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Shear wave splitting in three-dimensional anisotropic media
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S U M M A R Y
Splitting intensity, a new seismic observable that characterizes seismic anisotropy, can be ex-
pressed as linear combinations of elastic perturbations involving 3-D sensitivity (or Fréchet)
kernels. We conduct a numerical study of elastic wave propagation in weakly anisotropic het-
erogeneous media in order to investigate the validity of the different assumptions made in the
derivation of these kernels. For characteristic periods larger than 6 s, the splitting parame-
ters obtained from the analysis of synthetic seismograms calculated using a spectral-element
method (SEM) are in excellent agreement with predictions based upon the 3-D kernels. This
suggests that the kernels fully capture the complexity of shear wave splitting in heterogeneous
anisotropic media and can be used for tomography. In addition, they can be used to calculate
synthetic splitting parameters in 3-D anisotropic media, which represents a very small amount
of computation compared with finite-difference or finite-element modelling. 3-D kernels dis-
tribute sensitivity off of the reference ray given by the laws of geometrical optics. This has
important consequences for the interpretation of apparent splitting parameters, which usually
relies on ray theory. Apparent splitting parameters estimated at the surface can differ signif-
icantly from the anisotropic properties in the underlying medium wherever heterogeneities
occur with a characteristic wavelength smaller than approximately 0.75 times the width of the
first Fresnel zone

√
λz, with λ the wavelength and z the depth.
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1 I N T RO D U C T I O N

By far the most frequently used method to study seismic anisotropy
of the upper mantle is the analysis of SKS splitting, introduced by
Vinnik et al. (1984). This approach has many advantages. First,
conversions at the core–mantle boundary suppress any splitting that
could have been acquired by the wave in the source region. Sec-
ondly, SKS waves are radially polarized and a detectable signal on
the transverse component is probably the least ambiguous manifes-
tation of seismic anisotropy observed on seismograms. The popu-
larity of this method also comes from its simplicity and from the
common belief that, in spite of their lack of vertical resolution, SKS
waves provide excellent lateral resolution owing to their subvertical
incidence. It is therefore often assumed that, in contrast to surface
waves, SKS waves can resolve spatial variations of anisotropy over
short distances. Based on this assumption, shear wave splitting mea-
surements are almost invariably interpreted in terms of anisotropy
orientation and magnitude in the underlying medium.

This point of view implicitly relies on geometrical optics, or ray
theory, and assumes that spatial variations of anisotropy are smooth
over a wavelength. However, owing to their dominant period around
10 s, shear waves are sensitive to a broad region around the ray path.
Alsina & Snieder (1995) gave the first qualitative estimates of the
size of SKS Fresnel zones. Using a Kirchhoff integration, they mod-

elled vertically propagating shear waves in a medium composed of
two adjacent blocks with different anisotropic properties. The anal-
ysis of the synthetic seismograms showed a transition region where
the anisotropic properties result from a complex spatial average over
the two blocks. They estimated the size of the Fresnel zone from the
width of the transition region where these complex signatures were
observed. Considering SKS waves recorded by close stations, sim-
ple arguments based on the width of the Fresnel zone led them to put
some constraints on the depth distribution of anisotropy. Rümpker
& Ryberg (2000) later conducted a similar estimate of the size of
the Fresnel zone based on finite-difference synthetic seismograms
and obtained comparable results.

More recently, Favier & Chevrot (2003) have shown that a new
seismic observable, called splitting intensity, is to first order linearly
related to the elastic perturbations of the medium through 3-D sen-
sitivity (or Fréchet) kernels. This new formalism allows to compute
the 3-D sensitivity kernels directly, which constitutes a clear im-
provement over previous studies that gave only indirect estimates
of the size of the Fresnel zone. In addition, the kernels allow the
formulation of a linear tomographic problem, which opens new per-
spectives for high-resolution imaging of upper-mantle anisotropy.
Although it is now possible to simulate wave propagation in the
global 3-D earth (Komatitsch & Tromp 2002), the cost of these
simulations is still too prohibitive to use them for inversion, at least
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for short-period body waves. However, such 3-D simulations can be
used to explore the limits of validity of the various assumptions that
are commonly made in regional and global tomographic studies and
to quantify the improved description of wave propagation offered
by sensitivity kernels compared with ray theory. Hung et al. (2000)
presented the first numerical investigations of this kind for the case
of 3-D wave propagation in acoustic media. In this article, we follow
a similar approach to extend their results to the case of shear wave
propagation in transversely isotropic (or hexagonal) media.

In Section 2, we present a simplified description of shear wave
splitting. We then describe briefly in Section 3 the theory of
3-D Fréchet kernels for splitting intensity. In Section 4, we con-
duct a numerical study of the validity of the 3-D kernels. We use
a spectral-element method (SEM) for the numerical simulation of
wave propagation in 3-D heterogeneous anisotropic media and com-
pare the splitting parameters measured on the synthetic seismograms
with those predicted by the 3-D kernels. Another comparison with
the predictions of ray theory allows us to define precisely its limits
of validity. In the final section, we show that our numerical study
has several important consequences for the interpretation of shear
wave splitting measurements and for the imaging of anisotropy.

