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ABSTRACT

We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a
collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the
black hole in the Galactic center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A
fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure
tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to
the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by
kinetic instabilities. Such instabilities provide an effective “collision” rate in a collisionless plasma and lead to more
MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma,
with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to
the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collision-

less plasma.

Subject headings: accretion, accretion disks — methods: numerical — MHD — plasmas — turbulence

1. INTRODUCTION

Following the seminal work of Balbus & Hawley (1991),
numerical simulations have demonstrated that magnetohydrody-
namic (MHD) turbulence initiated by the magnetorotational insta-
bility (MRI) is an efficient mechanism for transporting angular
momentum in accretion disks (e.g., Hawley et al. 1995, hereafter
HGB95; see Balbus & Hawley 1998 for a review). For a broad
class ofastrophysical accretion flows, however, the MHD assump-
tion is not directly applicable. In particular, in radiatively ineffi-
cient accretion flow (RIAF) models for accretion onto compact
objects, the accretion proceeds via a hot, low-density, collision-
less plasma with the proton temperature larger than the electron
temperature (see Narayan et al. 1998 and Quataert 2003 for re-
views). In order to maintain such a two-temperature flow the
plasma must be collisionless, and there are many cases in which
the Coulomb mean free path is many orders of magnitude larger
than the system size. Motivated by the application to RIAFs, this
paper studies the nonlinear evolution of the MRI in a collision-
less plasma, focusing on local simulations in the shearing box
limit.

Quataert et al. (2000, hereafter QDHO02) and Sharma et al.
(2003, hereafter SHQO3) showed that the linear dynamics of the
MRI in a collisionless plasma can be quite different from that in
MHD. The maximum growth rate is a factor of ~1.7 larger and,
perhaps more importantly, the fastest growing modes can shift to
much longer wavelengths, giving direct amplification of long-
wavelength modes. Dynamical instability exists even when the
magnetic tension forces are negligible because of the anisotropic
pressure response in a collisionless plasma. In related work using
Braginskii’s anisotropic viscosity, Balbus (2004) has termed
this modification of the MRI in the low-collisionality limit the
“magnetoviscous’ instability (see also Islam & Balbus 2005).
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In this paper, we are interested in simulating the dynamics of a
collisionless plasma on length scales (~disk height) and time-
scales (~orbital period) that are very large compared to the micro-
scopic plasma scales (such as the Larmor radius and the cyclotron
period). Since the ratio of the size of the accretion flow to the pro-
ton Larmor radius is ~10% for typical RIAF models, direct par-
ticle methods such as PIC (particle in a cell), which need to
resolve both of these scales, are computationally challenging and
require simulating a reduced range of scales. Instead we use a
fluid-based method to describe the large-scale dynamics of a col-
lisionless plasma (“kinetic MHD,” described in § 2). The key dif-
ferences with respect to MHD are that the pressure is a tensor
rather than a scalar, anisotropic with respect to the direction of
the local magnetic field, and that there are heat fluxes along mag-
netic field lines (related to Landau damping and wave-particle
interactions). The drawback of our fluid-based method is, of
course, that there is no exact expression for the heat fluxes if only
a few fluid moments are retained in a weakly collisional plasma
(the “closure problem”). We use results from Snyder et al. (1997,
hereafter SHD97) who have derived approximations for the heat
fluxes in terms of nonlocal parallel temperature and magnetic
field gradients. These heat flux expressions can be shown to be
equivalent to multipole Padé approximations to the Z-function in-
volved in Landau damping. This approach can be shown to con-
verge as more fluid moments of the distribution function are kept
(Hammett et al. 1993), just as an Eulerian kinetic algorithm
converges as more grid points in velocity space are kept. These
fluid-based methods have been applied with reasonable success
to modeling collisionless turbulence in fusion plasmas, generally
coming within a factor of 2 of more complicated kinetic calcula-
tions in strong turbulence regimes (e.g., Dimits et al. 2000; Parker
etal. 1994; Hammett et al. 1993; Scott 2005), although there can
be larger differences in weak turbulence regimes (see Hammett
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et al. 1993; Dimits et al. 2000 and references therein). The sim-
ulations we report on here use an even simpler local approxima-
tion to the heat flux closures than those derived in SHD97. While
not exact, these closure approximations allow one to begin to in-
vestigate kinetic effects with relatively fast modifications of fluid
codes.

In a collisionless plasma the magnetic moment  is an adia-
batic invariant. Averaged over velocity space, this leads to conser-
vation of () = p,/(pB). As a result, pressure anisotropy with
p.1 > p is created as the MRI amplifies the magnetic field in the
accretion flow. This pressure anisotropy creates an anisotropic
stress (like a viscosity!), which can be as important for angular
momentum transport as the magnetic stress (as we show below).
The pressure anisotropy cannot, however, grow without bound
because high-frequency waves and kinetic microinstabilities feed
on the free energy in the pressure anisotropy, effectively providing
an enhanced rate of collisions that limit the pressure tensor an-
isotropy (leading to more MHD-like dynamics in a collisionless
plasma). We capture this physics by using a subgrid model to re-
strict the allowed amplitude of the pressure anisotropy. This sub-
grid model (described in § 2.3) is based on existing linear and
nonlinear studies of instabilities driven by pressure anisotropy
(e.g., Hasegawa 1969; Gary et al. 1997).

The remainder of this paper is organized as follows. In the next
section (§ 2) we describe Kulsrud’s formulation of kinetic MHD
(KMHD) and our closure model for the heat fluxes in a collision-
less plasma. We also include a linear analysis of the MRI in the
presence of a background pressure anisotropy and describe lim-
its on the pressure anisotropy set by kinetic instabilities. In § 3 we
describe our modifications to the ZEUS code to model kinetic
effects. Section 4 presents our primary results on the nonlinear evo-
lution of the MRI in a collisionless plasma. In § 5 we discuss these
results, their astrophysical implications, and future work required
to understand the global dynamics of collisionless accretion disks.

2. GOVERNING EQUATIONS

In the limit that all fluctuations of interest are at scales larger
than the proton Larmor radius and have frequencies much smaller
than the proton cyclotron frequency, a collisionless plasma can be
described by the following magnetofluid equations (e.g., Kulsrud
1983; SHD97):
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where p is the mass density, V'is the fluid velocity, B is the mag-
netic field, F, is the gravitational force, b = B/|B] is a unit vector
in the direction of the magnetic field, and 7 is the unit tensor. In
equation (3) an ideal Ohm’s law is used, neglecting resistivity. In
equation (4), P is the pressure tensor with different perpendicular
(p1) and parallel (p)) components with respect to the back-
ground magnetic field, and IT = bb(p| — p.) is the anisotropic
stress tensor. (Note that IT is not traceless in the convention used
here.) P should in general be a sum over all species but in the
limit where ion dynamics dominate and electrons just provide a

neutralizing background, the pressure can be interpreted as the
ion pressure. This is the case for hot accretion flows in which
T,>T,.

The exact pressures p and p, can be rigorously determined
by taking moments of the drift kinetic equation (Kulsrud 1983),
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which is the asymptotic expansion of the Vlasov equation for
the distribution function £i(x, 11, v, ?) for species “s” with mass
my and charge e in the limit p,/L < 1, w/Qy < 1, Where ps and
Q) are the gyroradius and gyrofrequency, respectively. In equa-
tion (5), vg = c(E x B)/B? is the perpendicular drift velocity,
= (v, —vg)*/2B is the magnetic moment (a conserved quan-
t1ty in the absence of collisions), F is the component of the
gravitational force parallel to the d1rect10n of the magnetic field,
and D/Dt = 0/0t + (vjb + vg)+V is the particle Lagrangian de-
rivative in configuration space. The fluid velocity V = vg + by,
so the E x B drift is determined by the perpendicular component
of equation (2). Other drifts such as grad B, curvature, and grav-
ity x B drifts are higher order in the drift kinetic MHD ordering
and do not appear in this equation. In equation (5), C( f;) is the
collision operator to allow for generalization to collisional regimes.
Collisions can also be used to mimic rapid pitch angle scattering
due to high- frequency waves that break p invariance. The par-
allel electric field is determined by Ej = > (es /mq)b -V-Py/
> (nge 2/my) (Kulsrud 1983), which ensures quasineutrality.
Separate equations of state for the parallel and perpendicular
pressures can also be obtained from the moments of the drift ki-
netic equation (Chew et al. 1956). Neglecting the collision term
these are
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where D/Dt = 0/0t + V + V is the fluid Lagrangian derivative and
q),1 = q,.b are the heat fluxes (flux of p) and p ) parallel to the
magnetic field. The equation for the magnetic moment density
p{u) = p.1/B can be written in a conservative form:

o) (Bev) = v (). @

If the heat fluxes are neglected (called the CGL or double adi-
abatic limit), as the magnetic field strength (B) increases, p, in-
creases (py o pB), and p| decreases (p) p°/B?). Integrating
equation (8) over a finite periodic (even a shearing periodic) box
shows that (p, /B) is conserved, where angle brackets denote a
volume average. This implies that even when g, # 0, p; in-
creases in a volume-averaged sense as the magnetic energy in the
box increases. This means that for a collisionless plasma, pres-
sure anisotropy p1 > (<) pj is created as a natural consequence
of processes that amplify (reduce) B. This pressure anisotropy is
crucial for understanding magnetic field amplification in colli-
sionless dynamos.

