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Abstract Measurements of atmospheric turbulence made during the Surface Heat
Budget of the Arctic Ocean Experiment (SHEBA) are used to examine the profile
stability functions of momentum, ϕm, and sensible heat, ϕh, in the stably stratified
boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological
data that cover different surface conditions and a wide range of stability conditions
were continuously measured and reported hourly at five levels on a 20-m main tower
for 11 months. The comprehensive dataset collected during SHEBA allows studying
ϕm and ϕh in detail and includes ample data for the very stable case. New parameter-
izations for ϕm(ζ ) and ϕh(ζ ) in stable conditions are proposed to describe the SHEBA
data; these cover the entire range of the stability parameter ζ = z/L from neutral
to very stable conditions, where L is the Obukhov length and z is the measurement
height. In the limit of very strong stability, ϕm follows a ζ 1/3 dependence, whereas ϕh

initially increases with increasing ζ , reaches a maximum at ζ ≈ 10, and then tends to
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level off with increasing ζ . The effects of self-correlation, which occur in plots of ϕm

and ϕh versus ζ , are reduced by using an independent bin-averaging method instead
of conventional averaging.

Keywords Arctic Ocean · Flux–profile relationships · Monin–Obukhov
similarity theory · SHEBA Experiment · Stable boundary layer

1 Introduction

Understanding the characteristics of turbulent transport to and from the Earth’s
surface is a central problem of atmospheric boundary-layer research. Traditionally,
turbulent fluxes are derived from vertical wind speed and temperature profiles (flux–
profile relationships), and the importance of the flux–profile relationships for climate
modelling, weather forecasting, environmental impact studies, and many other appli-
cations has long been recognized.

Well-known predictions of the flux–profile relationships are based on the theory
suggested over 50 years ago by Monin and Obukhov (1954). There is a long history
of testing Monin–Obukhov predictions including profile functions (see, for example,
the surveys in Monin and Yaglom 1971; Dyer 1974; Yaglom 1977; Dyer and Brad-
ley 1982; Högström 1988; Sorbjan 1989; Garratt 1992; Andreas 2002). Perhaps the
Businger–Dyer profile functions are the most widely and routinely used flux–pro-
file relationships in the unstable case (Dyer and Hicks 1970; Paulson 1970; Businger
et al. 1971). Considerably fewer studies exist that cover very stable conditions. In fact,
a simple linear interpolation (log-linear law) proposed at the end of the 1960s by
Zilitinkevich and Chalikov (1968) and Webb (1970) that provides blending between
neutral and very stable cases is still widely used. Subsequently, several alternative
empirical forms have been proposed for more strongly stable conditions (Holtslag
and De Bruin 1988; Beljaars and Holtslag 1991).

Investigating the turbulence structure in the stable boundary layer (SBL) is of
great practical importance, especially for air pollution studies (Mahrt 1999), because
the SBL develops almost every night over land surfaces. Progress in understanding
SBL has been restrained because the SBL is often continually evolving and the turbu-
lence is generally weak. In addition, several scaling regimes are identified in the SBL
that are associated with different physical mechanisms (e.g., Holtslag and Nieuwstadt
1986; Smedman 1988; Mahrt et al. 1998; Grachev et al. 2005). Furthermore, several
different definitions are possible for the SBL height (e.g., Zilitinkevich and Mironov
1996; Zilitinkevich and Baklanov 2002). Examining the SBL is also complicated by
slope flows, low-level jets, meandering motions, influence of gravity waves, and other
phenomena (e.g., Mahrt 1999). Some insight into the SBL structure has been gained
through several experimental studies (e.g., Forrer and Rotach 1997; Mahrt et al. 1998;
Howell and Sun 1999; Pahlow et al. 2001; Yagüe et al. 2001; Mahrt and Vickers 2002;
Klipp and Mahrt 2004; Cheng and Brutsaert 2005; Hartogensis and De Bruin 2005;
Yagüe et al. 2006).