2 G E O M E T R I C A L R AY T H E O RY

We first present the point of view of geometrical optics that supports
the analysis of SKS splitting. Let us consider the simple case of a
plane shear wave propagating vertically in a homogeneous trans-
versely isotropic medium with a horizontal axis of symmetry. If
w(t) is the wavelet shape of the incoming wave, δt the delay time
between the two quasi-shear waves and β the angle between the sym-
metry axis and the direction of polarization of the incident wave, the
signals on the radial and transverse components are given by (e.g.
Silver & Chan 1991):

uR(t) = cos2 βw(t + δt/2) + sin2 βw(t − δt/2), (1)

uT(t) = −1

2
sin 2β [w(t + δt/2) − w(t − δt/2)] . (2)

For a small delay time δt compared with the dominant period of the
signal, these expressions can be further simplified:

uR(t) = w(t), (3)

uT(t) = −1

2
δt sin 2βw′(t), (4)

where w′(t) denotes the time derivative of w(t). Therefore, the trans-
verse component is simply the time derivative of the radial compo-
nent multiplied by a factor that is defined as the splitting intensity S.
Splitting intensity is easily obtained from seismological records by
projecting the transverse component on the derivative of the radial
component (Chevrot 2000):

S = −2

∫ +∞
−∞ −iωuT(ω)u0∗

R (ω) dω∫ +∞
−∞ ω2

∣∣u0∗
R (ω)

∣∣2
dω

. (5)

Studying the variations of S as a function of φ, the polarization of the
incoming wave, is a powerful technique to determine the splitting
parameters δt, the delay time, and φ0, the orientation of the symme-
try axis. Depth-dependent anisotropy produces a splitting intensity
that represents the vertical integration of splitting intensities over
all the anisotropic layers crossed by the seismic wave.

In the particular case of a homogeneous weakly anisotropic
medium, if the scale of lateral variations is much larger than the
wavelength (i.e. if geometrical optics is valid), splitting intensity is
simply:

S = δt sin 2(φ − φ0), (6)

i.e. it has a sinusoidal variation with backazimuth.

3 3 - D S E N S I T I V I T Y K E R N E L S

In a spherical isotropic earth model, the transverse component
of SKS waves is zero. Anisotropic perturbations of this reference
isotropic medium generate a signal on the transverse component
that can be seen as a perturbation of displacement. Using first-
order perturbation theory (i.e. Born approximation) it is straight-
forward to calculate the perturbation of the transverse compo-
nent of the displacement produced by anisotropic elastic pertur-
bations of the reference medium (e.g. Gibson & Ben-Menahem
1991; Chapman & Coates 1994). For the case of transversely
isotropic perturbations and a symmetry axis lying in the horizontal
plane, the perturbed displacement is given by (Favier & Chevrot
2003):

δuT(r0, t) =
∫

V

ω2

4πβ2r
γ (r)F(θ, φ, α, φ0)e−iωr/βu0

R(r, t) d3r, (7)

where γ = (C 66 − C 44)/2C 44 is the anisotropic parameter defined
by Mensch & Rasolofosaon (1997) and β is the shear wave velocity
in the reference medium. The function F(θ , φ, α, φ0) represents the
radiation pattern for a transversely isotropic elastic perturbation:

F(θ, φ, α, φ0) = sin θ [cos2 θ sin 2(φ − φ0) + sin2 θ sin 2(α − φ0)],
(8)

where θ is the angle between the direction of wave propagation and
the horizontal plane, φ the scattered wave azimuth, α the polariza-
tion of the incoming shear wave and φ0 the azimuth of the symmetry
axis (Fig. 1). The generalization of eq. (7) to cases corresponding to
a lower order of symmetry is straightforward. However, considering
lower symmetry classes requires a larger number of elastic param-
eters that would be difficult to constrain from seismic observations
alone.

Using eq. (7) in eq. (5) we can write the splitting intensity as a
volumetric integral of the anisotropic perturbations multiplied by
two anisotropic kernels KC and KS that correspond to the Fréchet
derivatives of splitting intensity with respect to the elastic perturba-
tions γ C = γ cos 2φ0 and γ S = γ sin 2φ0, respectively:

S =
∫

V
γC (r)KC (r0, r; α) d3r +

∫
V

γS(r)KS(r0, r; α) d3r, (9)

with the Fréchet derivatives given by (Favier & Chevrot 2003)

KC (r0, r; α) = 1

4πβ2r
sin θ (cos2 θ sin 2φ

+ sin2 θ sin 2α)

∫ +∞
−∞ ω3|uR(ω)|2 sin(ω
t) dω∫ +∞

−∞ ω2|uR(ω)|2 dω
,

(10)
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Figure 1. Notations used to describe scattering. The axis f represents the
fast symmetry axis. The scattering point is located at r. The unit vector ζ
pointing from r towards r0, the position of the receiver, is described by its
azimuth φ and elevation θ .