To solve the set of equations (1)—(4), (6) and (7)in a 51mple
fluid based formalism, we require expressions for g and ¢, in
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terms of lower order moments. No simple exact expressions for
g and g, exist for nonlinear collisionless plasmas. Although
simple, the double adiabatic or CGL approximation (where g =
q. = 0)does not capture key kinetic effects such as Landau damp-
ing. In the moderately collisional limit (p; < mean free path <
system size), where the distribution function is not very different
from a local Maxwellian, one can use the Braginskii equations
(Braginskii 1965) to describe anisotropic transport (see Balbus
2000, 2004, for astrophysical applications). However, in the hot
RIAF regime, the mean free path is often much larger than the
system size and the Braginskii equations are not formally appli-
cable, although they are still useful as a qualitative indication
of the importance of kinetic effects. The collisional limit of the
kinetic MHD equations can be shown to recover the dominant
anisotropic heat flux and viscosity tensor of Braginskii (SHD97).
The local approximation to kinetic MHD that we use here leads
to equations that are similar in form to Braginskii MHD, but with
separate dynamical equations for parallel and perpendicular
pressures. We also add models for enhanced pitch angle scatter-
ing by microinstabilities, which occur at very small scales and
high frequenmes beyond the range of validity of standard kinetic
MHD.!

Hammett and collaborators have developed approximate fluid
closures (called Landau fluid closure) for collisionless plasmas
(Hammett & Perkins 1990; Hammett et al. 1992; SHD97) that
capture kinetic effects such as Landau damping. SHD97 give the
resulting expressions for parallel heat fluxes (¢, ¢1) to be used
in equations (6) and (7). Landau closures are based on Padé ap-
proximations to the full kinetic plasma dispersion function that re-
produce the correct asymptotic behavior in both the w/kc) > 1
and w/kc| < 1 regimes (and provide a good approximation in
between), where w is the angular frequency, k|| is the wavenum-
ber parallel to the magnetic field, and ¢ = ( pH/p) is the paral-
lel thermal velocity of the particles. In Fourier space, the linearized
heat fluxes can be written as (egs. [39] and [40] in SHD97)
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where 0 subscripts indicate equilibrium quantities. Real space
expressions are somewhat more cumbersome and are given by
convolution integrals

2\ 2 < T N~ Ty(z —
q(}) noC”O/O s Tie+2) - Tie 2)7 ()

z/

2 Tiz+2)—Tiz—2)
qL=-— = noc”()/ &z

Z
1/2 N
+(%> co(l—&)p“’/ 5 Betz) — Ble— Z),
YIS pHO z!
(12)

where n is the number density, 7 = p|/nand T, = p/n are the
parallel and perpendicular temperatures, and 2’ is the spatial vari-

! This would also be needed when using Braginskii equations, because they
are not necessarily well posed in situations where the anisotropic stress tensor can
drive arbitrarily small-scale instabilities (Schekochihin et al. 2005).
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able along the magnetic field line. SHQO3 have shown that these
fluid closures for the heat fluxes accurately reproduce the kinetic
linear Landau damping rate for all MHD modes (slow, Alfvén,
fast and entropy modes). The growth rate of the MRI using the
Landau closure model is also very similar to that obtained from
full kinetic theory. As noted in the introduction, in addition to re-
producing linear modes/instabilities, Landau fluid closures have
also been used to model turbulence in fusion plasmas with reason-
able success.

These closure approximations were originally developed for
turbulence problems in fusion energy devices with a strong guide
magnetic field, where the parallel dynamics is essentially linear
and fast Fourier transforms (FFTs) could be easily used to quickly
evaluate the Fourier expressions above. In astrophysical problems
with larger amplitude fluctuations and tangled magnetic fields,
evaluation of the heat fluxes become somewhat more complicated.
One could evaluate the convolution expressions, equations (11)
and (12) (with some modest complexity involved in writing a sub-
routine to integrate along magnetic field lines), leading to a code
with a computational time T, cpu X N3 7 N||, where N; 3 is the number
of spatial grid points and N is the number of pomts kept in the in-
tegrals along field lines. (In some cases, it may be feasible to map
the fluid quantities to and from a field line following coordinate
system so that FFTs can reduce this to T¢py o< N 3 log N|.) While
this is more expensive than simple MHD where Tepu X N7, 3 it
could still represent a savings over a direct solution of the dr1ft
kinetic equatlon which would require T¢p, o< N3 NLHNM, where
N, N,, is the number of grid points for velocity space.?

As a first step for studying kinetic effects, in this paper we pick
out a characteristic wavenumber k; that represents the scale of
collisionless damping and use a local approximation for the heat
fluxes in Fourier space, with a straightforward assumption about
the nonlinear generalization:

Q== \/%Pcwa (13)
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Note that this formulation of the heat flux is analogous to a
Braginskii heat conduction along magnetic field lines. For linear
modes with |k | ~ k., these approximations will of course agree
with kinetic theory as well as the Padé approximations shown in
(SHD97). One can think of . as approximately controlling the
heat conduction rate, although this does not necessarily affect the
resulting Landau damping rate of a mode in a monotonic way,
since this sometimes exhibits impedance matching behavior. That
is, some modes are weakly damped in both the small and large
(isothermal) heat conduction limits. We vary & to investigate the
sensitivity of our results to this parameter.

2.1. Linear Modes

Since pressure anisotropy arises as a consequence of magnetic
field amplification in a collisionless plasma, it is of interest to re-
peat the linear analysis of the collisionless MRI done previously

2 On the other hand, an effective hyperdiffusion operator in velocity space
may reduce the velocity resolution requirements, and recent direct kinetic sim-
ulations of turbulence in fusion devices have found that often one does not need
very high velocity resolution. This may make a direct solution of the drift kinetic
equation tractable for some astrophysical kinetic MHD problems. Furthermore, a
direct solution of the drift kinetic equation involves only local operations and thus
is somewhat easier to parallelize than the convolution integrals.
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in QDHO2, but with a background pressure anisotropy (pjo 7#
p1o)- We consider the simple case of a vertical magnetic field.
This analysis provides a useful guide to understanding some of
our numerical results.

We linearize equations (1)—(4) for a differentially rotating disk
[Vo = RQ(R)¢] with an anisotropic pressure about a uniform sub-
thermal vertical magnetic field (By = B.Z). We assume that the
background (unperturbed) plasma is described by a bi-Maxwellian
distribution (p|o # p1o). We also assume that the perturbations
are axisymmetric, of the form exp [—iwt + ik -x] withk = kxR +
k.z. Writing p = po + 6p, B =Bo + 6B,p, =pio+opL,p| =
Plo + 0p|, working in cylindrical coordinates, and making a
|k|R > 1 assumption, the linearized versions of equations (1)—
(3) become

wbp = pok * v, (15)
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where k% = 4Q% + dQ?/d In R is the epicyclic frequency. Equa-
tions (15)—(21) describe the linear modes of a collisionless disk
with an initial pressure anisotropy about a vertical magnetic field.
This corresponds to the § = 7/2 case of QDHO02, but with an an-
isotropic initial pressure. Equations (16) and (17) show that an ini-
tial anisotropic pressure modifies the Alfvén wave characteristics,
so we expect a background pressure anisotropy to have an impor-
tant effect on the MRI. One way of interpreting equations (16) and
(17) is that py > p; (p) > p.) makes the magnetic fields more
(less) stiff; as a result, this will shift the fastest growing MRI mode
to larger (smaller) scales.

The linearized equations for the parallel and perpendicular
pressure response are given by equations (33) and (34) in SHQO3.
We present them here for the sake of completeness:

—iwép| + pjoik * ov + ik-q| + 2poikz6v, = 0, (22)
—iwbp | + 2p ik b6v + ik.q, — poik,6v, =0, (23)

where the heat fluxes can be expressed in terms of lower mo-
ments using
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where ¢ = (pHO/po)”2 and 6B = |6B)|.
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Fic. 1.—Normalized growth rate (/€2) of the MRI vs. normalized pressure an-
isotropy, (p1. — p1)/p) for 8 = 100, k. Va./2 = (15/1 6)1/2, and two different val-
ues of k. Note that even a small anisotropy can stabilize the fastest growing MRI
mode. The growth at large pressure anisotropy for kz # 0 is due to the mirror
mode.

Figure 1 shows the MRI growth rate as a function of pressure
anisotropy for two values of kg for 5 = 100. This figure shows
that the fastest growing MHD mode (kz = 0) is stabilized for
(P10 — po)/pjo ~ 4/8; modes with kz # 0 modes require larger
anisotropy for stabilization. For 3 >> 1, these results highlight
that only a very small pressure anisotropy is required to stabilize
the fastest growing MRI modes. Growth at large pressure aniso-
tropies in Figure 1 for kg # 0 mode is because of the mirror in-
stability that is discussed below. The physical interpretation of
the stabilization of the MRI in Figure 1 is that as the pressure an-
isotropy increases (p1o > p|o), the field lines effectively become
stiffer and modes of a given £ can be stabilized (although longer
wavelength modes will still be unstable).