In this paper, we use the extensive dataset from the Surface Heat Budget of the
Arctic Ocean Experiment (SHEBA) to study the profile stability functions and to
derive new parameterizations for them in stable conditions. The SHEBA measure-
ment program, which took place from October 1997 to October 1998, was the most
ambitious scientific effort ever attempted in the Arctic (Andreas et al. 1999; Persson
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et al. 2002). Turbulent fluxes and mean meteorological data were continuously mea-
sured at five levels on a 20-m main tower, supported by comprehensive atmospheric,
oceanographic, and ice/snow data (Uttal et al. 2002). The 11 months of measurements
during SHEBA cover a wide range of stability conditions, from weakly unstable to very
stable stratification, and allow us to study the physical nature of the SBL, including
the very stable cases, in detail.

Limited observations still remain a problem for SBL model validation. However,
the turbulence data collected over the Arctic pack ice during SHEBA offer several
advantages for studying the structure of the SBL compared to traditional nocturnal
boundary-layer measurements at mid-latitudes. The theme that the polar regions are
ideal meteorological “laboratories” is a recurrent one in the literature (cf. Andreas
et al. 2000). At high latitudes, especially during the polar night, the long-lived SBL can
reach very stable and quasi-stationary states. Besides, the Arctic pack ice is a rather
uniform, flat surface without large-scale slopes, and as a result, our SHEBA data are
not contaminated by drainage (katabatic) or strong advective flows. The almost unlim-
ited and extremely uniform fetch provides an opportunity to isolate many physical
processes, with conditions that are nearly ideal for studying flux–profile relationships
under stable conditions.

2 Formal background

Monin–Obukhov similarity theory (MOST) has provided a framework for describing
turbulence in the stratified atmospheric surface layer. According to MOST (Monin
and Obukhov 1954), properly scaled dimensionless statistics of the turbulence are
universal functions of a stability parameter, ζ = z/L, defined as the ratio of the
reference height z and the Obukhov length scale (Obukhov 1946, 1971),

L = −
u3

∗ θv

κg < w′θ ′
v >

, (1)

where u∗ is the friction velocity, θv is the virtual potential temperature, κ is the von
Kármán constant, and g is the acceleration due to gravity. It should be noted that Eq. 1
is based on the surface momentum flux, τo = ρu2

∗ = −ρ < u′w′ >, and the surface

buoyancy flux, bo = (g/θv) < w′θ ′
v > (ρ is air density, u and w are the longitudinal and

vertical velocity components, respectively, (′) denotes fluctuations about the mean
value, and < > is a time/space averaging operator).

Specifically, the non-dimensional vertical gradients of mean wind speed (U) and
potential temperature (θ) in the MOST are assumed to be

κz

u∗

dU

dz
= ϕm(ζ ), (2a)

κz

θ∗

dθ

dz
= ϕh(ζ ), (2b)

where θ∗ = − < w′θ ′ > /u∗ is the temperature scale based on the surface potential
temperature flux, and ϕm(ζ ) and ϕh(ζ ) are non-dimensional universal functions (‘sta-
bility profile functions’). In this study, the traditional value of κ = 0.4 is used for both
wind speed and temperature profiles.
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The exact forms of the universal functions (2) are not predicted by MOST and
must be determined from measurements. However, in the neutral case (ζ ≡ 0) these
functions equal unity by definition, and MOST does predict the asymptotic behaviour
of these functions under very stable (ζ >> 1) and extremely unstable stratification
(free convection, ζ << −1).

