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Shear waves in a fluid saturated elastic plate
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Abstract. In the present context, we consider the propagation of shear waves
in the transverse isotropic fluid saturated porous plate. The frequency spectrum
for SH-modes in the plate has been studied. It is observed that the frequency of
the propagation is damped due to the two-phase character of the porous medium.
The dimensionless phase velocities of the shear waves have also been calculated
and presented graphically. It is interesting to note that the frequency and phase
velocity of shear waves in porous media differ significantly in comparison to that
in isotropic elastic media.
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1. Introduction

The dynamic behaviour of structured porous media is of great concern in many fields, such
as seismology, earthquake engineering and fluid dynamics. Porous media are composite and
multiphase. Their composite nature is due to the fact that the solid fraction is formed of
grains whose chemical or crystalline features are often different and they are also multiphase
because the solid fraction is always associated with a gas or liquid phase that occupies the
voids between the grains. The microscopic heterogeneity of the porous medium induces a
complex macroscopic physical behaviour sensitive to slight variations in fluid content or of
the solid structure.

The propagation of Love waves in a fluid-saturated porous anisotropic layer have been
discussed by Konczak (1989). Deresiewicz (1961) was the first who, using the theory of Biot
(1956) for the wave propagation in a statistically isotropic fluid-saturated porous medium,
studied the propagation of Love waves in a porous layer resting on an elastic, homogeneous
and isotropic semi-infinite space. Chattopadhyay & De (1983) investigated the propagation
of Love waves in an isotropic, fluid-saturated porous layer with irregular interface between
the layer and the lower homogeneous and isotropic half-space. Chattopadhyayet al (1986)
studied the propagation of Love waves in a homogeneous, isotropic porous layer overlying an
inhomogeneous half-space generated by a point source at the interface of the layer and half-
space. Chattopadhyay & Bandopadhyay (1986) studied the shear waves in infinite monoclinic
crystal plate and discussed the ferquency spectrum and the phase velocity. Chattopadhyay
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Figure 1. Geometry of the
problem.

& Choudhury (1995) studied the propagation of magneto-elastic shear waves in an infinite
self-reinforced plate.

In this paper, we have studied the propagation of shear waves in an infinite fluid-saturated
porous transverse-isotropic plate (figure 1). The frequency spectra for SH-modes in the plate
are drawn graphically and show that the branches are parabolas. We have also discussed the
phase velocities of SH-modes in porous media and observed that the magnitude of the phase
velocity decreases as the wave number increases, which means that the thickness of the layer
becomes relatively large and the wave propagates in an unbounded medium.

2. Porous transversely isotropic layer

The equations of motion for the fluid-saturated layer in the absence of body forces are (Biot
1956, 1962)

σij,j = ρ11üi + ρ12Üi − bij (U̇j − u̇j ), (1)

σ,i = ρ12üi + ρ22Üi − bij (U̇j − u̇j ), (2)

whereσij are the components of stress tensor in solid skeleton.σ = −fp is the reduced
pressure of the fluid (p is the pressure in the fluid, andf is the porosity of the medium),ui are
the components of the displacement vector of the solid skeleton andUi are those of the fluid.
The dynamic coefficientsρ11, ρ22, ρ12 taken into account the inertia effects of the moving
fluid and are related to the mass densities of the solidρs and fluidρf by the equations (Biot
1956),

ρ11 + ρ12 = (1 − f )ρs, ρ12 + ρ22 = fρf ,
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so that mass density of the bulk material is

ρ = ρ11 + 2ρ12 + ρ22 = ρs + f (ρf − ρs).

The dynamic coefficients, moreover, obey the inequalities (Biot 1956)

ρ11 > 0, ρ22 > 0, ρ12 < 0, ρ11ρ22 − ρ2
12 > 0.