In a numerical simulation in which the pressure anisotropy is
allowed (unphysically, as we see in § 2.2) to grow without bound
as the magnetic field grows, this effect is capable of stabilizing all
ofthe MRI modes in the computational domain at very small am-
plitudes (see Fig. 6, discussed in § 4).

2.2. Isotropization of the Pressure Tensor
in Collisionless Plasmas

Pressure anisotropy (p1 # p) is a source of free energy that
can drive instabilities that act to isotropize the pressure, effectively
providing an enhanced “collision” rate in a collisionless plasma
(e.g., Gary et al. 1997). In order to do so, the instabilities must
break magnetic moment conservation and thus must have frequen-
cies comparable to the cyclotron frequency and/or parallel wave-
lengths comparable to the Larmor radius. Because of the large
disparity in timescales between p-breaking microinstabilities and
the MRI (Wiiero /€2 ~ 10%), one can envision the microinstabilities
as providing a “hard wall” limit on the pressure anisotropy: once
the pressure anisotropy exceeds the threshold value where micro-
instabilities are driven and cause rapid pitch angle scattering, the
pressure anisotropy nearly instantaneously reduces the anisotropy
to its threshold value (from the point of view of the global disk
dynamics). In this section we review the relevant instabilities that
limit the pressure anisotropy in high-( collisionless plasmas—
these are the firehose, mirror, and ion cyclotron instabilities. We
then discuss how we have implemented these estimated upper
bounds on the pressure anisotropy in our numerical simulations.



956 SHARMA ET AL.

2.2.1. Maximum Anisotropy for p| > p1

Plasmas with p > p, can be unstable to the firehose instabil-
ity, whose dispersion relation for parallel propagation is given by
equation (2.12) of Kennel & Sagdeev (1967):

w? — le—kHZpiz + Q?k\lzpiz <] _pL_ > =0, (26)

where 3 = 87rpH/Bz, p; 1s the ion Larmor radius, (2, is the ion
cyclotron frequency, and kj is the wavenumber parallel to the
local magnetic field direction. Solving for w gives

1/2
Qi . V4 2 kzpiz
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For long wavelengths, the firehose instability requires p| > p, +
B?/4r and is essentially an Alfvén wave destabilized by the pres-
sure anisotropy. The maximum growth rate occurs when kH2 p? =
2(1 = p.i/py — 2/B)) and is given by Q;(1—p./p|—2/8)). We
use an upper limit on p; > p, corresponding to 1 —p,/p—
2/B) < 1/2, which is an approximate condition for the growth of
modes that will violate p conservation and produce rapid pitch
angle scattering.

2.2.2. Maximum Anisotropy for p1 > p

Forp, > p there are two instabilities that act to isotropize the
pressure, the mirror instability and the ion cyclotron instability
(e.g., Gary et al. 1997). A plasma is unstable to the mirror insta-
bility when p, /p — 1 > 1/, although as discussed below, only
for somewhat larger anisotropies is magnetic moment conserva-
tion violated. Formally, a plasma with any nonzero pressure an-
isotropy can be unstable to the ion cyclotron instability (Stix 1992).
However, there is an effective threshold given by the requirement
that the unstable modes grow on a timescale comparable to the
disk rotation period.

Equations (43") and (44") of Hasegawa (1969) give the wave-
number for the fastest growing mirror mode,

k. /(D=1
kypi = $7 (29)

where D = 3, (p./py — 1) and 8, = 87p./B2. To estimate the
pressure anisotropy at which g conservation is broken and thus
pitch angle scattering is efficient, we calculate D for which & p; ~
ki pi ~ 1. This implies D ~ 7 or that p conservation fails (and
pitch angle scattering occurs) if the pressure anisotropy satisfies

pL 7
——1>—. 30
| B (30)

The ion cyclotron instability can be also be excited whenp | >
p||- Gary and collaborators have analyzed the ion cyclotron insta-
bility in detail through linear analysis and numerical simulations.
Gary et al. (1997) and Gary & Lee (1994) calculate the pressure
anisotropy required for a given growth rate -y relative to the ion
cyclotron frequency €2;

pPL S’
L2 (31)
P l
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where S’ = 0.35 and p = 0.42 are fitting parameters quoted in
equation (2) of Gary & Lee (1994) for 7/€; = 10~*. Moreover,
for v < €); the threshold anisotropy depends only very weakly
on the growth rate . As a result, equation (31) provides a reason-
able estimate of the pressure anisotropy required for pitch angle
scattering by the ion cyclotron instability to be important on a time-
scale comparable to the disk rotation period.

2.3. Pressure Anisotropy Limits

Motivated by the above considerations, we require that the pres-
sure anisotropy satisfy the following inequalities in our simula-
tions (at each grid point and for all time steps):

Py 2.1 32

2| B 2 (2)
pL 26

PL_ 1= 33

o <5 (33)
e S(i> v (34)
P B)

where S and £ are constants described below. It is important to
note that the fluid-based kinetic theory utilized in this paper can
correctly reproduce the existence and growth rates of the firehose
and mirror instabilities (although not the ion cyclotron instability).?
However, it can only do so for long-wavelength perturbations
that conserve u. The relevant modes for pitch angle scattering
occur at the Larmor radius scale, which is very small in typical
accretion flows and is unresolved in our simulations. For this rea-
son we must impose limits on the pressure anisotropy and cannot
simultaneously simulate the MRI and the relevant instabilities
that limit the pressure anisotropy. The algorithm to impose the
pressure anisotropy limits is explained in Appendix A3.

In equation (33), the parameter £ determines the threshold an-
isotropy above which the mirror instability leads to pitch angle
scattering. A value of £ = 3.5 was estimated in § 2.2.2. We take
this as our fiducial value, but for comparison also describe calcu-
lations with & = 0.5, which corresponds to the marginal state for
the mirror instability. We compare both models because the satu-
ration of the mirror instability is not well understood, particularly
under the conditions appropriate to a turbulent accretion disk.
Equation (34) is based on the pitch angle scattering model used
by Birn & Hesse (2001) for simulations of magnetic reconnec-
tion in collisionless plasmas; following them we choose S = 0.3.
Equation (34) with S = 0.3 gives results that are nearly identical
(for the typical range of 3 studied here) to the pressure anisotropy
threshold for the ion cyclotron instability discussed in § 2.2.2
(eq. [31D).

In our simulations we find that for typical calculations, if
& = 0.5, then equation (33) (the “mirror instability’”) dominates
the isotropization of the pressure tensor, while if £ = 3.5, then
equation (34) (the “ion cyclotron instability’”) dominates. We also
find that our results are insensitive to the form of the p > p,.
threshold (eq. [32]); e.g., simulations with 1 — p, /p| < 2/03) (the
marginal state of the firchose mode) instead of equation (32) give
nearly identical results. Future fully kinetic simulations of the

3 The double adiabatic limit (¢, = q) = 0) predicts an incorrect threshold
and incorrect growth rates for the mirror instability (e.g., SHD97). Thus, it is
important to use the heat flux models described in § 2 to capture the physics of the
mirror instability.
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mirror, firchose, and ion cyclotron instabilities will be useful for
calibrating the pitch angle scattering models used here.

3. NUMERICAL METHODS

In this section we discuss the shearing box equations that we
solve numerically and the modifications made to ZEUS to include
kinetic effects.

3.1. Shearing Box

The shearing box is based on a local expansion of the tidal
forces in a reference frame corotating with the disk (see HGB95
for details). A fiducial radius Ry in the disk is picked out and the
analysis is restricted to a local Cartesian patch such that L, L,,
L, < Ry (wherex =r — Ry,y = ¢ and z = z). In this paper only
the radial component of gravity is considered and buoyancy
effects are ignored. We also assume a Keplerian rotation profile.
With these approximations, the equations of Landau MHD in the
shearing box are

ap

V. p—
a5 TV (V) =0, (35)
ov 1 B>\ B-VB
_ -V = ——v —_—
o TVVY p (pi+877>+ 4mp
1
——V-II-2QxV + 30%x%, (36)
p
%l: — Vx(VxB), (37)
op| h-VV b b
2
= —gVeff(pH —pi); (38)
8pL A 5
= TV (V) +V g +p V-V —pib-VVb
. 1
+q. Vb= —gVeff(PL -, (39)
p
q) = —pr V) <—> (40)
p
q1 = —pr.V) <pp> + knB- VB, (41)

where ¢ = qHI; andq, =g¢q 1 b are the heat fluxes parallel to the
magnetic field, v g is the effective pitch-angle scattering rate (in-
cluding microinstabilities; see § 2.3 and Appendix A3), x| and
k, are the coefficients of heat conduction, and «,, is the coefficient
in ¢, due to parallel gradients in the strength of magnetic field
(SHD97). The k,, component of ¢, that arises because of paral-
lel magnetic field gradients is important for correctly recovering
the saturated state for the mirror instability in the fluid limit, where
(in steady state) ¢, ~ 0 implies that 7] is constant along the field
line, and T, and magnetic pressure are anticorrelated.