In the very stable case (ζ >> 1), MOST predicts that specific quantities become
independent of z; that is, z is no longer a primary scaling variable (Obukhov 1946;
Monin and Obukhov 1954). This result is because stable stratification inhibits vertical
motion, and the turbulence no longer communicates significantly with the surface
(Monin and Yaglom 1971; Holtslag and Nieuwstadt 1986; Mahrt 1999). Wyngaard
and Coté (1972) and Wyngaard (1973) apparently first referred to this limit as ‘z-less
stratification’. The z-less concept requires that z cancels in Eq. 2a,b, which leads to
(e.g., Garratt 1992)

ϕm(ζ ) = βmζ , (3a)

ϕh(ζ ) = βhζ , (3b)

where βm and βh are numerical coefficients. It is worth noting that the original MOST
predicts that only βm in Eq. 3a is a constant, whereas βh in Eq. 3b may be a function
of ζ (see the discussion in Monin and Yaglom 1971, Sect. 7.3). Since MOST does not
specify βh, a constant value was subsequently accepted for βh (e.g., Garratt 1992).

For near-neutral conditions and moderate ranges of ζ , observations suggest (e.g.
Zilitinkevich and Chalikov 1968; Webb 1970)

ϕm(ζ ) = 1 + βmζ , (4a)

ϕh(ζ ) = 1 + βhζ , (4b)

with these linear equations fitting the available experimental data well for ζ < 1 (Bu-
singer et al. 1971; Dyer 1974; Yaglom 1977; Dyer and Bradley 1982; Högström 1988;
King 1990). Measurements suggest βm ≈ βh ≈ 5 (Sorbjan 1989; Garratt 1992). Note
that Eq. 4a, b would be the linear approximation for fairly small values of ζ if Eq. 2a,
b were expanded in a power series to yield (3a) and (3b) in the limit ζ → ∞.

During 1960–1980, the idea arose that Eq. 4 also applied for stronger stability,
including the limit of very stable stratification (e.g., Garratt 1992). However, during
the past decade, this view has been seriously challenged. Forrer and Rotach (1997),
Howell and Sun (1999), Yagüe et al. (2001, 2006), Klipp and Mahrt (2004), and Cheng
and Brutsaert (2005) reported that the stability functions increase more slowly with
increasing stability than predicted by Eqs. 3 or 4; and moreover, one (ϕh) or both func-
tions become approximately constant in very stable conditions. Based on an analysis
of standard deviations covering almost five orders of magnitude in ζ , Pahlow et al.
(2001) found that they do not follow the z-less predictions; their results, therefore,
suggest that the concept of z-less stratification generally does not hold. In Sect. 4, we
consider in detail the behaviour of the ϕm and ϕh functions in the limit of very strong
stability based on the SHEBA data.

The wind speed and temperature profiles in the general, non-neutral case are
derived by integrating Eq. 2a, b (Panofsky 1963). Traditionally, these integral forms of
the flux–gradient relations are expressed with the neutral and diabatic contributions
separated:

U(z) =
u∗

κ

[

ln
z

zo
− �m

( z

L

)

+ �m

(zo

L

)

]

, (5a)
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θ(z) − θo =
θ∗

κ

[

ln
z

zot
− �h

( z

L

)

+ �h

(zot

L

)

]

. (5b)

Here, θo is the surface potential temperature, zo is the aerodynamic roughness length,
and zot is the temperature roughness length. The functions �m in Eq. 5a and �h in
Eq. 5b obey

�m (ζ ) =
∫ ζ

0

1 − ϕm(ξ)

ξ
dξ , (6a)

� h (ζ ) =
∫ ζ

0

1 − ϕ h(ξ)

ξ
dξ . (6b)

The purpose of our study is to revisit the empirical functional forms of ϕm, ϕh, �m,
and �h for stable conditions based on the SHEBA data.

3 The SHEBA dataset

The SHEBA ice camp was centred around the Canadian icebreaker Des Groseilliers,
which was frozen into the Arctic ice pack and drifted in the Beaufort Gyre from early
October 1997 until early October 1998. During this period, the icebreaker drifted
more than 2800 km in the Beaufort and Chukchi seas, with coordinates varying from
approximately 74◦ N and 144◦ W to 81◦ N and 166◦ W.