KS(r0, r; α) = −1

4πβ2r
sin θ (cos2 θ cos 2φ

+ sin2 θ cos 2α)

∫ +∞
−∞ ω3|uR(ω)|2 sin(ω
t) dω∫ +∞

−∞ ω2|uR(ω)|2 dω
,

(11)

where 
 t is the time difference between reference and scattered rays
(Favier & Chevrot 2003). Eq. (9) can be seen as a generalization of
eq. (6) when small-scale variations (i.e. variations at scales smaller
than the size of the Fresnel zone) are present and for finite-frequency
waves.

4 N U M E R I C A L M O D E L L I N G

Our main goal in this section is to investigate the validity of eqs (6)
and (9) by comparing their predictions with the results obtained by
numerical modelling of full wave propagation in 3-D anisotropic
media.

4.1 Description of the method

We compute synthetic seismograms based upon the SEM, which is
a highly accurate technique to model seismic wave propagation in
elastic or anelastic media (e.g. Komatitsch & Tromp 2002). While
most classical numerical techniques used in seismology, such as the
finite-difference method (FDM) (Virieux 1986), are based upon the
differential (or strong) form of the seismic wave equation, the SEM
is based upon the variational (or weak) form, which is obtained
by dotting it with a so-called test vector and integrating by parts
over the region under study. The SEM can take into account the
full anisotropic elastic tensor with 21 coefficients (Komatitsch et al.
2000). It is more precise than the FDM in this context because even
for a full anisotropic tensor no interpolation of material properties

or field components is needed (Komatitsch et al. 2000). The SEM
is also computationally more efficient than classical finite-element
techniques (e.g. Bao et al. 1998) because the mass matrix is exactly
diagonal by construction (e.g. Komatitsch & Tromp 1999), which
implies that no linear system of equations needs to be inverted and
that as a result fully explicit time schemes can be used.

We simulate the propagation of a plane wave, which is introduced
in the explicit time marching scheme as an initial Gaussian-shape
analytical displacement and its corresponding velocity field. On the
edges of the grid, following the ideas of Bielak & Christiano (1984),
we subtract at each time step the contour integral of the traction
produced by the analytical source, whose expression appears in the
integration by parts used to obtain the variational formulation of the
wave equation.

4.2 Validity of 3-D sensitivity kernels

For a homogeneous anisotropic layer, the splitting intensity is given
by eq. (6) if the delay time is small compared with the dominant
period of the signal (or equivalently if anisotropy is weak). The 3-D
sensitivity kernels also predict a sinusoidal splitting intensity as a
function of backazimuth (Favier & Chevrot 2003). We design a first
numerical experiment to investigate the domain of validity of the
small delay time (or weak anisotropy) assumption.

We consider a volume that is meshed using cubes with a volume
of 12.5 × 12.5 × 8 km3. We use polynomials of degree N = 4
in each direction of each spectral element to discretize the wave-
field. The total number of spectral elements in the mesh is 64 ×
64 × 50 = 204 800, which corresponds to a total of approximately
13 000 000 independent grid points. The time step is 75 ms and we
simulate a total duration of 90 s of propagation. Using this mesh
and a shear wave velocity of 5 km s−1 for the isotropic reference
medium, we can calculate synthetic seismograms that are accurate
down to a period of ∼3 s. The number of grid points per minimum
wavelength is ∼5. We simulate shear waves that propagate vertically
through an anisotropic layer located between 32 and 160 km depth
with a fast axis oriented at φ0 = 0◦ (Fig. 2). We vary the domi-
nant period of the incident plane wave between 3 and 14 s for three

Incident SKS

Receiver

Anisotropic layer

Figure 2. Model configuration used for the numerical simulation of 3-D
wave propagation. The grey region represents the anisotropic layer embedded
in a homogeneous isotropic medium. A receiver located at the free surface
records a plane shear wave that propagates vertically.
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Figure 3. Radial and transverse components of the synthetic seismogram
for the model configuration shown in Fig. 2. The anisotropic layer is located
between 32 and 160 km depth and has 5 per cent anisotropy, which cor-
responds to a delay δt = 1.28 s and a fast axis oriented at φ0 = 0◦. The
dominant period of the plane wave is 12.7 s. The derivative of the radial
component is also shown for comparison and is approximately proportional
to the transverse component.

different levels of anisotropy: 5 per cent (δt = 1.28 s), 7.5 per cent
(δt = 1.92 s) and 15 per cent (δt = 2.56 s). In addition, in a last set
of simulations, we use a thinner anisotropic layer located between
32 and 96 km depth with 5 per cent anisotropy, which corresponds
to a delay δt = 0.64 s.