Given our closure models, the coeflicients for the heat flux are
given by
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1
KL= A , (43)
p g%kL + Vefr
pPL\PL
m=\1——)=kKl, 44
, < . ) 2L, (44)

where & is the parameter that corresponds to a typical wave-
number characterizing Landau damping (see § 2). We consider
several values of ki to study the effect of Landau damping on dif-
ferent scales. In particular, we consider k; = 0.5/6z, 0.25/6z,
0.125/6z, which correspond to correctly capturing Landau damp-
ing on scales of 126z, 240z, 486z, respectively, where 6z = L./N,,
L, = 1 for all our runs and A, is the number of grid points used in
the z-direction (taken be 27 and 54 for low- and high-resolution
calculations, respectively). Thus, ki = 0.25/6z corresponds to
correctly capturing Landau damping for modes with wave-
lengths comparable to the size of the box in the low-resolution
runs.

The term v in equations (42) and (43) is an effective collision
frequency thas is equal to the real collision frequency v as long
as p conservation is satisfied. However, when the pressure anisot-
ropy is large enough to drive microinstabilities that break p
invariance and enhance pitch angle scattering, then there is an
increase in the effective collision frequency that decreases the as-
sociated conductivities. The expressions for v.gare given in equa-
tions (A12), (A15), and (A18) of Appendix A3.

Shearing periodic boundary conditions appropriate to the
shearing box are described in HGB95. Excluding V;,, all variables
at the inner x- boundary are mapped to sheared ghost zones at the
outer boundary; a similar procedure applies for the inner ghost
zones. The variable V', has a jump of (3/2)(2L, across the box while
applying the x-shearing boundary conditions, to account for the
background shear in V..

3.2. Numerical Methods

We have used a version of the ZEUS code modified to include
kinetic effects (see Stone & Norman 1992a, 1992b). ZEUS is a
time-explicit, operator-split, finite-difference algorithm on a stag-
gered mesh, i.e., scalars and the diagonal components of second
rank tensors are zone centered, while vectors are located at zone
faces, and pseudovectors and off-diagonal components of second
rank tensors are located at the edges. The location of different
variables on the grid is described in more detail in Appendix Al.
Appendix A2 describes how we choose the time step ¢ to satisfy
the Courant condition (which is modified by pressure anisotropy
and heat conduction). We also require that the choice of 4z main-
tain positivity of p and p, .

Implementation of the shearing box boundary conditions is
described in HGB95. One can either apply boundary conditions
on the components of B or the EMF. We apply shearing periodic
boundary conditions on the EMF to preserve the net vertical flux
in the box, although applying boundary conditions directly on B
also gives satisfactory results.

Equations (38) and (39) are split into a transport and source
step, analogous to the energy equation in the original MHD for-
malism. The transport step is advanced conservatively, and source
step uses central differences in space. It should be noted that in
equation (39) the V- ¢ | term is not purely diffusive, and it is nec-
essary to carefully treat the magnetic gradient part of ¢, in the
transport step for robustness of the code (Appendix A4).

We have carried out a series of tests of our newly added sub-
routines for evolving anisotropic pressure and parallel heat conduc-
tion. We tested the anisotropic conduction routine by initializing a
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“hot” patch in circular magnetic field lines and assessing the
extent to which heat remains confined along the field. This is the
same test described in detail in I. J. Parrish & J. M. Stone (2005)
and we find good agreement with their results. For the diffusion
of a narrow temperature pulse in one dimension, the anisotropic
conduction routine also gave results nearly identical to that pre-
dicted analytically by the one-dimensional diffusion equation.*
Additional tests of the code included linear waves and insta-
bilities in nonrotating anisotropic plasmas, including the Alfvén
wave and the firehose and mirror instabilities. For mirror sim-
ulations we observe the formation of stationary anticorrelated
density and magnetic structures as seen in the hybrid simulations
of McKean et al. (1993). For firechose we see the instability with
magnetic perturbations developing at small scales but during sat-
uration the perturbations are at larger scales as seen in Quest &
Shapiro (1996).

Finally, the numerical growth rates of the kinetic MRI were
compared to the analytic results for different pressure anisotropies,
(k., k), collision frequencies, and angles between the magnetic
field and z; we find good agreement with the results of QDHO02
and SHQO3. When k. = kj, the growth rate of the fastest growing
mode is within ~3% of the theoretical prediction. The B, = B.
MRI simulations show linear growth rates about twice faster
than By = 0, as expected from theory.

3.3. Shearing Box and Kinetic MHD

Certain analytic constraints on the properties and energetics
of shearing box simulations have been described in HGB9S.
These constraints serve as a useful check on the numerical sim-
ulations. Here we mention the modifications to these constraints
in KMHD. Conservation of total energy in the shearing box
gives

0 . 3 47T(PH —p1) BxBy

(45)

where 0V, = ¥V, 4+ (3/2)C2x, and I is the total energy given by

2 2
F:/d3x{p<2+¢>+g'+m+gw], (46)

where ¢ = —3/20°x? is the tidal effective potential about Ry.
Equation (45) states that the change in the total energy of the
shearing box is due to work done on the box by the boundaries.
Notice that there is an anisotropic pressure contribution to the
work done on the box. Equation (29) in Balbus & Hawley (1998)
for conservation of angular momentum in cylindrical geometry
is also modified because of the anisotropic pressure and is given

by

0 By dn(p| —p1)
5 (PRV) + V- {PV<>VR ~ 0 [1 - 2372 B,R

B\,
+ (PL + 877) ¢R} =0, (47)

* For details of the test and error analysis, see http://w3.pppl.gov/~psharma/
cartesian/1Dheatdiffusion.
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where B, = BiR + B.7is the poloidal field. We can calculate the
level of angular momentum transport in our simulations by mea-
suring the stress tensor given by

BxBy + (pH *Pi)
4 B2

Wy = pVioV, — B.\B,. (48)
Note that the stress tensor has an additional contribution due to
pressure anisotropy. One can define a dimensionless stress via
Shakura and Sunyaev’s a parameter by

W,
a=—2=agp+ay+ay, (49)
Py

where ag, ay, a4 are the Reynolds, Maxwell and anisotropic
stress parameters, respectively. As in HGB95 we normalize the
stress using the initial pressure to define an o parameter.

3.4. Shearing Box Parameters and Initial Conditions

The parameters for our baseline case have been chosen to
match the fiducial run Z4 of HGB95. The simulation box has a
radial size L, = 1, azimuthal size L, = 27, and vertical size L, = 1.
The sound speed ¥, = (p/p)"*="L.€, so that the vertical size is
about a disk scale height (although it is an unstratified box). The
pressure is assumed to be isotropic initially, with pg = poV? =
107% and py = 1. All of our simulations start with a vertical field
with 3 = 8mpo/B3 = 400. The fastest growing MRI mode for this
choice of parameters is reasonably well resolved. We consider two
different numerical resolutions: 27 x 59 x 27, and 54 x 118 x 54.
Perturbations are introduced as initially uncorrelated velocity fluc-
tuations. These fluctuations are randomly and uniformly dis-
tributed throughout the box. They have a mean amplitude of
[6V] = 1073V,

4. RESULTS

The important parameters for our simulations are listed in
Table 1. Each simulation is labeled by Z (for the initial B, field),
and /and A represent low (27 x 59 x 27) and high (54 x 118 x 54)
resolution runs, respectively. We also include low- and high-
resolution MHD runs for comparison with the kinetic calculations
(labeled by ZM). Our models for heat conduction and pressure
isotropization have several parameters: ky , the typical wavenum-
ber for Landau damping used in the heat flux (eqs. [13] and [14]),
and &, the parameter that forces the pressure anisotropy to be lim-
ited by p1/p — 1 < 2&/3, (representing pitch angle scattering
due to small-scale mirror modes; eq. [33]). All of our calculations
except ZI8, ZI1, and Zh1 also use the ion cyclotron scattering
“hard wall” from equation (34). In addition to these model param-
eters, Table 1 also lists the results of the simulations, including the
volume- and time-averaged magnetic and kinetic energies, and
Maxwell, Reynolds, and anisotropic stresses. As Table 1 indicates,
the results of our simulations depend quantitatively—although
generally not qualitatively—on the microphysics associated with
heat conduction and pressure isotropization. Throughout this sec-
tion we use single brackets (/) to denote a volume average of
quantity f; we use double brackets ({ f)) to denote a volume and
time average in the saturated turbulent state, from orbit 5 onward.