Turbulent fluxes and mean meteorological data were continuously measured at five
levels, nominally 2.2, 3.2, 5.1, 8.9, and 18.2 m (or 14 m during most of the winter), on
the 20-m main SHEBA tower. Each level on the main tower had a Väisälä HMP-235
temperature and relative humidity probe and identical Applied Technologies, Inc.
(ATI) three-axis sonic anemometer/thermometers (K-probe) that sampled at 10 Hz.
An Ophir fast infrared hygrometer was mounted at about 8 m above the snow or ice
surface (just below level 4). Except for rare periods, instruments ran almost contin-
uously during 11 months. Turbulent covariance values and appropriate variances at
each level are based on 1-h averaging and derived through the frequency integration
of the cospectra and spectra (for other details, see Persson et al. (2002)).

Several data-quality indicators based on objective and subjective methods have
been applied to the original flux data. Flux data have been edited for unfavourable
relative wind direction for which the tower and the other camp structures were upwind
of the sonic anemometers, noting that the wind blew from disturbed areas only about
10% of the time. Most of the station structures and the Des Groseilliers itself were
located within these sectors. The undisturbed sector at SHEBA had a natural sea ice
surface for many hundreds of kilometres with almost unlimited and uniform fetch.
Some other quality-control criteria are based on validity limits for the horizontal (σu

and σv) and vertical (σw) velocity standard deviations: σu < 2 m s−1, σv < 2 m s−1, and
σw < 0.7 m s−1. The main SHEBA tower was instrumented for over 8000 h, with over
6000 h of that period yielding useful data.

A number of corrections traditionally are applied for eddy-covariance measure-
ments, many of which result from limitations in the instruments or non-ideal bound-
ary-layer conditions (i.e., advection, non-simple terrain). As mentioned earlier the
Arctic pack ice is a rather uniform, flat surface without large-scale slopes and heter-
ogeneity. For this reason, coordinate system rotation to account for the slope of the
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terrain (Wilczak et al. 2001) and corrections for advection (Paw U et al. 2000) are not
required in our case.

Note that while Kaimal and Finnigan (1994, p. 219) suggested that ATI sonic ane-
mometers not be used below a height of 4 m for adequate flux estimates, Kristensen
and Fitzjarrald (1984) pointed out that adequate flux measurements can be made at
heights of several (4–5) times the anemometer path separation. With a path length
between transducers of 0.15 m, the ATI anemometer can be used for accurate variance
measurements as low as 0.6 m. Andreas et al. (2006) showed that, because of path sep-
aration, flux measurements made by ATI sonic anemometers should be performed
at least 1.7 m above the surface to avoid significant flux loss in SHEBA data. This
result is a little stronger than Kristensen and Fitzjarrald (1984) estimations above. All
measurements at SHEBA, including level 1 (2.2 m), satisfied these criteria.

In our analysis no corrections on the turbulent fluxes for loss of spectral energy
(e.g., Moore 1986; Horst 2000; Massman 2000) were performed. Errors caused by inad-
equate frequency response and sensor separations depend on wind speed, boundary-
layer stability, the height of the sensors above the ground, and the type of instruments
deployed. However, they are insignificant for the sensible heat and momentum fluxes
in our case (Andreas et al. 2006, pp. 123–124). Note also that according to Forrer and
Rotach (1997), the corrections for the sensible heat flux and for friction velocity, which
were measured with one single instrument (i.e., anemometer/thermometer), are typi-
cally less than 10% for ζ = 0.1. These corrections on the latent heat flux (basically due
to the sensor separation) may be 40% (their Fig. 4), but the moisture correction term
in ζ and in sonic temperature is usually small for Arctic conditions (Grachev et al.
2005, p. 205).