Fig. 3 shows the radial and transverse components as well as
the derivative of the radial component of the synthetic seismogram
corresponding to a delay time δt = 1.28 s and a dominant period of
12.7 s. The transverse component is approximately proportional to
the derivative of the radial component, which is in agreement with
eq. (4). Splitting intensity, measured by projecting the transverse
component onto the derivative of the radial component according to
eq. (5), is shown in Fig. 4 for different polarizations of the incoming
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Figure 4. Splitting intensity as a function of backazimuth (solid circle)
and the sinusoid that best fits these measurements (solid line) for the model
described in Fig. 3.
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Figure 5. Radial and transverse components of the synthetic seismogram
for the model configuration shown in Fig. 2. The anisotropic layer is located
between 32 and 160 km depth and has 15 per cent anisotropy, which cor-
responds to a delay δt = 1.92 s and a fast axis oriented at φ0 = 0◦. The
dominant period of the plane wave is 5.7 s. The derivative of the radial com-
ponent is also shown for comparison and is clearly not proportional to the
transverse component.

wave. Splitting intensity as a function of backazimuth is a sinusoid.
From its amplitude we can deduce the delay time δt and from its
phase the azimuth φ0 of the symmetry axis.

Fig. 5 shows the components of the synthetic seismogram cor-
responding to a delay time δt = 1.96 s and a dominant period of
5.7 s. In contrast to the previous case, the transverse component is
no longer proportional to the derivative of the radial component.
Splitting intensity as a function of backazimuth, shown in Fig. 6,
while still periodic, is no longer a sinusoid. The solid line shows the
sinusoid that best fits the measured splitting intensity. The ampli-
tude of this sinusoid is much smaller than the maximum splitting
intensity, which suggests that the approximate expressions given by
eqs (3), (4) and (6) are no longer valid.
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Figure 6. Splitting intensity as a function of backazimuth (solid circle)
and the sinusoid that best fits these measurements (solid line) for the model
described in Fig. 5.
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Figure 7. Diagram summarizing the results of the numerical experiments
performed using the model configuration shown in Fig. 2 and different dom-
inant periods T of the signal. For each experiment, we determine the delay
time by fitting a sinusoid to the splitting intensity measurements. The cir-
cles show the experiments for which the measured delay time differs by
less than 5 per cent from the theoretical delay time. The crosses show the
experiments for which the difference is larger than 5 per cent. The results
define a domain of validity that is located approximately below the line
δt = √

2/2πT ≈ 0.225T .

The results of all the numerical experiments are summarized in
Fig. 7. The circles represent the experiments for which the measured
delay time, obtained by fitting a sinusoid to the variations of splitting
intensity with backazimuth, deviate from the theoretical delay time
by less than 5 per cent, which is a typical error level in real mea-
surements (Chevrot 2000). The crosses represent the experiments
for which the differences are larger than 5 per cent. These results
allow us to define two domains in the (δt, T) space that are separated
by the line δt = √

2/2πT ≈ 0.225T , where T is the dominant pe-
riod of the signal. In the lower domain, the approximate expressions
given by eqs (3), (4) and (6) are valid and consequently the 3-D
kernels provide an accurate description of shear wave splitting.

Petrofabrics analysis of peridotite nodules has shown that shear
wave anisotropy should be around 5 per cent at temperature and pres-
sure conditions found in the top 200 km of the mantle (Mainprice
& Silver 1993; Mainprice et al. 2000). For this level of anisotropy
and a thickness of the anisotropic layer of 128 km, our results show
that measurements can be performed at a dominant period as low
as approximately 6 s. 3-D kernels can be used to compute split-
ting parameters inside their domain of validity, which is particularly
interesting because their calculation is computationally far less ex-
pensive than 3-D SEM numerical modelling.

4.3 Validity of ray theory

In order to determine the validity of geometrical ray theory to
describe shear wave splitting, we consider the propagation of a
finite-frequency plane wave through a single homogeneous spherical
anisotropic inclusion, as illustrated in Fig. 8. In all the simulations
anisotropy inside the inclusion is 3 per cent and the dominant wave-
length is 50 km. We determine the shear wave splitting parameters
at a receiver located at the surface, right above the anisotropic inclu-
sion. Following Baig et al. (2003), we introduce the doughnut-hole

Incident SKS

Receiver

Anisotropic inclusion

a

Figure 8. Model configuration used in the numerical simulation of 3-D
wave propagation. The grey region represents an anisotropic sphere of radius
a embedded in a homogeneous isotropic medium. A receiver located at the
free surface records a shear wave that propagates vertically.
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Figure 9. Diagram summarizing the results of the different numerical ex-
periments using the model configuration shown in Fig. 8 and an anisotropic
spherical region with radius a at varying depth. For each experiment we
determine the delay time by fitting a sinusoid to the splitting intensity mea-
surements.

parameter, defined as the dimensionless ratio between the radius a
of the anisotropic inclusion and the width of the Fresnel zone,

√
λz.