The components of the flow resistance tensorb, for the transverse-isotropy are (Chattopadhyay
& Bandopadhyay 1986; Chattopadhyay & Choudhury 1995)

[
bij

] =

 b11 0 0

0 b11 0
0 0 b33




The stress-strain relations for the transverse-isotropic fluid-saturated porous layer are (Biot
1955, 1962; Achenbach 1976)




σ11

σ22

σ33

σ23

σ31

σ12

σ




=




2N + A A F 0 0 0 M ε11

A 2N + A F 0 0 0 M ε22

F F 2C 0 0 0 Q ε33

0 0 0 2G 0 0 0 ε23

0 0 0 0 2G 0 0 ε31

0 0 0 0 0 2N 0 ε12

M M Q 0 0 0 R E




, (3)

where εij = 1/2
(
ui,j + uj,i

)
, E = div U = Ui,j , ε = εk,k, (4)

andA, F, C, G, M, Q, N, R are the material constants.
On substituting (3) and (4) into (1) we obtain the following system equations

(Aε + ME),1 + [
N

(
u1,1 + u2,2

) + (G + F − A) u3,3
]
,1

+ [
N

(
u1,11 + u1,22

) + Gu1,33
] = ρ11ü1 + ρ12Ü1 − b11

(
U̇1 − u̇1

)
,

(Aε + ME),2 + [
N

(
u1,1 + u2,2

) + (G + F − A) u3,3
]
,2

+ [
N

(
u2,11 + u2,22

) + Gu3,33
] = ρ11ü2 + ρ12Ü2 − b11

(
U̇2 − u̇2

)
,

GE,3 + [
(F + G)

(
u1,1 + u2,2

) + Cu3,3
]
,3 + [

G
(
u3,11 + u3,22

) + Cu3,33
]

= ρ11ü3 + ρ12Ü3 − b33
(
U̇3 − u̇3

)
, (5)

and

(Mε + RE),1 + (Q − M) u3,31 = ρ11ü1 + ρ22Ü1 + b11
(
U̇1 − u̇1

)
,

(Mε + RE),2 + (Q − M) u3,32 = ρ11ü2 + ρ22Ü2 + b11
(
U̇2 − u̇2

)
,

(Mε + RE),3 + (Q − M) u3,33 = ρ11ü3 + ρ22Ü3 + b11
(
U̇3 − u̇3

)
. (6)

3. Formulation and solution of the problem

We consider the transverse-isotropic fluid-saturated porous plate−a < z < a (figure 1) in the
medium. Thex-axis is chosen parallel to the plate in the direction of propagation of the wave.
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Using the conventional shear-wave conditions

u1 ≡ 0, u2 = u2(x, z, t), u3 ≡ 0,

U1 ≡ 0, U2 = U2(x, z, t), U3 ≡ 0.
(7)

Equations (5) and (6) are reduced to the form

N
∂2u2

∂x2
+ G

∂2u2

∂z2
= ∂2

∂t2
(ρ11u2 + ρ12U2) − b11

∂

∂t
(U2 − u2) ,

0 = ∂2

∂t2
(ρ12u2 + ρ22U2) + b11

∂

∂t
(U2 − u2) . (8)

By eliminating from (8) the functionsu2 andU2 we get

[
N

∂2u2

∂x2
+ G

∂2u2

∂z2
−

{
ρ11∂

2
t + b11∂t − (ρ12∂

2
t − b11∂t )

2

ρ22∂
2
t + b11∂t

}]
(u2, U2) = 0, (9)

where∂t = ∂/∂t .
For the wave changing harmonically with time, we take

u2(x, z, t) = u2(z)e
i(kx−ωt),

U2(x, z, t) = U2(z)e
i(kx−ωt),

(10)

wherek is the wave number and w is the circular frequency.
On substituting (10) into (9), we obtain

(
∂

∂z2
+ χ2

1

)
(u2, U2) = 0, (11)

whereχ2
1 is a complex quantity and is defined by

χ2
1 = ζ 2 − (N/G)k2, (12)

and ζ 2 = α1 + iα2, k
2 = a1 + ia2, a1 ≥ 0, a2 ≥ 0, (13)

α1 = (Fω2/C2
G), α2 = R(ω2/C2

G), (14)

F = F(ω) = 1 + �2γ22C1γ22

1 + (�γ22)2C1
, (15)

R = R(ω) = (γ22 − C1)�

1 + (�γ22)2

γ22

C1
, (16)

