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Abstract: Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property.
This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic
soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new
liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories
reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build
a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate
a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables
comprising both the seismic demand and the soil capacitywere estimated and included in the analysis, resulting in greatly reduced overall model
uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for
soil fines content andmagnitude scaling factors.

Introduction

Of the several field techniques routinely used to assess triggering of
seismic soil liquefaction [standard penetration test (SPT), cone
penetration test (CPT), Becker hammer test (BHT), shear-wave
velocity (Vs)], only the shear-wave velocity test measures a funda-
mental property of the soil. Nevertheless, liquefaction assessment
correlations based on in situ penetration index tests are more widely
used in engineering practice to estimate the potential for triggering or
initiation of seismically-induced soil liquefaction. Compared with
Vs, SPT and CPT penetration methods have the advantage of

correlating more directly with relative density, which has a
strong effect on the cyclic behavior of saturated soil (Idriss and
Boulanger 2008). In contrast, Vs is considerably less sensitive to
problems of soil compression and reduced penetration resistance
when soil fines are present, comparedwith SPT andCPTpenetration
methods. Therefore, Vs requires only minor corrections for fines
content (FC).

The traditional means of estimating Vs of soil uses an instru-
mented borehole, or penetrometer, to measure the travel time of
shear waves at various depths. Dual or multiple borehole studies
have been used to measure the horizontal and vertical shear-wave
velocity properties of the ground. The high cost of performing
invasive Vs testing stems from drilling cased boreholes, large
penetration vehicles, and the instrumentation of the borehole.
However, in the last two decades, newly developed noninvasive
methods have offered a less expensive alternative. These methods
indirectly estimate the soil Vs for liquefaction assessment through
an inversion of the surface-wave dispersion characteristics of the
ground (Stokoe et al. 1994; Andrus et al. 1998; Kayen et al. 2002,
2004a, b).

The objectives of this study are (1) to provide an unbiased as
possible assessment ofVs-based in situ soil liquefaction triggering
potential, and (2) to assess the probability of liquefaction trig-
gering for use in performance-based engineering applications.
The first objective addresses the problem, noted by Zhou and
Chen (2007), of insufficient Vs liquefaction field case histories
compared with SPT and CPT. Another challenge is related to
processing the field case history data. This requires that the
uncertainties and distributions associated with the seismic de-
mand and soil resistance variables be quantified and formally
evaluated within the model. Bayesian framework and structural
reliability methods are used to estimate the probability of liq-
uefaction, which are conditional onVs-based capacity and seismic
demand.



Review of Vs Liquefaction Relationships

The development of the cyclic threshold strain approach for assess-
ment of liquefaction potential (Dobry et al. 1982) required identi-
fication of the small-strain Vs to relate stiffness of the liquefiable
layer to threshold acceleration. The field application of this model,
relating Vs to peak ground acceleration (PGA), using data from the
1981Westmoreland earthquake for the analysis of liquefaction, was
presented by Bierschwale and Stokoe (1984). An early model in-
corporating a cyclic stress ratio (CSR)-Vs triggering resistance
curve, proposed by Seed et al. (1983), was developed through SPT-
Vs correlations. In the early 1990s, the growing number of direct
field measurements of Vs at liquefaction test sites led to several early
correlations of effective stress normalized shear-wave velocity (Vs1)
and cyclic stress, (Fig. 1; Robertson et al. 1992; Kayen et al. 1992;
Lodge 1994). Andrus and Stokoe (2000) advanced the population of
Vs data for liquefaction field test sites by adding to these existing data
sets measurements from the earthquake events of 1983 Borah

Peak, Idaho, 1979 Imperial Valley, California, 1981Westmoreland,
California, 1975 Haicheng, China, and the 1964 Niigata, Japan
earthquakes, as well as numerous nonliquefaction events recorded
at the Lotung LSST Facility in Taiwan. Several new sites from
Adapazzari, liquefied during the 1999 Kocaeli, Turkey earthquake,
were identified from the study of Bay and Cox (2001) and added to
the database. Reliability-based approaches (Juang et al. 2001; Juang
et al. 2002) based on the Andrus and Stokoe (2000) data set were
developed to characterize the Vs1-magnitude–dependent CSR re-
lationship within a probabilistic framework. From the findings of
Andrus and Stokoe (2000), it was clear that there was a general
paucity of measured Vs data in the CSR region above approximately
0.3, and for Vs1, greater than 200m/s. By comparison, available SPT
and CPT liquefaction resistance correlations were already relatively
rich in liquefied and nonliquefied site data in the zone of both high-
penetration resistance values and highCSR levels (Cetin 2000;Cetin
et al. 2004; Moss 2003; Moss et al. 2005, 2006; Seed et al. 2003;
Idriss and Boulanger 2008). From these SPT and CPT studies, the
locations of liquefaction sites with both high CSR loading and high-
penetration resistance values tended to be clustered in Asia-event
data associated with earthquakes in China, Japan, and central
Taiwan, where relatively few Vs profiles were reported.

To circumvent the lack of field data, Zhou and Chen (2007)
described laboratory investigations of the Vs-based liquefaction
resistance of sandy soil and presented their relationships in both
best-fit (mean) and lower bound (liquefaction boundary) models.
They found that there was no basis for the limiting upper bound
normalized velocity Vs1 of 215 m/s for seismic soil liquefaction
based on the laboratory study. They proposed a more conservative
procedure than Andrus and Stokoe (2000).