Comprehensive analysis of different flux frequency response correction methods
(Moore 1986: Horst 2000; Massman 2000; and their variations) was performed by
Clement (2004). According to the Clement (2004) study, different methods for stable
conditions give an average net correction between 1% and 2% for sensible heat flux
(Ibid. Fig. 7.9) and less than 2% for the momentum flux (Ibid. Fig. 7.13). However,
Clement (2004) also found that, for low wind speeds, flux loss for sensible heat flux can
be up to 30% (Ibid. Fig. 7.11). Because low wind speeds are usually associated with
strong stability, these corrections to the sensible heat flux at ζ = 100 can be as large as
5–30% for different methods (Ibid. Fig. 7.12). The same conclusions can be applied
to the momentum flux; large corrections are associated with low wind speeds (Ibid.
Fig. 7.15) and very stable stratification (Ibid. Fig. 7.16). To avoid possible significant
flux loss, wind speeds ≤ 1 m s−1 have been excluded from our data. According to the
Clement (2004) study, flux loss corrections for stable conditions are less than 5–10%
(for the different methods tested) under this restriction (Ibid. Figs. 7.11 and 7.15).

The ‘slow’ temperature and humidity probes provided air temperature and rel-
ative-humidity measurements at five levels and were used to evaluate the vertical
temperature gradient in Eq. 2. The mean wind speed was derived from the sonic ane-
mometers. Rotation is needed to place the measured wind components in a streamwise
coordinate system. We used the most common method, which is a double rotation of
the anemometer coordinate system, to compute the longitudinal, lateral, and vertical
velocity components.

The vertical gradients in Eq. 2 were obtained by fitting the following second-order
polynomial through the 1-h profiles:

x(z) = p1(ln z)2 + p2 ln z + p3, (7)
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where x(z) represents either the wind speed, U, or the potential temperature, θ , at
measurement level z, and p1, p2, and p3 are the polynomial coefficients. The gradients
and, thus, ϕm and ϕh were determined by taking the derivative of Eq. 7 with respect
to z and evaluating it at each of the five tower levels.

Other details of the SHEBA program, the ice camp, deployed instruments, data
processing, accuracy, calibration, and archived data files can be found in Andreas et al.
(1999, 2002, 2003, 2006), Persson et al. (2002), Uttal et al. (2002), and Grachev et al.
(2002, 2005).

4 Profile functions observed during SHEBA

The comprehensive SHEBA dataset allows us to study in detail the behaviour of ϕm

and ϕh and other relevant turbulent features under stable conditions and sheds light
on their behaviour in the limit of very strong stability. In this section, we consider
different aspects of how ϕm and ϕh depend on the bulk Richardson number and ζ ,
with special emphasis on spurious self-correlation.

Traditionally, the non-dimensional gradients ϕm and ϕh are plotted versus ζ . How-
ever, a troubling feature of this analysis is that the same variables (primarily u∗) appear
in both the definitions of ϕm and ϕh and in ζ , see Eqs. 1 and 2. For this reason, analyses
for ϕm and ϕh versus ζ may have built-in correlation (or self-correlation) that can lead
to erroneous results (e.g., Hicks 1978; Mahrt et al. 1998; Andreas and Hicks 2002;
Klipp and Mahrt 2004). For example, decreasing u∗ increases ζ and ϕm and decreases
ϕh. As a result, dependencies of ϕm and ϕh on ζ could be due to self-correlation, also
referred to as artificial, fictitious, or spurious correlation.

To obtain more reliable and independent estimates of the stability profile func-
tions (2) over a wide range of stable conditions, we plot ϕm and ϕh versus the bulk
Richardson number,

RiB = −
(

gz

θv

)

(�θ + 0.61θv�q)

U2
, (8)

where �θ and �q are differences in the potential temperature and the specific humid-
ity, respectively, between the surface and reference level z. Figures 1 and 2 show such
plots for ϕm and ϕh for both surface and local scaling. Functions ϕm (1) and ϕh (1) in Figs.
1a and 2a are based on the fluxes measured at level 1 (‘surface fluxes’), whereas ϕm (n)

and ϕh (n) in Figs. 1b and 2b are based on the local fluxes at height zn (n = 1−5) rather
than on the surface values (Nieuwstadt 1984; Holtslag and Nieuwstadt 1986; Sorbjan
1989). Wind-speed and temperature gradients in these functions, ϕm (1), ϕm (n), ϕh (1),
and ϕh (n), are referred to level n. The bin-averaged points in Figs. 1 and 2, based on
the averaging of the individual one-hour data for RiB, ϕm, and ϕh are indicated by
different symbols for each measurement level.