4.1. Fiducial Run

We have selected run Z/4 as our fiducial model to describe in
detail. This model includes isotropization by ion cyclotron instabil-
ities and mirror modes, with the former dominating (for £ = 3.5;
see § 2.2.2) except at early times. The conductivity is determined
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TABLE 1
SIMULATION PARAMETERS

Label Grid ke & ((B¥8mpo))  (VP2po))  ((=BByJAmp))  ((pVidVyipo))  ((Ap/BBBy/po)))°  ((4mAp/B?)°
27 x 59 x 27 o0 [e%S) 0.0026 0.094 0.0 0.0 0.0 —11.96
27 x 59 x 27 00 3.5 0.25 0.28 0.15 0.067 0.14 —0.96
27 x 59 x 27 0.5/6z [e's)
27 x 59 x 27 0.5/6z 3.5 0.38 0.36 0.23 0.097 0.20 —1.37
27 x 59 x 27 0.5/6z 0.5 0.35 0.27 0.197 0.054 0.069 —0.02
27 x 59 x 27 0.25/6z 3.5 0.27 0.30 0.16 0.070 0.15 —1.39
27 x 59 x 27 0.125/6z 3.5 0.21 0.26 0.124 0.051 0.117 —1.44
27 x 59 x 27 0.5/6z 3.5 0.157 0.315 0.094 0.069 0.225 —2.11
27 x 59 x 27 0.39 0.29 0.22 0.066
54 x 118 x 54 00 9] 0.0026 0.095 0.0 0.0 0.0 —10.2
54 x 118 x 54 00 3.5 0.41 0.32 0.24 0.083 0.18 —1.09
54 x 118 x 54 0.5/6z 9]
54 x 118 x 54 0.5/6z 3.5 0.40 0.33 0.22 0.078 0.18 —1.20
54 x 118 x 54 0.5/6z 0.5 0.349 0.253 0.186 0.042 0.055 —0.02
54 x 118 x 54 0.25/6z 3.5 0.24 0.26 0.13 0.044 0.13 —1.42
54 x 118 x 54 0.375 0.27 0.204 0.0531

Nortes.—Vertical field simulation with initial 3 = 400. Z indicates that all simulations start with a vertical field, the letters / and 4 indicate low- and high-resolution runs
respectively. Z/4 is the fiducial run. Z/1 and Zh1 are the runs in CGL limit. ZM! and ZMh are the MHD runs. Double angle brackets denote a time and space average taken

from 5-20 orbits.

? Wavenumber parameter used in Landau closure for parallel heat conduction (egs. [13] and [14]).
® Imposed limit on pressure anisotropy for pitch angle scattering due to mirror instability (eq. [33]). Excluding Z/1, Zh1, and ZI8 all of these calculations also use a

pressure anisotropy limit due to the ion cyclotron instability (eq. [34]).
“Ap=(p|—pL).

4 Run for only ~four orbits, at which point the time step becomes very small because regions of large pressure anisotropy are created (see § 4.4).

by kp = 0.5/6z which implies that modes with wavelengths
~126z ~ L,/2 are damped at a rate consistent with linear theory.

Figures 2—4 show the time evolution of various physical quan-
tities for run Z/4. The early linear development of the instability
is similar to that in MHD, with the field growing exponentially in
time. The key new feature is the simultaneous exponential growth
of pressure anisotropy (p1 > p|) as a result of u conservation
(up to two orbits in Fig. 4). As described in § 2.1, this pressure
anisotropy tends to stabilize the MRI modes and shut off the

10°

10°

0 5 10 15 20
orbits

FiG. 2.—Time evolution of volume-averaged magnetic energy for the fiducial
run Z/4. Time is given in number of orbits. There is a small decrease in the mag-
netic energy at ~to orbits when the pressure anisotropy is sufficient to stabilize the
fastest growing mode. However, small-scale kinetic instabilities limit the magni-
tude of the pressure anisotropy, allowing the magnetic field to continue to amplify.
As in MHD, there is a channel phase that breaks down into turbulence at ~four
orbits.

growth of the magnetic field. Indeed, in simulations that do not
include any isotropization of the pressure tensor, we find that all
MRI modes in the box are stabilized by the pressure anisotropy
and the simulation saturates with the box filled with small ampli-
tude anisotropic Alfvén waves (see Fig. 6). This highlights the
fact that, unlike in MHD, the MRI is not an exact nonlinear
solution in kinetic theory. However, the pressure anisotropy
required to stabilize all MRI modes exceeds the pressure an-
isotropy at which pitch angle scattering due to mirror and ion cy-
clotron instabilities become important. This takes place at about
orbit 2 in run Z/4 (see the small “dip” in the growth of B in Fig. 2),
at which point the pressure anisotropy is significantly reduced
and the magnetic field is able to grow to nonlinear amplitudes.

The nonlinear saturation at orbit ~5 appears qualitatively
similar to that in MHD, and may occur via analogues of the par-
asitic instabilities described by Goodman & Xu (1994). The chan-
nel solution is, however, much more extreme in KMHD than MHD
(the maximum B2 in Fig. 2 is approximately an order of magni-
tude larger than in analogous MHD runs). After saturation, the
magnetic and kinetic energies in the saturated state are comparable
in KMHD and MHD (see Table 1). This is essentially because the
pitch angle scattering induced by the kinetic microinstabilities acts
to isotropize the pressure, enforcing a degree of MHD-like dy-
namics on the collisionless plasma.

Figure 3 and Table 1 show the various contributions to the to-
tal stress. As in MHD, the Reynolds stress is significantly smaller
than the Maxwell stress. In kinetic theory, however, there is an
additional component to the stress due to the anisotropic pressure
(eq. [47]). In the saturated state, we find that the Maxwell stress is
similar in KMHD and MHD, but that the anisotropic stress itself
is comparable to the Maxwell stress. Expressed in terms of an «v
normalized to the initial pressure, our fiducial run Z/4 has oy, =
0.23, agr = 0.097, and a4 = 0.2, indicating that stress due to
pressure anisotropy is dynamically important.

Nearly all physical quantities in Figures 2—4 reach an approx-
imate statistical steady state. The exceptions are that p| and p
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Fic. 3.—Time evolution of volume-averaged magnetic and kinetic energies; Maxwell, Reynolds, and anisotropic stress; and pressure (solid line, p| ; dashed line, p ) for
the fiducial model Z/4. Time is given in orbits and all quantities are normalized to the initial pressure po; 6V, = V,, + (3/2)x and Ap = (p) — po1).

<4n(p,~p )/B*>

10
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15 20

Fic. 4—Time evolution of volume-averaged pressure anisotropy [solid line,
4n(p — p.1)/B*] for model Z4. Also plotted are the “hard wall” limits on the
pressure anisotropy due to the ion cyclotron (dot-dashed line) and mirror instabili-
ties (dashed line). Ion cyclotron scattering is generally more efficient in the steady
state. The limits on pressure anisotropy are applied at each grid point, while this
figure is based on volume-averaged quantities.

increase steadily in time because the momentum flux on the
boundaries does work on the system (eq. [45]), which is eventu-
ally converted to heat in the plasma by artificial viscosity and
there is no cooling (the same is true in HGB95’s MHD simula-
tions). Because of the steadily increasing internal energy and ap-
proximately fixed B? (although with large fluctuations), the plasma
(3 shows a small secular increase from orbits 5—20 (a factor of ~3
increase, although with very large fluctuations due to the large
fluctuations in magnetic energy). Figure 4 shows the pressure
anisotropy thresholds due to the ion cyclotron and mirror insta-
bilities, in addition to the volume-averaged pressure anisotropy
in run Z/4. From equation (34), the ion cyclotron threshold is ex-
pected to scale as 3 "2, which is reasonably consistent with the
trend in Figure 4. The actual pressure anisotropy in the simulation
shows a small increase in time as well, although less than that of
the ion cyclotron threshold. These secular changes in 3 and Ap
are a consequence of the increasing internal energy in the shear-
ing box, and are probably not realistic. In a global disk, we ex-
pect that— except perhaps near the inner and outer boundaries—
[ will not undergo significant secular changes in time. In a small
region of a real disk in statistical equilibrium, the heating would
be balanced by radiation or by cooler plasma entering at large R
and hotter plasma leaving at small R.

It is interesting to note that in Figure 4, the pressure anisotropy
(47 Ap/B?) is closely tied to the ion cyclotron threshold at times
when B? is rising (which corresponds to the channel solution
reemerging). Increasing B leads to a pressure anisotropy with
pL > p| by pu conservation. At the same time, the ion cyclotron
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Fig. 5.—Time evolution of volume-averaged pressure anisotropy [solid line,
dn(p —p 1 )/B?] for model ZI8. Also plotted are the “hard wall” limits on the
pressure anisotropy due to the ion cyclotron (dot-dashed line) and mirror instabil-
ities (dashed line), although the ion cyclotron scattering limit is not applied in this
simulation. The volume-averaged pressure anisotropy saturates at smaller anisot-
ropy than the mirror threshold at { = 3.5, which is the only limit on pressure
anisotropy used.

threshold (~+/f3) decreases and thus the threshold is encountered,
which limits the anisotropy. When B is decreasing, however, we
do not find the same tight relationship between the pressure an-
isotropy and the imposed threshold. Figure 4 clearly indicates that
in our fiducial simulation pitch angle scattering is dominated by
the ion cyclotron threshold. For comparison, Figure 5 shows the
pressure anisotropy and thresholds for run ZI8, which is iden-
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tical to the fiducial run except that the ion cyclotron threshold is
not used and the only scattering is due to the mirror threshold. In
this case, the saturated pressure anisotropy is somewhat larger
than in the fiducial run, but the pressure anisotropy is not tied
to the mirror threshold.