New Field Data

This study investigates the SPT catalog of Cetin et al. (2000) and
CPT catalog ofMoss et al. (2003) as the primary sites for new shear-
wave velocity measurement. The reports catalog locations, data,
methods, and investigators of postevent liquefaction field studies,
and statistically characterize the critical layer, amax,Mw, water table
depth, and CSR. The majority of the sites reported in the two studies
of Cetin et al. (2000) and Moss et al. (2003) had no corresponding
Vs profile. The new Vs data collected and reported here focus on
these well-documented sites in Asia, Greece, and the United States
(Fig. 2) and are leveraged and refined using the original postevent

Fig. 1. Comparison of the model from this study, and of prior models,
for deterministic shear-wave velocity–based assessment of liquefaction

Fig. 2. The 422 shear-wave velocity case histories analyzed for this study were gathered from 301 new case histories derived from 256 new sites
collected between 2001 and 2011, as well as 121 case histories from the literature, gathered from 76 sites (background map © USGS)



earthquake reconnaissance reports, other soil investigation reports,
and local knowledge. The field studies include sites spanning from
the disastrous 1948 Fukui City, Japan earthquake to the recent 2011
Great M9.0 Tohoku, Japan earthquake. The Vs investigations were
performed, when possible, at the exact site previously tested by
soil boring, SPT, or CPT. Previous studies indicate that Vs can be
variable over short distances even within a single geologic unit
(Thompson et al. 2007, 2009).

From Cetin et al. (2000), Moss et al. (2003), and additional
reports, it was possible to document over 400 penetration test sites
with no Vs measurements. This study, initiated in 2001, intends to
reoccupy all of these sites, where possible. To evaluate these sites
efficiently without cumbersome apparatus or the need to negotiate
approval for subsurface exploration, this study uses noninvasive
surface-wave methods to determine the Vs properties of the soil. At
most sites, a continuous harmonic-wave spectral analysis of surface
waves method (SASW) was used (Kayen et al. 2004a; Fig. 3).
SASW are useful for Vs profile surveys of liquefaction sites because
the characterization needed in the uppermost 15–20 m corresponds
with the zone for which the surface-wave test resolution is highest
and the required frequency range of the harmonic waves is easy to
generate and receive. To estimate the one-dimensional Vs structure
for hundreds of new sites, the project put an emphasis on efficient
workflow for the SASW test and equipment portability.

The SASW test was initially developed at theUniversity of Texas
at Austin using active-impulsive sources of either impact hammer-
or drop-weight type (Nazarian and Stokoe 1984). SASW is a non-
invasive linear-array test performed at the earth surface at strain
levels in soil in the elastic range of shear strains ,0.001% (Brown

et al. 2002). The frequency-dependent phase differences between
pairs of receivers in the array were measured using vertical seismic
SS-1 Ranger Kinemetrics sensors and a dynamic signal analyzer,
and the dispersion curve was computed based on the phase dif-
ferences and the receiver spacing. The wavelength range of the
dispersion curve was constrained by the source receiver and the
inter-receiver distances so that data were selected typically within
a phase-difference range of 180 and 720�.

The use of active-impulsive sources allows for a broad range of
frequencies to be measured simultaneously, but they are often not
repeatable, fail to generate low-frequency vibrations, and are limited
in the ability to filter through the source signal only. An active-
continuous harmonic-wave source allows for each frequency to be
tested individually, and the signals for that frequency to be passed
through a notch filter that dramatically decreases the effect of the
external noisewhile boosting the decibel level of the signal (Rix et al.
2001). The procedures developed in this study used an electro-
mechanical harmonic vibration source identical to that of Rix and
Lai (1998) to limit the effects of external noise and increase the
accuracy of the dispersion estimates. Inversion procedures for es-
timating the shear-wave velocity profile at the liquefaction test sites
only considered the fundamental mode of propagation, termed a
two-dimensional (2D) analysis (Roesset et al. 1991), because these
profiles are normally dispersive (soft layers nearest to the surface and
phase velocity increasing with wavelength) and not highly hetero-
geneous. A three-dimensional (3D) effective mode forward analysis
would bemore appropriate if the profiles were highly heterogeneous
and reverse dispersive; that is, not the natural structure of lique-
faction soil sites (stiff layer nearest to the surface and phase velocity
decreasing with wavelength).

Between 2001 and 2011 (Fig. 2), 206 sites in Asia (resulting in
251newAsia casehistories), 48 sites in theUnitedStates (resulting in
48 newU.S. case histories), and 2 sites in Europe (resulting in 2 new
European case histories) were visited, profiled, and accepted into the
catalog for the Vs-liquefaction study from a larger set of sites visited
for site response and ground deformation analysis. These newVs data
represent a quantitative assessment of the majority of liquefaction
field observations made throughout the world between 1948 and the
present. A listing of the newVs test sites and sites reanalyzed from the
literature are presented in Table S1. These new data are merged with
the 121 previously reported independent observations from 76 sites
byRobertson et al. (1992), Kayen et al. (1992),Mitchell et al. (1994),
Lodge (1994), Andrus and Stokoe (2000), and Bay and Cox (2001).
The Andrus and Stokoe (2000) data set contains a large number of
individual sites that were shaken by between two and six earthquake
events. Likewise, this study reports on individual sites that have been
shaken numerous times. Thus, the total number of observations in the
data set exceeds the number of individual sites.

New Kobe Region, Japan, Data from the M7.5
Hyogo-Nambu Earthquake of 1995

The region encompassing the greatest quantity of new data collec-
tion (86 sites) includes the cities of Kobe, Ashiya, and Nishinomiya,
Japan, where extensive damage occurred during the Hyogo-Nambu
1995 earthquake. Vs tests were performed at SPT sites that are
cataloged in the Kobe-Jibankun Geographic Information System
(Tanaka and Okimura 2001) and reported on in numerous postevent
investigations (Bardet et al. 1995; Hamada et al. 1995; Shibata et al.
1996; Suzuki et al. 2003). The thickness of the most vulnerable
layer and associated FC from penetration test data constrained the
critical layer. Strong motion characteristics, strong motion spatial
variation, and geological data were reported by Oka et al. (1996),
Ejiri et al. (1996), Fujita and Maeda (1984).