The individual 1-h-averaged data based on the median fluxes and other medians
(heights, temperatures, etc.) for the five levels are also shown in Figs. 1 and 2 as
background x-symbols. These points give an estimate of the available data at all levels
and the typical scatter of the data. The median fluxes are computed from the median
cospectra (i.e., at each frequency a median is computed from the values from the
heights where data are available). The vertical dashed lines correspond to a critical
Richardson number. According to the SHEBA data (Grachev et al. 2002, 2005), a
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Fig. 1 Plots of the bin-averaged non-dimensional velocity gradient, ϕm, against the bulk Richardson
number, RiB, for levels 1–5 during the 11 months of measurements. The functions ϕm in panel a are
based on the fluxes measured at level 1 (‘surface fluxes’), whereas ϕm in panel b are based on the
local fluxes (n = 1 − 5). The vertical dashed lines correspond to RiB = 0.2. Individual 1-h averaged
data based on the median fluxes for the five levels are shown as the background x-symbols

bulk Richardson number, Eq. 8, of about 0.2 may be considered as the critical value;
that is, RiB cr ≈ 0.2.

Figures 1 and 2 show that the averaged stability functions have different behaviours
in the very stable regime. According to Fig. 1, ϕm increases with increasing stability
up to the critical Richardson number. At the same time, ϕh, shown in Fig. 2, initially
increases with increasing RiB and then almost levels off at RiB ≈ 0.1 (Fig. 2a). Figure
1 shows that there is no visible difference in plots for ϕm if we use surface (Fig. 1a)
or local scaling (Fig. 1b). However, according to Fig. 2, using surface scaling instead
of local scaling leads to less scatter between different observation levels for ϕh (cf.
Grachev et al. 2005).

Although plots of ϕm and ϕh versus RiB are useful for qualitative analyses of
these functions, theoretical formulations and parameterizations assume a functional
dependence of ϕm and ϕh on ζ . Before plotting the ϕm and ϕh functions versus ζ , it
is necessary to determine a range of ζ that corresponds to values RiB < 0.2. Figure
3 shows ζ plotted against RiB for different levels. Although the dependence of ζ on
RiB is not a universal function an average value of ζ = O(10) may be associated with
RiB ≈ 0.2. However, some individual points in Fig. 3 for which RiB < 0.2 reach values
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Fig. 2 Same as Fig. 1 but for the non-dimensional temperature gradient, ϕh. Data with a temperature
difference between the air (at median level) and the snow surface less than 0.5◦C have been omitted
to avoid the large uncertainty in determining the sensible heat flux

up to ζ ≈ 100. Therefore, it makes sense to plot the ϕm and ϕh functions versus ζ in
the range ζ ≤ 100.

Plots of the non-dimensional gradients of the wind speed and temperature versus
the stability parameter for the five tower levels during the 11 months of the SHEBA
measurements are presented in Figs. 4 and 5. These functions are plotted in the log-log
coordinates for zn/L1 and zn/Ln ≤ 100 (cf. Fig. 3).