Table 2 gives the mean, standard deviation, and standard error
in the mean, for various quantities in the saturated portion of
the fiducial simulation. The standard errors are estimated by tak-
ing into account the finite correlation time for the physical quan-
tities in the simulation, as described in Appendix AS. In many
cases, the deviations are significantly larger than the mean. As
in MHD, we find that the magnetic energy is dominated by the
y-component, which is about a factor of 3 larger than the
x-component; the vertical component is smaller yet. The radial
and azimuthal kinetic energy fluctuations are comparable, while
the vertical component is smaller. We also find that, as in MHD,
the perturbed kinetic and magnetic energies are not in exact equi-
partition: the magnetic energy is consistently larger. Table 2 also
shows the mean and deviations for (p,/B) and (p B*/p*). Be-
cause of pitch angle scattering ;1 = (p /B) is no longer conserved.
Here ( pHBZ/ p?) varies both because of heat conduction and pitch
angle scattering.

The pressure anisotropy in our fiducial run saturates at
dn(pL —p| )/B? = 1.5. By contrast, the threshold for the mirror
instability is 47(p, — p|)/B* = 0.5. This implies that the model
is unstable to generating mirror modes. However, the mirror
modes that can be excited at this level of anisotropy do not vio-
late 1 conservation and thus do not contribute to pitch angle scat-
tering (§ 2.2.2). They can in principle isotropize the plasma in a
volume-averaged sense by spatially redistributing plasma into
magnetic wells (e.g., Kivelson & Southwood 1996). This satura-
tion mechanism can be calculated using our kinetic-MHD code and
was in fact one of our test problems (for a uniform plasma). It does
not appear to be fully efficient in the saturated state of our turbulent
disk simulations, even at the highest resolutions we have run.

TABLE 2
STATISTICS FOR MODEL Z[4

Quantity f (W) ((or2n'= (Tind T){(&f %)) min(f) max(f)
0.083 0.092 0.016 0.021 0.662
0.276 0.318 0.048 0.036 1.987
0.021 0.017 0.0025 0.0032 0.144
0.102 0.094 0.014 0.0184 0.63
0.125 0.079 0.0127 0.715 0.0264
0.037 0.034 0.0032 0.008 0.348
0.229 0.277 0.0434 0.037 1.856
pVi8V,Ipo 0.097 0.113 0.0147 —0.072 0.6211
[(P = PLYPO) (BxBy/B?) oo 0.198 0.129 0.0178 0.017 0.654
4n(py —pL)/B>. —1.366 0.51 0.098 —2.632 —0.083
0 N0 VO 0.5895 0.1043 0.0067 0.3744 0.8611
PVAEVH(B2BT) e 0.3323 0.2725 0.017 —0.5307 1.2704
[4n(py — pL)/B*] [BBY(B*/2)] covoooicacceece 0.7356 0.3718 0.0714 0.032 1.807
LZ0: 72, 1.6574 0.6598 0.084 0.4364 3.7159
e e 7Y PO 0.5357 0.3975 0.024 —0.9105 2.084
QAT v nees 1.2287 0.5504 0.119 0.0854 2.7243
Y 0.99935 23 %1073 1.1 x 107 0.9993 0.9994
p1Bo/Bpy. 3.557 1.665 . 1.1178 7.929
PUB2 DY PP BEPO <oovvvveceeeeee 3.144 x 10° 349 x 10° 585.4 1.993 x 10*

Note.—Double angle brackets denote a time and space average taken from 5-20 orbits.
# We calculate the error using the autocorrelation time only for quantities that saturate to a steady state after five orbits. Estimate for correlation
time 7y, is based on the discussion in W. Nevins et al. (2006, in preparation). p; and p show a secular growth with time, so this way of expressing

them as an average and an error is not applicable.
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Fig. 6.—Time evolution of volume-averaged magnetic energy (dashed line,
B2/8mpy; solid line, B§/87rp0; dot-dashed line, B)z,/87rpo), total stress (W,,/py) in
units of 1073, and pressure anisotropy for model Z/1. Time is given in orbits and
all quantities are normalized to the initial pressure pg; 6V, = ¥, + (3/2)Qx and
Ap=(p)— p1)- Inthis calculation there is no heat conduction and no isotropiza-
tion of the pressure tensor. All resolved MRI modes are thus stabilized by pres-
sure anisotropy and the “saturated” state is linear anisotropic Alfvén waves with
no net angular momentum transport.

In the next few sections we compare the fiducial simulation
described above with variations in the pitch angle scattering model
and the parallel conductivity. A comparison of the total stress in
all of our simulations is shown in Figure 7.

4.2. The Double Adiabatic Limit

Simulations Z/1 and Zh1 are simulations in the double adia-
batic limit (no heat conduction), with no limit on the pressure an-
isotropy imposed. In this limit both s = (p./B) and (p B*/p?)
are conserved. Figure 6 shows volume averages of various
quantities as a function of time for the run Z/1. These calcula-
tions are very different from the rest of our results and show sat-
uration at very low amplitudes (6B%/B> ~ 0.04). In the saturated
state, the box is filled with shear modified anisotropic Alfvén
waves and all physical quantities are oscillating in time. The total
stress is also oscillatory with a vanishing mean, resulting in neg-
ligible transport. In these calculations, the pressure anisotropy
grows to such a large value that it shuts off the growth of all of the
resolved MRI modes in the box. Table 1 shows that ({47(p| —
p1)/B?)) saturates at —11.96 and —10.2 for the low- and high-
resolution runs, respectively (although the normalized pressure an-
isotropy ({(p| — pL)/p|)) = —0.07 is quite small). This is much
larger than the anisotropy thresholds for pitch angle scattering
described in § 2. As a result, we do not expect these cases to be
representative of the actual physics of collisionless disks. These
cases are of interest, however, in supporting the predictions of
the linear theory with anisotropic initial conditions considered in
§ 2.1, and in providing a simple test for the simulations. They
also highlight the central role of pressure isotropization in colli-
sionless dynamos.

4.3. Varying Conductivity

We have carried out a series of simulations with different con-
ductivities defined by the parameter & . Simulations Z/2 and Zh2
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Fic. 7.—Space and time average of the total stress ((W,,/po)) vs. 1/(k6z) for
different runs. Error bars shown are based on estimates of the correlation time of
the fluctuations described in W. Nevins (2006, in preparation).

are in the CGL limit with vanishing parallel heat conduction, but
with the same limits on pressure anisotropy as the fiducial model.
Simulations Z6 use ki 6z = 0.25 while run Z/7 uses ki, = 0.125/6z.
Both of these are smaller than the value of k; 6z = 0.5 in the fi-
ducial run, which implies a larger conductivity. Figure 7 shows
that the total stress varies by about a factor of 2 depending on the
conductivity and resolution. Simulations with larger conductiv-
ity tend to have smaller saturation amplitudes and stresses. This
could be because larger conductivity implies more rapid Landau
damping of slow and fast magnetosonic waves. In all cases, how-
ever, the anisotropic stress is comparable to the Maxwell stress
as in the fiducial run. Until a more accurate evaluation is avail-
able of the heat fluxes for modes of all wavelengths in the sim-
ulation simultaneously (either by a more complete evaluation of
the nonlocal heat fluxes, egs. [11] and [12], or even by a fully
kinetic MHD code that directly solves eq. [5]), it is difficult to
ascertain which value of the conductivity best reflects the true
physics of collisionless disks.

4.4. Different Pitch Angle Scattering Models

In this section we consider variations in our model for pitch
angle scattering by high-frequency waves. All of these calcula-
tions utilize k. = 0.5/6z. We note again that the appropriate pitch
angle scattering model remains somewhat uncertain, primarily
because of uncertainties in the nonlinear saturation of long-
wavelength p-conserving mirror modes. The calculations reported
here cover what we believe is a plausible range of models.

Models ZI5 and Zh5 place a more stringent limit on the al-
lowed pressure anisotropy, taking £ = 0.5 in equation (33). This
corresponds to the threshold of the mirror instability. Not surpris-
ingly, this simulation is the most “MHD-like” of our calcula-
tions, with magnetic and kinetic energies and Maxwell stresses
that are quite similar to those in MHD. Even with this stringent
limit, however, the anisotropic stress is z% of the Maxwell stress.
It is also interesting to note that although the dimensionless pres-
sure anisotropy is quite small ((47(p| — p1)/B*)) ~ —0.02, the
dimensionless anisotropic stress ((47( p —p1)/B? x B.B,/po)) ~
0.07 is significantly larger (and larger than Reynolds stress)
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TABLE 3

SIMULATIONS OF THE MRI IN A COLLISIONLESS PLASMA

SimuLATIONS WITH AN ExpLiciT CoLLisioN TERM

viQ ((4mAp/B2)) ((—B.B,/4mpq)) ({{pV:8V}/po)) ({((Ap/BY(B.B, Ipy)))* aglayy aylay(v =0)

—1.41 0.18 0.082 0.196 1.09 1

—1.47 0.152 0.072 0.173 1.14 0.88
—1.43 0.178 0.08 0.181 1.02 0.92
—1.35 0.165 0.071 0.159 0.96 0.81
—1.24 0.174 0.070 0.136 0.78 0.69
—1.01 0.213 0.070 0.113 0.53 0.58
—0.87 0.239 0.070 0.095 0.4 0.48
—0.43 0.223 0.06 0.032 0.14 0.16

963

Note.—Double angle brackets denote a time and space average taken from 5-20 orbits.