Fig. 9 shows the ratio between the true delay time and the delay
time given by ray theory versus the doughnut-hole parameter. The
different branches correspond to a fixed radius a, which varies be-
tween λ/8 and 3λ. We vary the position of the inclusion between
30 and 400 km depth, with 10 km depth increments. All the mea-
surements are represented on the same plot and clearly fall on the
same curve, which allows us to define the validity of ray theory
as a function of the scale of the heterogeneities. Three different
regimes can be identified. For length scales larger than the width
of the Fresnel zone, the ratio between the true delay time and the
ray theory delay time is close to unity and ray theory is uniformly
valid. For doughnut-hole parameters between 0.75 and 1, the ratio is
slighty larger than unity, an effect that comes from subtracting part
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a b

c d

Figure 10. (a) Map view of anisotropy inside the two-block model. (b) Map view of anisotropy inside the transition model. (c) Apparent splitting parameters
measured at the surface for model (a). (d) Apparent splitting parameters measured at the surface for model (b).

of the contribution of the second Fresnel zone. For doughnut-hole
parameters smaller than 0.75, the ratio decreases when the normal-
ized length scale decreases. As expected, very small inclusions can
fit into the hole of the kernels, and delay time tends to zero. From
Fig. 9, we therefore conclude that the critical value for the radius of
the inclusion is approximately 0.75

√
λz.

For a wavelength of 40 km, a typical value for SKS phases, and
a depth of 100 km, the critical diameter of the inclusion is approxi-
mately 95 km. This means that if anisotropy varies significantly over
distances smaller than 100 km, geometrical ray theory is no longer
valid and the apparent anisotropic properties derived from surface
observations are no longer simply related to the anisotropy in the un-
derlying medium. Numerous global studies have documented vari-
ations of shear wave splitting over short distances (typically a few
degrees) on continents (e.g. Helffrich et al. 1994; Silver 1996). How-
ever, only regional-scale studies are able to resolve variations over
distances smaller than 100 km. Indeed, it is the observation of strong
variations of apparent splitting parameters under the Netherlands
and Belgium that first led Alsina & Snieder (1995) to investigate
the 3-D sensitivity of SKS phases to anisotropy. More recently, us-
ing a dense network of permanent and mobile stations, Babuška et al.
(2002) observed strong variations of splitting parameters over dis-
tances smaller than 50 km, allowing them to distinguish three litho-
spheric domains in the French Massif Central with different seismic
anisotropy. Fouch et al. (2004) also observed strong variations of
delay times with a small aperture (∼40 km) array near Kimberley,
in South Africa. Therefore, observations of shear wave splitting in
continents suggest that short-scale variations in anisotropy are in-
deed present and that 3-D effects cannot be neglected.

5 I M P L I C AT I O N S F O R T H E
I N T E R P R E TAT I O N O F S H E A R WAV E
S P L I T T I N G M E A S U R E M E N T S

5.1 Sharp versus smooth variations of anisotropy

Continents juxtapose lithospheric blocks accreted during their long
and complex tectonic history. If the anisotropy were a manifesta-
tion of a frozen lithospheric fabric, we could expect sharp contrasts
across the sutures separating lithospheric blocks. Similarly, a narrow
shear zone resulting from the localization of lithospheric deforma-

tion would presumably generate a strong contrast in anisotropy with
the surrounding lithosphere. Can seismic observations collected at
the surface detect such sharp transitions? Answering this question
is not easy because, as we have seen in previous sections, long-
period shear waves sample the anisotropic properties of the Earth
in a complex fashion.

A suture between two lithospheric blocks with different fabrics
can be modelled by two simple blocks (see Fig. 10a). The anisotropic
layer between 32 and 160 km depth has 3 per cent anisotropy. For
the sake of simplicity, we first consider plane S waves propagating
vertically with a dominant period of 10 s. Fig. 11 shows splitting
intensity as a function of backazimuth obtained by analysing the
SEM synthetic seismograms and by integrating the 3-D kernels for
the receiver located above the two blocks. The agreement between
the two approaches is remarkable, which was expected because the
case considered is in the domain of validity of the small delay as-
sumption (see previous section). The other stations (not shown here)
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Figure 11. Splitting intensity as a function of backazimuth for the receiver
located above the boundary between the two blocks in the geometry shown
in Fig. 10(a) obtained from the analysis of the SEM synthetic seismograms
(circles) and from the integration of 3-D kernels (solid line).
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Shear wave splitting in 3-D media 717

show a similar level of consistency between SEM modelling and
3-D kernels. The apparent splitting parameters for all the stations
obtained from the analysis of the SEM synthetic seismograms ap-
pear in Fig. 10(c). Most striking is the apparent continuous rotation
of the fast direction from φ = 70◦ in the left block to φ = 0◦ in the
right block. The sharp transition of anisotropy at depth produces a
smooth variation of the apparent splitting parameters at the surface
over a range of approximately 40 km. This remarkable feature can
be explained by the sensitivity of finite-frequency shear waves to
anisotropy off the geometrical ray path (Favier & Chevrot 2003).
The apparent splitting parameters reflect the true level of anisotropy
that is located directly in the underlying medium only far from the
boundary between the two blocks.