As discussed above, plots of ϕm(ζ ) and ϕh(ζ ) versus ζ are affected by self-correla-
tion. For this reason, the plain bin-averaging used in Figs. 1 and 2 would be affected
if used in Figs. 4 and 5, too. To reduce or even to avoid the averaging problems asso-
ciated with self-correlation, in Figs. 4 and 5 we used an independent bin-averaging
method instead of conventional averaging in Figs. 1 and 2. First, we sorted the data for
the value of one parameter (sorting parameter) into bins. We averaged zn/L1 (Figs.
4a, 5a) and zn/Ln (Figs. 4b, 5b) in bins of width 100.2. We then computed mean and
median values of < u′w′ >, < w′T ′ >, dU/dz, dθ/dz, and other relevant variables for
each bin. Based on these averaged values, we finally computed stability parameters
(1) and ϕ functions (2) for the surface and local scaling. Furthermore, stability param-
eters plotted on the horizontal axis are based on the mean values, and the ϕ functions
plotted on the vertical axis are based on the medians.
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Fig. 3 Dependence of the local stability parameter, zn/Ln, on the bulk Richardson number, RiB.
The vertical dashed line corresponds to the critical Richardson number, RiB = 0.2. Symbols are the
same as in Fig. 1

According to the SHEBA data presented in Fig. 4, the stability function ϕm

increases more slowly than predicted by the linear Eq. 4a and follows a ζ 1/3 depen-
dence in the very stable regime (cf. Grachev et al. 2005, their Fig. 14; Yagüe et al.
2006, their Figs. 3, 4). At the same time, the stability function ϕh initially increases
with increasing ζ , reaches a maximum at ζ ≈ 10, and tends to level off at large
ζ (Fig. 5). This behaviour means that the temperature profile becomes logarithmic
again under very stable conditions. According to Figs. 4 and 5, using surface scaling
instead of local scaling leads to less scatter between different observation levels for
both ϕm and ϕh, especially for strong stability (cf. Figs. 1, 2). However, both stability
functions ϕm and ϕh expressed with local scaling (Figs. 4b, 5b) show slightly better
fits with the Beljaars–Holtslag relationships than those expressed with surface scaling
(Figs. 4a, 5a). Cheng and Brutsaert’s (2005) parameterization, based on the CASES-
99 data (ζ ≤ 5), assumes that both functions level off for strongly stable conditions.
The SHEBA data agree well with the Cheng and Brutsaert relationship for ϕm (their
Eq. 22) up to ζ ≤ 3 but do not support their asymptotic behaviour for this function
(Fig. 4a). In contrast, the Cheng and Brutsaert relationship for ϕh (their Eq. 24)
describes well the asymptotic behaviour of the SHEBA data but overestimates the
data in the range 0.1 ≤ ζ ≤ 5 (Fig. 5a). In addition, the variation of the turbulent
Prandtl number based on the Cheng and Brutsaert parameterization with stability
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Fig. 4 Plots of the bin-averaged non-dimensional velocity gradient, ϕm, in log–log coordinates against
(a) the surface stability parameter, zn/L1, and (b) the local stability parameter, zn/Ln, for five levels
(n = 1 − 5) during the 11 months of measurements. The dashed line represents ϕm = ϕh = 1 + βζ

with β = 5(ζ < 1), the dashed-dotted line is based on the Beljaars and Holtslag (1991) formula
(ζ < 10), and the dotted line is the Cheng and Brutsaert (2005) parameterization (ζ < 5). The solid
line is ϕm SHEBA, Eq. 9a. Function ϕm (1) and L1 (upper panel) are based on the ‘surface fluxes’,

whereas ϕm (n) and Ln (bottom panel) are based on the ‘local fluxes’. The wind speed gradient in
both functions, ϕm (1) and ϕm (n), is based on the measurements at level n. Individual 1-h averaged
data based on the median fluxes for the five levels are shown as the background x-symbols

is not monotonic in contrast to the monotonic decrease in the SHEBA data (see
Sect. 5). Note, that Yagüe et al. (2006) using SABLES-98 data also reported that ϕm

and ϕh tend to level off for ζ > 1 − 2, whereas Hartogensis and De Bruin (2005)
found good agreement between CASES-99 data and the Beljaars and Holtslag (1991)
relationships.