Fig. 3. Typical SASW configuration using the portable frequency-
controlled, 100-kg electromechanical shaker (center unit) with forward
and reverse arrays of 1-Hz sensors (Site 41NAGA, Naganuma, Hok-
kaido liquefied during the Tokachi-oki 1968 earthquake and not liq-
uefied by the Tokachi-oki 2003 earthquake); Photo by Robert Kayen



New Japan Region Data from Hokkaido, Tohoku, and
Chugoku Regions

Based on awealth of Japanese reports and subsurface investigations,
a total of 127 new shear-wave velocity sites for the 1948 Fukui
earthquake, 1964 Niigata earthquake, 1968 Tokachi-Oki earth-
quake, 1973 Miyagi-Oki earthquake, 1978 Miyagi-Oki earthquake,
1983 Nihonkai-Chubu earthquake, 1993 Hokkaido-Nansei earth-
quake, 1993 Kushiro-Oki earthquake, 1994 Kushiro earthquake,
1998 Sanriku earthquake, 2000 Tottori-Seibu earthquake, 2001
Geiyo-Hiroshima earthquake, 2003 Tokachi-Oki earthquake, 2004
Niigata-Chuetsu earthquake, 2007 Niigata-Chuetsu-Oki earthquake,
and 2011 Great Tohoku M9 earthquake were collected (Fujimura
2003; Hausler and Sitar 2001; Kokusho et al. 1995; Mori and
Kadowaki 2002; Noboru and Eiji 2002; Nozu 2002; Ochiai et al.
2002; Office of the Engineer 1949; Youd et al. 1995).

New China Region Data from the M8 Tangshan
Earthquake of 1976

Chinese liquefaction performance sites were tested in Tangshan City;
Fengnan and Luannan Counties, Hebei Province; and Lutai City in
Tiensin Province, where sites had been previously explored with
SPT or CPT (Wang 1979; Xie 1979; Zhou and Zhang 1979; Zhou
and Guo 1979; Arulanandan et al. 1982). At these 24 sites, SASW,
the spatial autocorrelation ambient array (SPAC) tests (Kayen et al.
2008b), and Seismic CPT (SCPT) tests (Moss et al. 2008, 2009)
were used.

New Taiwan Region Data from the Mw 7.6 Chi-Chi
Earthquake of 1999

The 1999 Chi-Chi (Mw 5 7:6) Earthquake triggered liquefaction
in native alluvial and fluvial deposits in the cities of Wufeng,
Nantou, and Yuan Lin in north-central Taiwan. Based on the
reports of the Taiwanese National Center for Research on Earth-
quake Engineering (NCREE 1999; Liu et al. 2001; PEER 2000;
Stewart 2001), 14 new case histories were investigated. The
penetration test and soil-boring subsurface characteristics were
analyzed by Chu et al. (2004) and Moss et al. (2003). Many of the
Taiwan case histories are important because they involve high CSRs
between 0.4 and 0.6, which is a range where previous observations
were limited. The Taiwan case histories also involve high FC and
marginal plasticity soils.

New Greece Region Data from the Mw 6.5 Achaia-Elia
Earthquake of 2008

The Mw 6.8 Achaia-Elia earthquake struck the western Pelo-
ponnesian coastal region of Kato-Achaia on June 8, 2008. Two
areas separated by 500 m along the shoreline at Kato Achaia had
minor liquefaction in a residential neighborhood adjacent to the
Patraikos Gulf (Batilas et al. 2010;Margaris et al. 2010). At one of
the two sites, the owner reported that native gravels were ex-
cavated from the site and replaced with a loose silty sand fill.
Investigators from the University of Patras performed sampling,
borehole SPT, CPT, and multichannel analysis of surface waves
(MASW) tests at these sites in 2009 and 2010. Both locations
were reoccupied to collect SASW data using the controlled
harmonic-wave source in 2011. The water table measured at the
sites was 0.4 m, and the liquefied zones were well constrained in
velocity and depth by the many velocity logs and borehole
lithologies.

New U.S. Region Data from the M6.9 Loma Prieta
Earthquake of 1989

Soil deposits of central San FranciscoBaywere exposed tomoderate
seismic loads during the 1989 Loma Prieta, California earthquake,
resulting in localized areas of soil liquefaction damage. SASW
testing sites were visited to augment and expand the data set gath-
ered between 1990 and 1992 using CPT, SPT, SASW, and a flat-
plate dilatometer (DMT), (Mitchell et al. 1994; Kayen et al. 1992,
1998; Seed, R. B., et al. 1990; Chameau et al. 1991). A new suite of
SASW sites was investigated along the Pajaro and Salinas River
valleys of Santa Cruz and Monterey Counties, Moss Landing and
Moss Landing State Beach onMonterey Bay, and at themouth of the
Pajaro River, whichwas previously tested by SPT andCPT (Bennett
and Tinsley 1995; Tinsley and Dupre 1992a, b; Dupré and Tinsley
1998; Boulanger et al. 1995, 1997).

New U.S. Region Data from the M7.9 Denali Fault
Earthquake of 2002

Liquefaction-induced ground failures observed in east-central Alaska
from the 2002 Denali Fault earthquake occurred in native fluvial
deposits and lake margins along the central range. Liquefaction
test sites were identified and mapped during the aerial and ground
reconnaissance immediately after the earthquake (Harp et al.
2003; Kayen et al. 2004b). Sand boil ejecta and augered samples
on the Slana, Nabesna, Chisana, Tok, Gerstle, and Delta Rivers, at
the village of Northway, and Fielding Lake State Park were
collected and classified (Kayen et al. 2004b). At these sites
(Table S1), the ground forVswas characterized bySASWtesting that
included transport of the surface-wave equipment by helicopter and
backpack.