To investigate the possibility of distinguishing sharp and smooth
transitions, we perform a second numerical experiment in which the
anisotropic properties vary smoothly from one block to the other
(Fig. 10b). The width of the gradient zone is 20 km, the appar-
ent width of the transition observed in the first experiment. If the
anisotropy were deeper or the dominant period larger, the width of
the transition zone would be larger. Apparent splitting parameters
measured at the surface appear in Fig. 10(d). The apparent fast axis
directions are very similar to those obtained in the first experiment.
However, the apparent delay times are smaller for the sharp transition
case than for the smooth transition case. Therefore, discriminating
between the two models requires both a robust measurement tech-
nique that remains accurate at small delay times (e.g. Chevrot 2000)
and a good sampling of the wavefield near the boundaries.

5.2 Isotropy, vertical symmetry axis or boundary between
two anisotropic domains

Delay times smaller than 0.5 s are difficult to measure using classical
data analysis techniques and are usually considered as null measure-
ments (e.g. Silver & Chan 1991). These null measurements are often
interpreted as the presence of an anisotropic layer too thin to be de-
tected, or of an anisotropic layer with a subvertical symmetry axis.
Our results suggest another possibility: small-scale lithospheric het-
erogeneity. A receiver located in a region where anisotropy varies
rapidly over short distances in orientation (but not necessarily in am-
plitude) will record a much smaller splitting than a receiver located
in a homogeneous region. Discriminating between these three hy-
potheses requires resolving small-scale lateral variations and strat-
ification of anisotropy, which is impossible from a single-station
analysis or if stations are separated by a distance larger than the
width of the first Fresnel zone. Whether continental lithosphere is
composed of blocks with well-developed fabrics thus remains an
interesting question open for future studies involving dense arrays
of broad-band stations.

5.3 Lateral versus vertical variations of anisotropy

Numerical simulations of wave propagation in depth-dependent
anisotropic media have shown that apparent splitting parameters
are frequency-dependent (Rümpker et al. 1999; Saltzer et al. 2000).
In addition, the apparent fast direction is weighted towards the ori-
entation in the shallower part of the mantle (Saltzer et al. 2000).
In contrast, Favier et al. (2004) have shown that at long periods
(i.e. periods in the lower domain in Fig. 7), sensitivity to anisotropy
is constant with depth. Because different measurement techniques
were used, these results are not necessarily contradictory. The former
studies used the technique of Silver & Chan (1991), which consists

of finding the combination of delay time and fast direction that min-
imizes the energy on the transverse component after correction for
shear wave splitting. The latter study measured the delay time and
fast direction from observed variations of splitting intensity as a
function of the backazimuth of the incoming wave (Chevrot 2000).
This difference in measurement techniques may also explain why,
in spite of the fact that they used the same two-block model, Favier
& Chevrot (2003) were able to determine splitting parameters in
the boundary region while Rümpker & Ryberg (2000) found them
less reliable and considered them as null measurements. A brief
comparison between the two measurement techniques is presented
in the Appendix. In any case, splitting intensity, in contrast to fast
polarization direction, is a seismic observable that is linearly related
to perturbations of the elastic parameters. Therefore, we believe that
it is simpler to study anisotropy based upon this new seismic ob-
servable, and that this opens new and important perspectives in the
context of 3-D anisotropic tomography.

Because the size of the Fresnel zone depends on the dominant
period of the waves, if anisotropy varies over distances smaller than
the width of the first Fresnel zone, the apparent splitting parame-
ters will depend on period. To illustrate this effect, we consider the
same two-block model as in Fig. 10(a). In a broad region above the
boundary, apparent splitting parameters display significant varia-
tions when the period varies between 8 and 16 s (Figs 12 and 13).
For example, a receiver located 20 km east of the boundary exhibits
variations of 0.2 s for the delay time and 5◦ for the fast polariza-
tion direction, which is significant. Because the width of the Fresnel
zone increases with depth, apparent splitting parameters are sensi-
tive to both lateral and vertical variations of anisotropy, though the
former are expected to dominate. This property can be exploited by
measuring splitting parameters at different frequencies in order to
improve spatial resolution. For example, this would help to discrim-
inate between the sharp and smooth transition models because the
differences in their anisotropic signature would be more pronounced
at other frequencies. In any case, separating lateral and vertical vari-
ations of anisotropy requires a good sampling of the medium, which
can only be obtained by using a dense array of broad-band stations.
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Figure 12. Apparent fast direction measured at the surface for the model
shown in Fig. 10(a) for plane waves with a dominant period of 8, 12 and
16 s, respectively, as a function of the distance from the boundary between
the two blocks.
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Figure 13. Apparent delay times measured at the surface for the model
shown in Fig. 10(a) for plane waves with a dominant period of 8, 12 and
16 s, respectively, as a function of the distance from the boundary between
the two blocks.