C1 = γ11γ22 − γ 2
12, γkl = ρkl/ρ, k, l = 1, 2,

C2
G = G/ρ̄, ρ̄ = ρ11 − (ρ2

12/ρ22), � = ρω/b11,

� is the dimensionless frequency andCG is the velocity of shear waves in the porous plate.
The solutions of (11) are

u2(x, z, t) = (A1 cosχ1z + A2 sinχ1z)e
i(kx−ωt),

U2(x, z, t) = (Ā1 cosχ1z + Ā2 sinχ1z)e
i(kx−ωt). (17)
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The relation between the constantsĀj andAj(j = 1,2) provided by (8) is

Āj = −(βr − iβi)Aj , (18)

where βr = γ11γ22�
2 − 1

1 + (�γ22)2
, βi = (γ12 + γ22)�

1 + (�γ22)2
. (19)

The boundariesz = ±a are free from traction, i.e.

σ32 = 0, at z = ±a. (20)

Inserting (17) in (20), we get

− A1 sinχ1a + A2 cosχ1a = 0,

A1 sinχ1a + A2 cosχ1a = 0,
(21)

and − Ā1 sinχ1a + Ā2 cosχ1a = 0,

Ā1 sinχ1a + Ā2 cosχ1a = 0. (22)

Equations (21) can be satisfied in two ways, either

A1 = 0 and cosξ1a = 0,

or A2 = 0 and sinξ1a = 0. (23)

Similarly we solve (22).
For an arbitrary specified value of the wave numberk, (23) yields an infinite number of

solutions for the circular frequencyw. A specific wave motion of the layer, called mode of
propagation, corresponds to each frequency satisfying (17).

If A1 = 0, the expression foru2(x, z, t) shows that the displacement is anti-symmetric
with respect to the mid-plane of the layer. The displacement is symmetric ifA2 = 0.

In both cases frequencies follow from

χ1a = mπ/2 (24)

wherem = 0, 2, 4 . . . (for symmetric modes) andm = 1,3,5 . . . (for anti-symmetric
modes).

The real part of (24) is

�1 =
(

m2 + (N/G)ξ1

F − R(a2/a1)

)1/2

,
C

CG

=
(

(m2/ξ1) + (N/G)

F − R(a2/a1)

)1/2

(25)

and imaginary part is

�1 =
(

(N/G)ξ1

F + R(a1/a2)

)1/2

,
C

CG

=
(

(N/G)

F + R(a1/a2)

)1/2

(26)

Taking the modulus from (25) and (26) we have

|�1| =
(

m2+(N/G)ξ1

F−R(a2/a1)
+ (N/G)ξ1

F+R(a1/a2)

)1/2

∣∣∣ C
CG

∣∣∣ =
(

(m2/ξ1)+(N/G)

F−R(a2/a1)
+ (N/G)

F+R(a1/a2)

)1/2 (27)

where�1

(
= (

C2ξ1/C2
G

)1/2
)
, andC/CG andξ1

(= 4a2a1/π
2
)

are dimensionless frequency,

phase velocity and wave number respectively.
In the isotropic caseξ1 is unity.
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Figure 2. Frequency spectrum for
SH-modes whenN/G = 1.

4. Numerical calculation and discussion

The frequency and the phase velocity shown in (27) are computed numerically fora2/a1 = 0.1
andN/G = 1, 2, 3 at different values ofξ1 and for different modes of propagation and are
presented in figures 1–8 and tables 1 and 2.

The frequency equation in|�1| − ξ1 plane yields an infinite number of continuous curves
or branches, each corresponding to an integral value ofm. A branch displays the rela-
tionship between the dimensionless frequency|�1| and the dimensionless wave numberξ1

for a particular mode of propagation. The collection of branches constitutes the frequency
spectrum.
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Figure 3. Frequency spectrum for
SH-modes whenN/G = 2.
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Figure 4. Frequency spectrum for SH-
modes whenN/G = 3.
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Figure 5. Phase velocity against wave
number whenN/G = 1.
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Figure 6. Phase velocity against wave
number whenN/G = 2.
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Figure 7. Phase velocity against wave
number whenN/G = 3.