Shear-Wave Velocity

The in situ soil Vs measurement taken in the field is a small-strain
property related to the undisturbed shear modulus (Gmax) of the soil
and the soil-mass density (r)

Vs ¼ ðGmax=rÞ0:5 ð1Þ

In liquefaction assessments, Vs is used as a measure of soil ca-
pacity to resist permanent deformations and the rise of elevated pore-
fluid pressures. Field measurements of Vs are commonly performed
using suspension logging within a borehole, surface source to
downhole receiver borehole logging, crosshole logging within
boreholes, seismic cone penetrometer, SASW, MASW (Park et al.
1999), and ambient microtremor array methods. Recent comparison
of the accuracy and sensitivity of many of these methods include
Asten and Boore (2005a, b), Boore and Thompson (2007), and
Moss (2007).

The shear-wave velocity of soil is influenced by effective over-
burden stress, and thevoid ratioof the soil (Hardin andDrnevich 1972).
For a given soil, Vs correlates directly with liquefaction resistance
through the relationship between void ratio and relative density. It is
possible that a soil type of unusual originwill correlate differently given
the soil’s specific void ratio–relative density relationship. The de-
velopment of a generalized Vs1-liquefaction correlation requires the
cautionary understanding that some soils with unusual void ratio–
relative density characteristics exhibit liquefaction behavior that differs
from the generalized relationships proposed in the past, as well as those
proposed in this paper. Typically, the field measurement of Vs (as with
SPT andCPT) is corrected to a normalizedVs1 at the reference stress of



100 kPa. Liquefiable soils on approximately level ground are assumed
to be normally consolidated (K 0

o ∼ 0:5), and by convention (Kayen
et al. 1992; Robertson et al. 1992), stress correction (Cvs) is affected
by the vertical effective overburden stress (s0

v), normalized reference
stress (Pa), and the stress exponent 0.25

Vs1 ¼ VsCVs ¼ VsðPa=s
0
vÞ0:25 ð2Þ

At shallow depths, where the effective overburden stress is small,
thewriters recommendCVs be capped at 1.5. The mean and variance
of Vs1 was calculated directly from the measured data within the
critical layer as the average thickness-weighted value of the stepped
velocities, typically 2–5 steps. The uncertainties associated with
calculation of the dispersion curve and inversion of individual
shear-wave velocity profiles were not addressed in this study. An
independent study by Moss (2007) indicates that the average
combined coefficient of variation (COV) for the dispersion and
inversion calculations of the SASW test data are approximately 0.15.

In most cases, the critical layer was defined as being the most
liquefiable stratum in the profile determined in adjacent SPT and
CPT logs using the methods of Cetin et al. (2004) and Moss et al.
(2006), respectively. For the test sites, the critical layer used to
compute the normalized Vs1 is the same as that reported in the two
field case history databases for SPT (Cetin et al. 2000) and CPT
(Moss et al. 2003) data, and the FC value is taken from their reports.

Data collected for the Denali Fault, Alaska earthquake of 2002
had no adjacent CPT or SPT borehole. Critical layers were based on
auger holes adjacent to SASW test sites (Kayen et al. 2004b), where
possible. With no penetration log available, the most liquefiable
layer was estimated using data from the zone of minimum Vs1 in the
portion of the stratigraphic logs comprised of Zone A soil [plasticity
index (PI), 12, liquid limit (LLÞ, 37] (Moss et al. 2006; Seed et al.
2003; Seed, R.B., Cetin, K.O.,Moss, R. E. S., Kammerer, A.,Wu, J.,

Pestana, J.M., Riemer,M. F., Sancio, R. B., Bray, J. D., Kayen, R. E.,
and Faris, A., unpublished keynote address, 26th Annual ASCE Los
Angeles Geotechnical Spring Seminar, Long Beach, CA, 2003).

Seismic Demand

CSR is a measure of seismic demand on a soil element and has been
represented in the simplified method first proposed by Seed and
Idriss (1971, 1982) as

CSR ¼ tavg

s0
v

¼ 0:65 × amax

g
×sv

s0
v
× rd ð3Þ

This study uses Eq. (3) to estimate the seismic demand within the
critical stratum for each of the field case histories, where amax is the
peak horizontal ground acceleration at the surface; g is the accel-
eration of gravity; sv is the total vertical overburden stress; s0

v is
the effective vertical overburden stress; and rd is the nonlinear
shear mass participation factor (Seed et al. 1983, 1984). Lique-
faction performance data forVs are gathered from earthquakeswith
moment magnitude (Kanamori 1977) ranging from 5.5 to 9.2
(Table S1).

In this study, the nonlinear shear-mass participation parameter
rd is estimated based on a statistical model of ground response
analysis results by Cetin et al. (2004) that showed that rd is
nonlinearly dependent upon a suite of factors that include soil
depth, average Vs of the soil, the amplitude of ground motion, and
earthquake magnitude. The rd recommendations of Cetin et al.
(2004) characterize the mean and variance and provide an unbiased
estimate of rd . The results of the analysis were regressed to evaluate
the mean rd for a given depth, PGA, and moment magnitude. The
variance was estimated from the dispersion of the simulations. The
mean rd results can be calculated using Eq. (4) for d, 20 m

rd
�
d,Mw, amax,V

p
s,12m

�
¼

�
1 þ 223:0132 2:949 × amax þ 0:999 ×Mw þ 0:0525 ×Vp

s,12m

16:258 þ 0:201 × e0:341 × ð2d10:0785 ×Vp
s, 1217:586Þ

�
�
1 þ 223:0132 2:949 × amax þ 0:999 ×Mw þ 0:0525 ×Vp

s,12m

16:258 þ 0:201 × e0:341 × ð0:0785 ×V
p
s, 12m17:586Þ

�6sɛrd ð4Þ

where d 5 depth in meters, measured at the midpoint of the critical
layer (Table S1); Vs;12:2m 5 average Vs in the upper 12.2 m (40 ft)
of the soil column; and amax 5 PGA in units of gravity. Almost the
entire global data set of liquefaction performance sites are at depths
shallower than 20 m (Table S1). The standard deviation for rd for
d, 12:2 m is