5.4 Apparent variations of splitting parameters
with backazimuth

Fig. 11 shows splitting intensity measured at the receiver located
above the boundary between the two blocks for the geometry shown
in Fig. 10(a). For a plane SKS wave propagating vertically, variations
of splitting intensity as a function of backazimuth are very well de-
scribed by a sinusoid even though lateral and vertical heterogeneities
are present.

On the other hand, the 3-D sensitivity kernels for a 10◦ incidence
angle, a typical incidence angle of SKS waves, are no longer sym-
metric with respect to the vertical axis (Fig. 14). The break of sym-
metry is mainly a result of the complex dependence of the radiation
pattern of a transversely isotropic elastic perturbation on the angle
between the propagation direction of the scattered wave and the
symmetry axis (see fig. 2 in Favier & Chevrot 2003). Fig. 15 shows
splitting intensity at the station located above the boundary between
the two blocks as a function of backazimuth for a constant 10◦ inci-
dence angle. In the case of oblique incidence, the 180◦ periodicity
of splitting intensity is broken. Shear wave splitting is no longer
described by unique splitting parameters δt and φ0, and these pa-
rameters present apparent variations with backazimuth. Even more
surprising, waves coming from the same backazimuth but with dif-
ferent incidence angles (depending on the epicentral distance) can
show significant differences in shear wave splitting. However, the
sinusoidal fit to the splitting intensity data still provides average
splitting parameters that can be seen as analogous to station resid-
uals that represent the average traveltime perturbation seen by a
seismic station. Deviations from the optimal sinusoid give splitting
intensity residuals that can be used to map 3-D lithospheric and
asthenospheric anisotropic structures.

This last result should have important consequences on the studies
of apparent variations of splitting parameters with backazimuth that
are often interpreted as indications of stratification of anisotropy
(e.g. Savage & Silver 1993). Our numerical experiments demon-
strate that complex and counter-intuitive 3-D propagation effects
are important and should be taken into account. These effects would
be even stronger and more complicated if the dip of the symmetry
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Figure 14. Splitting intensity sensitivity kernels KC (left) and KS (right) for
a 10◦ incidence angle and an incident wave polarized in the N–S direction.
The top diagrams show the N–S cross-sections. The bottom diagrams show
horizontal cross-sections at 40 km depth. Note that the kernels are no longer
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Figure 15. Splitting intensity as a function of backazimuth for the receiver
located above the boundary between the two blocks in the geometry shown
in Fig. 10(a) for a vertical incidence and for an incidence angle of 10◦.

axis were allowed to vary in any direction and were not constrained
to be in the horizontal plane, as in the present study.

6 C O N C L U S I O N S

We have shown that the apparent fast direction observed at the sur-
face can deviate significantly from the symmetry axis orientation
in the underlying medium in regions where lateral variations with a
characteristic wavelength smaller than the size of the Fresnel zone
(typically around 100 km for a shear wave with a dominant pe-
riod of 10 s) are present. Fréchet kernel theory accounts for this
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finite-frequency effect that smears the sensitivity to anisotropy away
from the geometrical ray path.

Anisotropy beneath oceanic lithosphere is likely coherent over
regions comparable in size to plates. In contrast, there is increas-
ing evidence for the presence of strong variations of apparent
splitting parameters over short distances under continents (e.g.
Helffrich et al. 1994; Alsina & Snieder 1995; Silver 1996; Babuška
et al. 2002; Fouch et al. 2004). Thus, in order to constrain unam-
biguously seismic anisotropy under continents, seismologists will
have to use dense arrays of broad-band stations and account for
finite-frequency effects on shear wave splitting.
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A P P E N D I X A : M E A S U R I N G S H E A R
WAV E S P L I T T I N G PA R A M E T E R S

The most popular technique to measure splitting parameters on SKS
waves was introduced by Silver & Chan (1991). Most other tech-
niques follow similar principles. We summarize them here and dis-
cuss the differences with our approach.

In Silver & Chan (1991), the splitting parameters are determined
by finding the optimal inverse splitting operator Γ−1, defined by the
fast axis direction φ0 and the delay time δt, that minimizes energy on
the transverse component. When propagating through an anisotropic
layer, the incident shear wave is split into two quasi-shear waves,
polarized in the fast and slow directions, that propagate at different
velocities and accumulate a delay time δt. Let us define the rotation
tensor

R =
(

cos β − sin β

sin β cos β

)
(A1)

that changes the radial and transverse coordinate system to that
defined by the fast and slow directions. The angle β is the angle
between the radial and fast directions. Let us also define the delay
time operator:

D =
(

eiωδt/2 0

0 e−iωδt/2

)
. (A2)

For an incident wave u0, the displacement u at the top of the
anisotropic layer in the radial and transverse coordinate system is
then given by:

u(ω) = R−1.D.R.u0(ω). (A3)
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In Silver & Chan (1991), the splitting operator is defined as � =
D.R. From eq. (A3), noise-free radial and transverse components
of an SKS wave recorded at the surface can be written in the time
domain:

uR(t) = cos2 βui
R(t + δt/2) + sin2 βui

R(t − δt/2), (A4)

uT(t) = −1/2 sin 2β
[
ui

R(t + δt/2) − ui
R(t − δt/2)

]
, (A5)

where ui
R denotes an incident wave polarized in the radial direction.