For identification of the modes, we call the symmetric SH-modes(m = 0, 2, 4, . . . . . . . . . ),
the S-modes. Similarly the anti-symmetric SH-modes(m = 1,3,5, . . . . . . . . . )are called the
AS-modes.

The frequency spectrum forN/G = 1 is shown in figure 2. Asξ1 increases, the|�1|
also increases. It is noted that when theN/G = 1, the frequency spectrum for SH-
modes behaves as a homogeneous infinite monoclinic crystal plate (Chattopadhyay &
Bandopadhyay 1986). The frequency spectra forN/G = 2, 3 are shown in figure 3 and
figure 4.

In figures 2, 3 and 4, whenN/G = 1, 2, 3 respectively, it is observed that as mode increases
the frequency spectrum increases and shows significant increase for the higher modes as
compared to the zeroth mode.
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Figure 8. Phase velocity against wave
number whenm = 2.
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Table 1. Phase velocity against wave number.

ξ1
N
G

∣∣∣ C
CG

∣∣∣
for m = 0.05 0.25 0.45 0.65 0.85 1.05

1 0 0.878839 0.878839 0.878839 0.878839 0.878839 0.878839
1 7.039378 3.244758 2.488456 2.127135 1.90835 1.759329
2 13.99622 6.308466 4.738415 3.972624 3.500017 3.172362
3 20.97135 9.411548 7.039378 5.877369 5.157259 4.655994
4 27.95103 12.52477 9.353782 7.798069 6.832526 6.159419

2 0 1.242866 1.242866 1.242866 1.242866 1.242866 1.242866
1 7.094026 3.361668 2.639085 2.301534 2.100989 1.96662
2 14.02379 6.369388 4.819225 4.068673 3.608667 3.291844
3 20.98974 9.452498 7.094026 5.942712 5.231604 4.738211
4 27.96484 12.55557 9.394977 7.847435 6.888814 6.221801

3 0 1.522193 1.522193 1.522193 1.522193 1.522193 1.522193
1 7.148256 3.474647 2.781569 2.463619 2.277392 2.154055
2 14.0513 6.429733 4.898703 4.162506 3.71414 3.407139
3 21.00813 9.493258 7.148256 6.007344 5.304907 4.819025
4 27.97865 12.58629 9.435992 7.896493 6.944647 6.243563

Table 2. Frequency spectrum against wave number.

ξ1
N
G

|�1| for
m = 0 1 2 3 4 5

1 0 0 0.878839 1.242866 1.522193 1.757678 1.965143
1 1.561738 1.792033 1.995931 2.180848 2.351267 2.510142
2 3.123475 3.244758 3.361668 3.474647 3.584066 3.690242
3 4.685213 4.766925 4.84726 4.926286 5.004063 5.08065
4 6.246951 6.308466 6.369388 6.429733 6.489516 6.548754

2 0 0 1.242866 1.751678 2.152707 2.485732 2.779132
1 1.561738 1.995931 2.351267 2.659543 2.935624 3.187883
2 3.123475 3.361668 3.584066 3.793447 3.991862 4.18087
3 4.685213 4.84726 5.00406 5.1561 5.30378 5.447458
4 6.246951 6.369388 6.489516 6.60746 6.723336 6.837248

3 0 0 1.522193 2.152707 2.636517 3.044387 3.403728
1 1.561738 2.180848 2.659543 3.06435 3.421596 3.744915
2 3.123475 3.474647 3.793447 4.087459 4.361696 4.619682
3 4.685213 4.926286 5.1561 5.376099 5.587442 5.791078
4 6.246951 6.429733 6.60746 6.780531 6.949294 7.114053

Figures 5, 6, 7 show that|(C/CG)| decreases as the wave number increases. It is observed
that phase velocities are less in porous media than for the elastic isotropic case (Achenbach
1976) forN/G = 1, 2, 3 respectively. AsN/G increases the phase velocity increases as
shown in figure 8.
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It is concluded from the above study that in porous medium the frequency and phase
velocity both differs significantly in comparison to that of isotropic elastic medium.

The authors are grateful to Prof S Dey of the Indian School of Mines, Dhanbad for his
comments on this paper. The authors also thank Dr S K Mukherjee for his interest and
encoragement.
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