sɛrdðdÞ ¼ d0:850 × 0:0198 ð5Þ

and for d $ 12:2 m

sɛrd ðdÞ ¼ 12:20:850 × 0:0198 ð6Þ

Themodel parameters for the CSR [Eq. (3)] used in the Bayesian
analysis were modeled as the first two terms of a first-order Taylor
series expansion about the mean, here presented as Eq. (7) for the
means (Moss et al. 2006), and Eq. (8) for the mean-normalized
variance d, and the COV r

mCSR ≅ 0:65 ×
ma max

g
×
msv

ms0v
×mrd ð7Þ

dCSR
2 ≅ da max

2 þ drd
2 þ dsv

2 þ ds0
v

2 2 2 × rsvs0
v
× dsv × ds0

v

ð8Þ

The CSR includes two clearly correlated variables—the total and
effective stresses—requiring Eq. (8) to include the COV term
(rsvsv0 ). Two other terms that are poorly correlated, rd and amax, are
treated as uncorrelated, as well as the other variables that comprise
CSR. The COV of mamax is based on the quality of the locally
available strong motion data. The COV of the moment magnitude is
estimated based on a histogram of values reported in the literature
(Moss 2003;Moss et al. 2006). The COV of rd is estimated based on
a statistical analysis of ground response results byCetin et al. (2004).
The COVof the total and effective vertical stresses are accounted for
as follows: a deterministic estimate is made of the mean unit weight
of the soil above and below the water table, whose variance is based



on statistical studies and is set at d ≅ 0:1 (Kulhawy and Trautmann
1996). The water table mean is taken as the reported estimated depth
during the seismic event, and the variance is a fixed standard de-
viation of s5 0:3 m. The full extent of the critical layer is used to
calculate the mean and variance of the stresses. The variance is
estimated using a 6-s approach, where the top and bottom depths of
the critical layer are assumed to be three standard deviations away
from the mean: the 6-s range thereby divided by six gives the
standard deviation.

Data Quality Assessment

The case histories were evaluated for seismic demand (CSR) and soil
capacity (Vs1), and then classified according to the quality of the data.
Four classes of data, A through D, were used to group the case
histories, with D being substandard and excluded from the final case
history database. The criteria for the data classes depends on the
standard deviation of the CSR value (dCSR) and the standard de-
viation of the Vs1 value (dVs1) within the critical layer (Table S1).

Of all the case histories investigated and in the literature from 29
earthquakes and spanning 7 decades, 422 achieved Class C or better
and were included in a field case history database (Table S1). The
potential ageing of sands after liquefaction during these past decades
was not addressed in this study. As such, the velocity values cal-
culated directly from the field experiments were used without
adjustments to represent the soil at the time of the earthquake.

Bayesian Analysis

Bayesian updating provides the probabilistic framework for models
that best fit the bounding frontier distinguishing regions of high-
and low-likelihood of liquefaction occurrence. Curves within this
bounding region express a measure of likelihood that initial trig-
gering of liquefaction has, or will, occur. The model for seismic soil
liquefaction is formulated as capacity-minus-load typical of a limit-
state model for single-component structural reliability problems.
The limit-state model for shear-wave velocity (gVs1) used in this
study is

gVs1 ¼ Q1Vs1
Q2 þ Q3 lnðCSRÞ þ Q4 lnðMwÞ

þ Q5 lnðs0
vÞ þ Q6 FC þ ɛ ð9Þ

where Vs1 is computed using Eq. (2); CSR 5 earthquake-induced
CSR; Mw 5 moment magnitude; s0

v 5 effective stress; FC 5 FC
where measured from colocated SPT, CPT, or soil boring;Q1 2Q6

are model parameter terms estimated through Bayesian updating;
and ɛ 5 overall model error term that is treated as a normal random
variable with zero mean and unknown standard deviation. The
formulation of the limit state model [gVs1 in positive-capacity term
(Vs1) and two negative-load terms (CSR,Mw)] is solved through an
iterative Bayesian updating technique for the best-fit model coef-
ficients (Q1,Q2,Q3, etc.) thatmaximize the likelihood function. The
contribution of the remaining limit state function terms s0

v and FC
to either capacity or load is determined by Bayesian updating and is
reflected in the sign of the model parameters. When the model tips
negative, there is some degree of belief that liquefaction failure is
likely. TheBayesian updating process used to solve for theQ and the
standard deviation of ɛ is an iterative process to identify the best fitQ
for each model parameter that results in minimized model error. The
region where liquefaction and nonliquefaction data points overlap
can be thought of as amixing zone and is the region likely for finding
the threshold of liquefaction triggering.

Each variable in the limit-state function (CSR, Vs1, etc.) is
assessed for their distribution statistics. The mean and COV are
determined for the variables needed to compute CSR and Vs1 for
each of the sites reported in Table S1. Then, a composite COV for
CSR is estimated using a first-order Taylor series expansion about
the mean. This allows for the determination of the sample mean and
standard deviation for CSR and Vs1.

Bayesian updating involves forming a likelihood function,
selecting a noninformative prior distribution, calculating a normal-
izing constant, and then calculating the posterior statistics (Der
Kiureghian 1999; Cetin et al. 2000; Moss et al. 2003). Starting with
a noninformative prior distribution allows for the computation of an
unbiased posterior distribution (Box and Tao 1992). The analysis is
performed using the Bayesian updating formula

f ðQÞ ¼ c × LðQÞ × pðQÞ ð10Þ

whereQ5 set of model parameters Q1, Q2, etc.; f ðQÞ 5 posterior
distribution; c5 normalizing constant; LðQÞ5 likelihood function;
and pðQÞ 5 noninformative prior distribution.