" Ap=(p|—pL)

because of correlations between the pressure anisotropy and field
strength.

As atest of how large a collisionality is needed for the results
of our kinetic simulations to rigorously approach the MHD limit,
we have carried out a series of simulations including an explicit
collisionality v and varying its magnitude relative to the disk fre-
quency £2. Our results are summarized in Table 3 and Figure 8. In
these simulations we start with initial conditions determined by
the saturated turbulent state of our fiducial run Z/4, but with an
explicit collision frequency (in addition to the scattering models
described in § 2.3). Figure 8 shows that for v/€) < 20, the results
are very similar to the collisionless limit. For larger collision
frequencies the anisotropic stress is reduced and the simulations
quantitatively approach the MHD limit. These results are similar
to those obtained by SHQO3, who found that in linear calcula-
tions the MHD limit for modes with & ~ /v, is approached when
v2+/BO.

To consider the opposite limit of lower collisionality, run Z/8
places a less stringent limit on the allowed pressure anisotropy,
taking & = 3.5 in equation (33) and ignoring the limit set by the
ion cyclotron instability in equation (34). The results of this cal-
culation are not physical but are useful for further clarifying the
relative importance of the Maxwell and anisotropic stresses as a
function of the pitch angle scattering rate. In ZI8, the saturated

o
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0.15% 1

0.11 A A
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0 1
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Fic. 8. —Maxwell (av\, squares) and anisotropic (« 4, triangles) stress plotted
against the collision frequency normalized to rotation frequency (v/€2). Transition
to MHD occurs for v/Q2 2 30 (see Table 3).

magnetic energy and Maxwell stress are lower than in all of our
other calculations (excluding the double adiabatic models de-
scribed in § 4.2). Interestingly, however, the total stress is com-
parable to that in the other calculations (Fig. 7) because the
anisotropic stress is ~2.4 times larger than the Maxwell stress
(Table 1). As discussed briefly in § 4.1, the pressure anisotropy
in this simulation is not simply set by the applied mirror pitch
angle scattering threshold (see Fig. 5). It is possible that resolved
mirror modes contribute to decreasing the volume-averaged pres-
sure anisotropy (but see below).

Finally, in models Z3 we include parallel heat conduction but
do not limit the pressure anisotropy. In these calculations, we ex-
pect to be able to resolve the long-wavelength p-conserving mir-
ror modes that reduce the pressure anisotropy by forming magnetic
wells (as in Kivelson & Southwood 1996).> In our test problems
with uniform anisotropic plasmas, this is precisely what we find.
In the shearing box calculations, however, even at the highest
resolutions, we find that the pressure anisotropy becomes so
large that equations (33) and (34) are violated and pitch angle
scattering due to high-frequency microinstabilities would be-
come important. The resolved mirror modes are thus not able to
isotropize the pressure sufficiently fast at all places in the box.°
However, it is hard to draw any firm conclusions from these sim-
ulations because they stop at around four orbits (for both reso-
lutions Z/3 and Zh3) during the initial nonlinear transient stage.
At this time the pressure becomes highly anisotropic and becomes
very small at some grid points, and the time step limit causes
ot — 0.

5. SUMMARY AND DISCUSSION

In this paper we have carried out local shearing box simula-
tions of the magnetorotational instability in a collisionless plasma.
We are motivated by the application to hot radiatively inefficient
flows that are believed to be present in many low-luminosity ac-
creting systems. Our method for simulating the dynamics of a
collisionless plasma is fluid-based and relies on evolving a pres-
sure tensor with closure models for the heat flux along magnetic
field lines (§ 2). These heat flux models can also be thought of as
approximating the collisionless (Landau) damping of linear modes
in the simulation.

5 At the resolution of ZI3, the fastest growing mirror mode in the computa-
tional domain has a linear growth comparable to that of the MRI.

® In higher resolution simulations, one can resolve smaller scale and faster
growing mirror modes, and thus the effects of isotropization by resolved mirror
modes could be come increasingly important. We see no such indications, how-
ever, for the range of resolutions we have been able to simulate.
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By adiabatic invariance, a slow increase (decrease) in the mag-
netic field strength tends to give rise to a pressure anisotropy
withp, > p| (p) > p1), where the directions are defined by the
local magnetic field. Such a pressure anisotropy can, however,
give rise to small-scale kinetic instabilities (firehose, mirror, and
ion cyclotron) that act to isotropize the pressure tensor, effectively
providing an enhanced rate of pitch angle scattering (““collisions”).
We have included the effects of this isotropization via a subgrid
model that restricts the allowed magnitude of the pressure anisot-
ropy (§ 2.3).

We find that the nonlinear evolution of the MRI in a collision-
less plasma is qualitatively similar to that in MHD, with compa-
rable saturation magnetic field strengths and magnetic stresses.
The primary new effect in kinetic theory is the existence of an-
gular momentum transport due to the anisotropic pressure stress
(eq.[47]). For the allowed pressure anisotropies estimated in § 2.3,
the anisotropic stress is dynamically important and is as large
as the Maxwell stress (Table 1). The precise rate of transport in
the present simulations is difficult to quantify accurately and
depends—at the factor of ~2 level—on some of the uncertain
microphysics in our kinetic analysis (e.g., the rate of heat conduc-
tion along magnetic field lines and the exact threshold for pitch
angle scattering by small-scale instabilities; see Fig. 7). For bet-
ter results, it would be interesting to extend these calculations
with a more accurate evaluation of the actual nonlocal heat fluxes,
equations (11) and (12), or even to directly solve equation (5) for
the particle distribution function. Further kinetic studies in the
local shearing box, including studies of the small-scale instabil-
ities that limit pressure anisotropy, would be helpful in develop-
ing appropriate fluid closures for global simulations.

It is interesting to note that two-temperature RIAFs can only
be maintained below a critical luminosity ~a?Ligq (Rees et al.
1982). Thus, enhanced transport in kinetic theory due to the an-
isotropic pressure stress would extend upward in luminosity the
range of systems to which RIAFs could be applicable. This is im-
portant for understanding, e.g., state transitions in X-ray binaries
(e.g., Esin et al. 1997).

In addition to angular momentum transport by anisotropic pres-
sure stresses, Landau damping of long-wavelength modes can be
dynamically important in collisionless accretion flows. Because
the ZEUS code we employ is nonconservative, we cannot carry
out a rigorous calculation of heating by different mechanisms,
such as Landau damping and reconnection. Following the total
energy-conserving scheme of Turner et al. (2003), however, we
estimate that the energy dissipated by Landau damping is com-
parable to or larger than that due reconnection (which is the major
source of heating in MHD simulations). One caveat to this anal-
ysis is that in local simulations, the pressure increases in time due
to heating, while B> ~ constant. Thus, 3 increases in time and
the turbulence becomes more and more incompressible. This will
artificially decrease the importance of compressible channels of
heating. Clearly it is of significant interest to better understand
heating and energy dissipation in RIAFs, particularly for the elec-
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trons. We will carry out a more a systematic analysis of the en-
ergetics of collisionless disks in future global simulations.

In all of our calculations, we have assumed that the dominant
source of pitch-angle scattering is high-frequency microinstabil-
ities generated during the growth and nonlinear evolution of the
MRI. We cannot, however, rule out that there are other sources of
high-frequency waves that pitch angle scatter and effectively de-
crease the mean free path of particles relative to that calculated
here (e.g., shocks and reconnection). As shown in Table 3 and
Figure 8, this would decrease the magnitude of the anisotropic
stress; we find that for v = 30€2, the results of our kinetic simula-
tions quantitatively approach the MHD limit. In this context it is
important to note that the incompressible part of the MHD cas-
cade launched by the MR1 is expected to be highly anisotropic with
k1 >k (Goldreich & Sridhar 1995). As a result, there is very
little power in high-frequency waves that could break p conser-
vation. It is also interesting to note that satellites have observed
that the pressure anisotropy in the solar wind near 1 AU is approx-
imately marginally stable to the firehose instability (Kasper et al.
2002), consistent with our assumption that microinstabilities dom-
inate the isotropization of the plasma.

