exactly what is observed for colloids [2].
We thank Daniel Lhuillier for enlightening discussions

on shear-induced migration.
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