The likelihood function for liquefaction triggering is the product
of the probabilities of observing k liquefied sites and n 2 k non-
liquefied sites [Eq. (11)], where3 is the model variables (Vs1, CSR,
Mw, etc.),Q are the model parameters, andbgð3 ,QÞ is the limit state
model

Lð�;Q, ɛÞ}P

�
∩
k

i¼ 1

hbgð�i,QiÞ þ ɛi # 0
i

� ∩
n

i¼ kþ1

hbgð�i,QiÞ þ ɛi . 0
i�

ð11Þ

Combining the uncertainties from the variables and model error
term into a cumulative error term, sɛ, the likelihood function can be
written in the form of Eq. (12)

Lð�,Q,sSÞ} ∏
k

i¼1
F

"
2
bgð�i,QÞ
sSi

#w,liquefied

× ∏
n

i¼kþ1
F

"bgð�i,QÞ
sSi

#w,nonliquefied ð12Þ

where F 5 standard normal cumulative distribution function.
The global data set of observed liquefaction field performance is

dominated by positive liquefaction observations, with a minority of
tested sites having not liquefied (Fig. 4). This disproportionate
sampling results in a bias that directly impacts the statistical analysis
and can produce a skewed prediction, if unchecked. Cetin et al.
(2004) investigated this type of bias and produced a methodology to
account for what is called choice-based sampling bias, developing
a weighting factor (w; wliquefied=wnonliquefied) to be applied to the
likelihood function of Eq. (11). Based on the work of Cetin et al.
(2004) and Moss et al. (2006), and consensus of the coauthors of
this study, a nonliquefied point weighting factor of 1.5 was used in
this study.

Liquefaction probabilities are estimated through a summation of
the probabilities of all possible combinations of parameters that will
define the limit equation, integrated over the liquefaction domain
where the limit state parameter g in Eq. (9) is less than or equal to
zero (Moss et al. 2006). Liquefaction probabilities are generated by a
mean-value first-order second-moment (MVFOSM) approximation
method, and assessed for quality using more accurate first- and
second-order reliability methods (FORM and SORM) and Monte



Carlo simulations as implemented in the programCALREL (Liu et al.
1989).

Shear-Wave Velocity Liquefaction
Assessment Procedure

The global data set is processed to assess the mean and standard
deviation of the parameters used to compute seismic demand (CSR)
and soil capacity (Vs1). Bayesian updating solved for the optimum
limit state function model parameters Q1 2Q6, which minimized
the model error term, ɛ, and the cross correlation of the independent
variables. The model solution is presented in Eq. (13).

A twofold procedure is used to compute the final form of the
governing equation. Lack of FC data at many colocated borehole,

SPT, and CPT sites required that the limit state model first be
evaluated with the FC coefficient fixed at zero. The model coef-
ficients were determined for Vs1, CSR, MW , and s0

vo from the entire
data set as presented in Table S1. In the second follow-up analysis,
these coefficients were fixed, and the model coefficient for FC was
determined, which produced the lowest model error for the portion
of the data set with FC data.

The cumulative normal distribution, F for Eq. (13) is used
to develop the probability models for liquefaction based on the
Vs1 [NORMDIST(PL,0,1,TRUE) function in Microsoft Excel;
pnorm(argument,0,1) in R (R Core Team 2012); and normcdf
(argument,0,1) in MATLAB], and is used to calculate the proba-
bility of liquefaction (PL) and the cyclic resistance ratio (CRR)

PL ¼ F

(
2

h
ð0:0073 ×Vs1:Þ2:8011 2 1:946 × lnðCSRÞ2 2:6168 × lnðMwÞ2 0:0099 × lnðs0

voÞ þ 0:0028 × ðFCÞ
i

0:4809

)
(13Þ

and

CRR ¼ exp

(h
ð0:0073 ×Vs1Þ2:80112 2:6168 × lnðMwÞ2 0:0099 × lnðs0

voÞ þ 0:0028 × FC2 0:4809 ×F21ðPLÞ
i

1:946

)
ð14Þ

Contours of probability of liquefaction for the new correlation are
plotted in Fig. 4, where the Vs1 is plotted against the equivalent
uniform CSR* forMw 5 7:5, and where a duration weighting factor
(DWF) is applied to the effective stress normalized event CSR. The
adjustment of CSR to CSR* is done by scaling the computed CSR to

compensate for the longer or shorter duration of shaking relative to
an equivalent Mw 5 7:5 event (Fig. 5).

CSR� ¼ CSRMw57:5,s0vo51atm ¼ CSR=ðDWF ×Ks): ð15Þ
In a previous study by the authors (Cetin et al. 2004), an analysis

of Ks was done to assess the effect of high-effective overburden
pressures of s0

vo . 2:0 atm on liquefaction susceptibility. This
study’s data set is inappropriate for the evaluation ofKs for effective
stress . 200 kPa, because the mean vertical effective stress of the
sites is 60.2 kPa (0.6 atm), and the entire catalog of liquefaction
investigation sites is shallower than 22 m and 180 kPa (1.8 atm).
Given a 4-smodel of s0

vo, Ks models would vary only from 0.95 to

Fig. 4. Plot showing means of field case histories of liquefaction (solid
circles) and nonliquefaction (open circles) and new probabilistic cor-
relation curves; the recommended deterministic curve from this study is
a factor of safety ðFSÞ5 1:17 and corresponds with a PL 5 15%; the
PL 5 50% corresponds with a FS of 5 1.0

Fig. 5. Comparison of duration weighting factors from this study and
previous models



1.0. As such, the results of this study are presented in terms of CSR*

that include Ks set to a fixed value of 1.0. The open-and-closed
circles in Fig. 4 are the mean values of the probability distributions
for CSR* and Vs1 for the individual case histories of the non-
liquefaction and liquefaction observations in Table S1, respectively.
The curves represent probability of liquefaction PL contours of 5,
15, 50, 85, and 95%.