Inverting eq. (A3), we obtain the seismogram corrected for shear
wave splitting:

ũ(ω) = R−1.D−1.R.u(ω), (A6)

which in the time domain gives

ũR(t) = cos2 βuR(t − δt/2) + sin2 βuR(t + δt/2)

+ 1

2
sin 2β [uT(t + δt/2) − uT(t − δt/2)] (A7)

and:

ũT(t) = 1

2
sin 2β [uR(t + δt/2) − uR(t − δt/2)]

+ cos2 βuT(t + δt/2) + sin2 βuT(t − δt/2). (A8)

Measuring splitting parameters now consists of finding the optimal
pair of parameters (β, δt) that minimizes energy on the transverse
component:

|ũT|2 = 1

2
sin2 2β [CRR(0) − CRR(δt)]

+ sin4 βCTT(0) + cos4 βCTT(0) + 1

2
sin2 2βCTT(δt)

+ sin 2β sin2 βCRT (δt) + sin 2β cos2 βCRT (0)

− sin 2β sin2 βCRT (0) − sin 2β cos2 βCRT (−δt), (A9)

where CXY is the correlation function between X (t) and Y (t). Let us
define the variable τ = δt . The minimum of eq. (A9) is obtained
when

∂|ũT|2
∂τ

= ∂|ũT|2
∂β

= 0. (A10)

The displacement recorded at the surface is contaminated by noise:

uR(t) = u0
R(t) + nR(t), (A11)

uT(t) = u0
T(t) + nT(t). (A12)

If we make the assumption that signal and noise are mutually inde-
pendent, and that noise on the transverse and radial components is
uncorrelated, correlation functions are given by:

CRR(τ ) = C O
RR(τ ) + CNRNR (τ ), (A13)

CTT(τ ) = C O
TT(τ ) + CNTNT (τ ), (A14)

CRT (τ ) = C O
RT(τ ), (A15)

where

C O
RR(τ ) =

∫ t2

t1

u0
R(t + τ/2)u0

R(t − τ/2) dt, (A16)

C O
RT(τ ) =

∫ t2

t1

u0
R(t + τ/2)u0

T(t − τ/2) dt, (A17)

CNRNR (τ ) =
∫ t2

t1

nR(t + τ/2)nR(t − τ/2) dt, (A18)

CNTNT (τ ) =
∫ t2

t1

nT(t + τ/2)nT(t − τ/2) dt. (A19)

We can expand eqs (A13), (A14) and (A15) in Taylor series, keeping
all terms up to second order:

CRR(τ ) = C O
RR(0) + CNRNR (0) + 1

2
τ 2∂ττ

[
C O

RR(0) + CNRNR (0)
]
,

CTT(τ ) = C O
TT(0) + CNTNT (0) + 1

2
τ 2∂ττ

[
C O

TT(0) + CNTNT (0)
]
,

CRT(τ ) = C O
RT(0) + τ∂τ C O

RT(0) + 1

2
τ 2∂ττ C O

RT(0).

Introducing these expressions in eq. (A10), we get:

0 = −1

2
τ sin 2β

[
∂ττ C0

RR(0) + ∂ττ CNRNR (0)
]

+ 1

2
τ sin 2β

[
∂ττ C0

TT(0) + ∂ττ CNTNT (0)
]

+ ∂τ C0
RT(0)

+ cos 2βτ∂ττ C0
RT(0). (A20)

Eq. (A20) defines a complex non-linear relation between the split-
ting parameters τ and β and the radial and transverse components of
the seismic signal. In general, this relation allows one to determine
both parameters from a single seismic record, a clear advantage
over measuring splitting intensity, which is a combination of both
parameters. However, when the amplitude of the transverse compo-
nent is small, i.e. when splitting is small either because anisotropy
is small or because the polarization of the incoming wave is close
to the fast or slow axes direction, C TT(0) ∼ C NTNT (0) and C TT(0) ∼
C NRNR (0), and the parameters β and τ that verify eq. (A20) may be
strongly biased. As a result, the technique of Silver & Chan (1991)
does not provide reliable estimates of the splitting parameter. This
is a well-known limitation that has been quantified by Restivo &
Helffrich (1999). They have shown that for signal-to-noise ratios
lower than ∼4, this technique gives unreliable measurements. To
overcome this problem, Wolfe & Silver (1998) introduced a stacking
technique to obtain accurate measurements in noisy environments.
However, combining all azimuths into a single measurement proce-
dure becomes more or less equivalent to the multichannel technique
introduced by Chevrot (2000). The important difference, however, is
that splitting intensity along a single path can be measured robustly
and then used directly to image the spatial variations of anisotropy.
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