In this paper we have focused on kinetic modifications to an-
gular momentum transport via anisotropic pressure stresses and
parallel heat conduction. In addition, kinetic effects substantially
modify the stability of thermally stratified low-collisionality plas-
mas such as those expected in RIAFs. Balbus (2000) showed that
in the presence of anisotropic heat conduction, thermally strati-
fied plasmas are unstable when the temperature decreases out-
ward, rather than when the entropy decreases outward (the usual
Schwarzschild criterion). This has been called the magnetother-
mal instability (MTI). 1. J. Parrish & J. M. Stone (2005) show
that in nonrotating atmospheres the MTI leads to magnetic field
amplification and efficient heat transport. In future global sim-
ulations of RIAFs, it will be interesting to explore the combined
dynamics of the MTI, the MRI, and angular momentum trans-
port via anisotropic pressure stresses.
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APPENDIX

Al. GRID AND VARIABLES

Figure 9 shows the location of variables on the grid. Scalars and diagonal components of second rank tensors (p, p||, and p_ ) are zone
centered. Vectors, representing fluxes out of the box, are located at the cell faces (V, B, and ¢ , ). The inductive electric field (E) is
located at cell edges such that the contribution of each edge in calculating § E -dlI over the whole box cancels, and V-V = 0 is satis-
fied to machine precision. The off diagonal part of the pressure tensor in Cartesian coordinates is related to II = bb(p| — p.). Thisis a
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Fi. 9.—Location of different variables on a three-dimensional staggered grid. Vectors V, B, and ¢ | , are located at the face centers. Density (p) and diagonal components of
the pressure tensor ( p 1, p|) are located at the zone centers. EMF’s (£, E,, Ez), and off-diagonal components of the pressure tensor (Pyy,, Py, P,;) are located on appropriate edges.

symmetric tensor whose components Pxy, Pxz, and Pyz are located such that the finite difference formulae for the evolution of velocities
due to off diagonal components of stress are given by

, ot , ot
Vi i 1 _ Vai k" — 5(nyijj+1‘k — nylf'j7k) — E(szsj’kﬂ — szl:’j’k), (A1)
V"’H—I_V"n_ﬁp n _Pn _gpn _P n A2
Vi jik = VVijk 6x( XVit1,),k XV k) (52( YZi j k+1 Vi i) (A2)
ot ot
Vaiji" = Vzi i — o Pz e = Pxzily ) — E(Pyzfm,k = Pyzip)- (A3)

A2. DETERMINATION OF 6¢: STABILITY, AND POSITIVITY

A time-explicit algorithm must limit the time step in order to satisfy the Courant-Friedrichs-Levy (CFL) stability condition. Physi-
cally, 6t must be smaller than the time it takes any signal (via fluid or wave motion) to cross one grid zone. There is also a limit imposed
on ¢t for numerical stability of the diffusive steps. In addition, since there are quantities that must be positive definite (p, p|, p1 ), we also
require d¢ to satisfy positivity. We adopt the following procedure to choose ¢

min{dx, dy, 6z}

Otygy = , A4
“ VT al + W+ 96D (A4)
. 2 ¢ 2 ¢ 2
bty = min{éx*, 6y*, bz }’ (AS)
ZRH
. 2 ¢ ¢ 2
51, — min{éx*, 6y*, 6z*} ’ (A6)
ZHL

where V5 = B/[(4)"?] is the Alfvén speed, and ¥, = max {Gpy/ )2, (2p./p)""*} is the maximum sound speed, taking the anisotropy
into account; dt,qy, 6f), and 6z, correspond to limits on the time step for stability to advection, and parallel and perpendicular heat
conduction, respectively.
The source steps for pj and p, are given by
n+1 7
P P
ot
n+1

1%: (~Veqir —p.V-V+p b-VV-b—q,V-b)'= 42, (A8)

- (—V-q” —ZpHIAJ-VV°B+2qLV-£)n:A1, (A7)
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where ¢, 7 = —x, V| T, denotes the temperature gradient part of ¢, . For positivity of p’ﬁ“ and p'i“ we require that the following
conditions are satisfied: whenever 41 and A2 are negative, 6tpos = min{—pﬁ/Al, —p'1/A2};if A1 > 0,42 < 0, then btpos = —p' /42; if

A1 < 0,42 > 0, then 6tpos = —pﬁ/Al. Thus, our final constraint on the time step 6z is given by
5t = Co min{ 1/[max {86,2, + 667 + 86.2)]'/2, min{étpos}}, (A9)
where the max and min are taken over all zones in the box and Cj is a safety factor (Courant number), which we take to be 0.5.

A3. IMPLEMENTATION OF THE PRESSURE ANISOTROPY “HARD WALL”

Ifthe pressure anisotropy is larger than the constraints given in § 2 by equations (32)—(34), then microinstabilities will turn on that will
enhance the pitch-angle scattering rate and quickly reduce the pressure anisotropy to near marginal stability. Because this is a nu-
merically stiff problem, we use an implicit approach, following the treatment of Birn & Hesse (2001). Whenever equation (32) is vio-
lated, we use the following prescription for pitch angle scattering:

n+1
2 (P B
Pﬁ“ =pj| - g’/pét (T Pt - | (A10)
n+1
. p ] vl wi B
pL+l:pl—|—§Up(st<—2 _pi+1_47r 7 (A11)

where v, is a very large (>>1/6¢) rate at which marginal stability is approached. This implicit implementation (which can be solved by
inverting a 2 x 2 matrix) with large v, ensures that each time step the pressure anistropy will drop to be very near marginal stability for
the firchose instability to break p invariance. Given this pitch angle scattering, the collisionality parameter v.g in the thermal conduc-
tivity (eqs [42]—[44]) is obtained by comparing equations (A10) and (A11) with equations (38) and (39):

(w7 /2) = P! = B 4]
(pﬁH _ pT—l)
The effective pitch angle scattering rate v is independent of v, (and much smaller than v/,) in the limit of large v,,, and is by definition just

large enough to balance other terms in equations (38)—(39) that are trying to increase the pressure anisotropy beyond marginal stability.
The prescriptions for pitch angle scattering due to mirror modes and ion cyclotron waves are similar. For mirror modes we use

vy (A12)

Veff = Max\ v

2 pn+l
i =P = 3wt (pf“ — P +2¢ L+1> : (A13)
€L
1 pn+l
prfrl :p’i 4 gypét <pn+1 _pri+1 + 25';1—-',-1)’ (A14)
1

to limit the pressure anisotropy (£ = 3.5 for our fiducial run Z/4) and v.g is given by

ot = 2 ()|

Ve = Maxy , V. (A15)
(pﬁ+1 _pzi+1)
For ion cyclotron pitch angle scattering we use
n+1
2 P
n+l __ _n n+1 n+1 I
P =r|— gz/pét Pt P+ S—IB;H»I , (A16)
[
1 pn+l
Pl =p 4 bt Pt =+ s—L_ (A17)

R () ate)

| | ,l/.
(=)

and vg is given by

Veff = Max\ vy
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A4. IMPLEMENTATION OF THE ADVECTIVE PART OF V-q,

The flux of p,,q, = quA), is given by

gL =—kLV| <p_¢> +
p

where the quantity in square brackets can be thought of as an advection speed due to parallel magnetic gradients. Because of this term,
q, isnotapurely diffusive operator, but also has an advective part characterized by the velocity V. If one treats the advective part viaa
simple central difference method, it does not preserve monotonicity. Instead, to treat the advective part of ¢, properly, we include the
advective part in the transport step. After including the advective heat flux in the transport step, it takes the form

(p—pr1) B-VB
p{ [(x/2)(py /0] h + Veff} B2

pL= LV|< > + Vinag P 1 (A19)

) .
—gtl +V. [(V + Vmagb)pL] =0. (AZO)
Thus, for updating p, in the transport step we calculate fluxes on the cell faces using V + Vmagi) instead of just V. The transport step is
then directionally split in the three directions. The procedure for monotonicity preserving schemes for calculating fluxes is described in
Stone & Norman (1992a).

AS. ERROR ANALYSIS

The standard errors in the time averages reported in Table 2 and in Figure 7 are estimated by taking into account the finite correlation
time for the physical quantities in the simulation, using techniques recommended by W. Nevins et al (2006, in preparation). That is, the
standard error for the time average (x) = [ dr x(1)/T of a signal x(7) is given by oy [Var(x)/Ncﬁv] , where Var(x) = f dt (x(f) — {x ))2/ T
is the variance of x, Ner = T/(27int) 1S the effective number of independent measurements T=15 orblts is the averaging time, and 7 is
an estimate of the integrated autocorrelation time. There are significant subtleties in determining the integrated autocorrelation time from
data. To deal with this, we use a windowing technique as recommended by W. Nevins et al. (2006, in preparation), using i, =
fOT dt C(T)W(t/7,), where C(7) is the two—tlme correlation function from the data, W(7/1,,) is a smooth window function that cuts off
the integral at 7 ~ 7,,, and 7, ~ (T T,m) (this gives results insensitive to the choice of window width for 73, << T'). Winters et al. (2003)
found from comparing three realizations of shearing box MRI simulations that the magnetic stress had a variation of approximately +6.5%
after averaging over 85 orbits. The simulations we show here were averaged over 15 orbits, so extrapolating from Winters et al. (2003)
one might expect the uncertainties to be larger by a factor of ~(85/15)">~ 2.4. This is consistent with the typical error bars we report
in Table 2 and Figure 7.
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