For the deterministic assessment of liquefaction susceptibility,
similar to the intent of models developed in the 1990s (Robertson
et al. 1992; Kayen et al. 1992; Lodge 1994; Andrus and Stokoe
2000), the writers recommend the PL 5 15% contour for use as the
single deterministic boundary for Vs1-based liquefaction evaluation
(PL 5 15% in Fig. 4). The PL 5 15% contour adheres to the original
intent of Seed and Idriss (1971) to have inherent conservatism in the
boundary. The deterministic factor of safety against triggering of
seismic soil liquefaction is computed as the ratio of the soil capacity
to resist liquefaction at PL(15%), CRR,PL(15%), and the corre-
sponding seismic demand (CSR)

FSliq ¼ CRRPLð15%Þ
CSR

ð16Þ

The factor of safety can be determined either for the given earth-
quake magnitude and effective overburden stress or from values of
CRR and CSR converted to the reference condition of Mw 5 7:5,
s0
vo 5 1 atm.

Earthquake Duration Weighting Factor

The data set from this study allows for assessment of the DWF for
moment magnitude based on the results of the mean values of the
limit state function. In the literature, DWF has also been referred to
as magnitude scaling factors (MSF). Evaluation of the effect ofMw

from Eq. (13) on duration weighting using the parameter mean
values results in the following equation:

DWF ¼ 15M21:342
w ð17Þ

The duration-weighting model from this study that was built from
Eq. (13) is plotted in Fig. 5 and is presented with those of previous
studies. Themodel is valid for magnitudes 5:5,Mw , 9:0, the range
of earthquakes in our data set. The newdurationweighting factor from
this study is in closest agreementwith themodels ofCetin et al. (2004)
and Zhou and Chen (2007), and falls below Idriss and Boulanger
(2008) and the lower boundary proposed by the NCEER Workshop
model (Youd et al. 2001). The DWFs in Fig. 6 are recommended for
general usage to model magnitude dependent boundary curves
ranging between magnitudes 5.5 and 8.5.

Adjustment for the Influence of Fines

The impact of FC in liquefaction engineering, in general, has three
potential avenues for assessment: (1) intergranular soil mechanics,
(2) field penetration measurements (SPT, CPT, etc.), and (3) low-
strain measurements using Vs. As nonplastic FC increases, the void
spaces are in-filled, thereby reducing a loose granular soil’s capacity
for contracting and generating excess pore pressures. This is valid up
to a FC of 25–35%, at which point the fines take over the matrix and
control the mechanical behavior (Thevanayagam 1998).

With penetration measurements, an increase in nonplastic fines
decreases the frictional resistance on the cone or split-spoon. In-
creased FC also results in increased excess pore pressures because

of the lower permeability, and therefore, decreased effective stress
on the penetration interface. The response moves toward more of an
undrained response compared with the generally drained response
for clean sands. This effect is particularly true for cone measure-
ments. Thus, the fines effect on penetration-based liquefaction
correlation boundaries is strong (Polito 1999).

The last influence, which is specific to Vs, is because it is a small
strain test. There is little difference between the Gmax of sand and
silty or clayey sand; these materials, when undergoing strain, all
exhibit generally the same initial stiffness (Iwasaki and Tatsuoka
1977). Therefore, Vs measurements may have difficulty picking up
small differences in FC.

The first two components, reduced friction and excess pore-water
pressure, are well represented in penetration-based triggering cor-
relations. With noninvasive Vs measurements, the second compo-
nent is not present, and thus, the test only measures the frictional and
modulus components. This renders Vs measurements relatively
insensitive to FC. The effect of this insensitivity indicates that the
uncertainty regarding FC is small with regard to the assessment of
liquefaction resistance. From the data set in Table S1, an analysis of
a 26% subset of the sites (109 sites) with FC data allowed for the
estimation of the model coefficient for the percentage of FC. The
coefficient for the independent variable FC that minimizes model
error is 0.0028, indicating that there is a small positive influence of
soil fines on liquefaction resistance (Fig. 7).

The probabilistic boundary curve for PL 5 50% (for Mw 5 7:5,
s0
vo 5 100 kPa) is shown in Fig. 7 to illustrate the effect of the

correlations regressed coefficient for FC. The boundary shift as-
sociated with a fines adjustment from ,5 to 35% has a maximum
value of 5 m/s—an adjustment consistent with previous studies
(Andrus and Stokoe 2000; Zhou and Chen 2007). This is a small
adjustment in the assessment of liquefaction; therefore, uncertainties
associated with fines are fairly minor in comparison with other
aspects of the analysis, namely, the estimation of uncertainty as-
sociated with CSR* and Vs1.

Comparison with Previous Relationships

The 15% probability contour for initial liquefaction from this study
is used as the deterministic boundary curve (FS5 1:17), and is
plotted in Figs. 1 and 8 against deterministic boundaries from the

Fig. 6. Correlation curves for magnitudes 5.5–8.5 (PL 5 15%;
s0
vo 5 100 kPa)



previous studies of Robertson et al. (1992), Kayen et al. (1992),
Lodge (1994), Andrus and Stokoe (2000), and Zhou and Chen
(2007) for clean sand. The previous deterministic curves are plotted
with the CSR range of the original published paper. For all CRR
levels, the comparison shows the Vs boundary zone in the previous
relationships of Lodge (1994) and Zhou and Chen (2007) are close
and somewhat lower than the proposed relationship. The model of
Zhou and Chen (2007) is a departure from the previous Vs studies,
in that their study characterized the loading conditions at high
CSR levels in a controlled laboratory setting. Although the
linkage between field shear velocities and laboratory studies is
problematic because of the differences in sedimentation history
and stress history, laboratory studies can reveal important
characteristics about the shape of the liquefaction boundary. Zhou
and Chen (2007) found that for CSR* above 0.5–0.6, liquefaction
was induced in noncemented samples with Vs1 values as high as
240 m/s. Before this field study, the field data in the region of

CSR� . 0:32 and Vs1 . 185 m/s was entirely unpopulated for
positive-liquefaction sites. The projection of the Andrus and Stokoe
(2000) correlation curves above CSR� 5 0:32 involved extrapolation
based on indirect SPT-Vs1 relationships. Cataloged moderately stiff
soil (Vs1 . 200 m/s) liquefaction sites subjected to high CSR* remain
an uncommon event among the global data set of liquefaction per-
formance sites. Among the 422 case histories, only 23 sites fall into
this zone.

This study, those of the early 1990s (Robertson et al. 1992;
Kayen et al. 1992; Lodge 1994), and the recent study of Zhou and
Chen (2007), depart from the limiting upper-bound velocity form
proposed by Andrus and Stokoe (2000). The recent proposed lower-
bound curve of Zhou and Chen (2007) and the 15% probability
correlation curve proposed here are plotted along with the Andrus
and Stokoe (2000) curve for clean sand in Fig. 8. These curves are
plotted against the data available in the late 1990s [Fig. 8(a)], and
against this study’s data set [Fig. 8(b)]. In Fig. 8(a), the Andrus and
Stokoe (2000) correlation bounds point to representing liquefaction
observations to approximately a CSR level of 0.3. At seismic
loading above 0.3, the boundary was not controlled by liquefaction
observations in the data but, rather, indirect SPT-Vs relationships. In
Fig. 8(a), the proposed boundary curve and that of Zhou and Chen
(2007) fall outboard of the Andrus and Stokoe (2000) boundary at
CSR levels above 0.2. In the intervening 10 years, the population of
investigated sites has grown nearly an order of magnitude, and in
Fig. 8(b), it can be seen that 14 points cross beyond the Andrus and
Stokoe (2000) clean sand curve into a frontier previously deemed
nonliquefiable. The slope in the boundary curve from this study at
high CSR is consistent with the new global data set, as well as the
form of the bounding curves for SPT (Cetin et al. 2004) and CPT
(Moss et al. 2006). The new global data set and laboratory studies
indicate that the concept of a limiting upper bound normalized ve-
locity Vs1 of 215 m/s for seismic soil liquefaction is unconservative.

An assessment of the probability of liquefaction based on Vs was
presented by Juang et al. (2002). In Fig. 9, the recommended
probabilistic curves from this study are plotted against those of Juang
et al. (2002). The principal difference between these studies was the
limited data set in 2002. It can be seen that the general shape of the
logistic regression analysis of Juang et al. (2002)was not constrained
to conform to the limiting upper bound normalized velocity of

Fig. 7. Adjustment curves for fines content (FC)5 0% and 35% fines
(PL 5 50%, Mw 5 7:5, s0

vo 5 100 kPa)

Fig. 8. New data set with recent proposed correlation curves, and those of Andrus and Stokoe (2000): (a) data set of Andrus and Stokoe (2000) and
(b) recent proposed correlation curves



215m/s, and has similar general shape characteristics as the curves in
this study. The other characteristic of boundaries presented in this
study are their tightening, the result of incorporationof thedistributions
of the parameters in the multifold integration. The tightening of the
probabilistic boundary curves is consistent with the tightening ob-
served in the SPT and CPT analyses of Cetin et al. (2004) and Moss
et al. (2006) and is the result of refinements in the handling and
processing of the limit-state model parameters and their distributions.

Summary

This paper presents the development of new generalized correlations
for Vs1-based evaluation of seismically-induced soil liquefaction.
Probabilistic models for initiation of soil liquefaction are developed
within a Bayesian model framework and structural reliability
models. The probabilistic analysis involves estimation of the uncer-
tainties of the relevant limit state equation variables by characterizing
their means and dispersion at each observation site, as well as the
estimation of the overall Bayesian model error.

The new correlations rely on the probabilistic foundation pro-
vided by the previous studies of the writers for the treatment of rd ,
mean and dispersion of parameters used to compute CSR, and the
DWF. A noteworthy product of this study is a new model of DWF
that is a direct result of the limit state model solution. The DWF
presented here is closest to that proposed by Cetin et al. (2004) and
Zhou and Chen (2007).

The new Vs1 correlations employ a global database of field
performance case histories collected over an 11-year period spe-
cifically to overcome the limitations of previous data sets. The
guiding locations for collection of this new data set were the
comprehensive SPT and CPT catalogs of the previously noted
studies, and augmented by scores of independent site investigation
reports, as well as better understanding and site access at many
locations in China, Taiwan, and Japan. In processing these data and
those derived from the literature, screening was done to remove sites
where parameter uncertainties were unacceptably large. The new
correlations provide significant insight into the assessment of
seismic soil liquefaction at high CSR values, specifically, that there
is no basis for limiting the upper bound of Vs1 at 215 m/s for liq-
uefaction sites. The development of generalized Vs1-liquefaction
correlations requires the cautionary understanding that some soils
with unusual soil-specific void ratio–relative density character-
istics or bonding may exhibit liquefaction behavior that differs
from the generalized proposed relationships. The application of
Bayesian analysis and structural reliability methods results in
reduced overall model uncertainty compared with previous sto-
chastic analyses.
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