Grachev et al. (2005) noted that the observed dependence ϕm ∝ ζ 1/3 (Fig. 4a) can
be formally derived from Eq. 2a if one assumes that dU/dz is independent of u∗ for
ζ >> 1, implying that the stress (or friction velocity, u∗) is no longer a primary scaling
parameter in the equation for dU/dz; they termed this regime frictionless (or ‘u∗-less’)
scaling by analogy with the concept of ‘z-less’ scaling. The dramatic reduction of the
surface stress is responsible for the main features of the atmospheric boundary layer
in the limit of very strong stability. First, this regime is associated with the strong influ-
ence of the Earth’s rotation. Frictional effects become negligible and the influence of
the Coriolis effect becomes significant. Observed wind speeds show features of the
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Fig. 5 Same as Fig. 4 but for the non-dimensional temperature gradient, ϕh. Data with a temperature
difference between the air (at median level) and the snow surface less than 0.5◦C have been omitted
to avoid the large uncertainty in determining the sensible heat flux

Ekman spiral even near the surface (Grachev et al. 2002, 2005). Second, the stress falls
off faster with increasing stability than the heat flux (Grachev et al. 2002, 2003, 2005),
and the stress ceases to be a relevant scaling parameter in the relationship for dU/dz

in the limit of very strong stability. However, it is unlikely that the ‘u∗-less’ concept
can be applied to ϕh. This approach would lead to the dependence ϕh ∝ ζ−1/3, but
according to Fig. 5, ϕh tends to be a constant in the range 10 < ζ < 100. According to
Grachev et al. (2005, Fig. 15), some decrease in ϕh is observed for ζ > 100 (cf. Yagüe
et al. 2006, their Figs. 7, 8), but this is associated with the supercritical regime and may
result largely from self-correlation.

According to Figs. 4 and 5, the bin averages for both ϕm and ϕh at levels 3–5 collapse
better to a single curve over a wide range of z/L than the data obtained at levels 1
and 2. The data for these two lower levels are systematically lower than the data at
the three higher levels. This bias is more pronounced in the wind speed profile for
weakly and moderately stable conditions (0.01 < z/L < 1) and a possible reason of
this phenomenon is discussed below. For this reason new parameterizations for ϕm

and ϕh (Sect. 5) are based on the data collected at levels 3–5.
In Fig. 6, we examine the departure of the wind speed at levels 1–5 from the loga-

rithmic profile for near-neutral conditions (zn/Ln < 0.1 and U > 4 m s−1). According
to Fig. 6, the wind speeds at levels 4 and 5 are more or less described by the logarithmic
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Fig. 6 Deviation of the wind speed at levels 1–5 from the logarithmic law for near-neutral conditions

(zn/Ln < 0.1 and U > 4 m s−1). In the calculations, u∗ m is the median friction velocity, while um and
zm refer to level 3. For simplicity, stability corrections are not used here

law. For U > 7 − 8 m s−1, the wind speed at level 1 is systematically lower and at level
2 is systematically higher than predicted by the logarithmic law. Although the devi-
ation is small (about 0.2 m s−1 at U ≈ 10 m s−1, i.e. 2%) this behaviour may lead to
the pronounced bias in the wind-speed gradients. The observed departure from the
logarithmic profile in Fig. 6 may represent a real physical process, e.g. the logarithmic
profile along the lower part of the tower is not in steady-state for winds higher than
7–8 m s−1, a surface flux footprint effect, or a blowing snow effect. It may also be a
measurement artefact associated with this wind speed range. However as mentioned
earlier, this effect has no impact on our parameterizations derived in this range from
the measurements at levels 3–5 only.

5 The SHEBA stability functions

Traditional linear (Webb 1970; Businger et al. 1971; Dyer 1974) and Beljaars and
Holtslag (1991) relationships fit most atmospheric datasets well for small and mod-
erate values ζ when ζ > 0. However, they overestimate existing data for large ζ . In
essence, for large ζ , the linear relationships (4) and the Beljaars–Holtslag equation for
ϕm are based on the z-less stratification concept. Although the Cheng and Brutsaert
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Fig. 7 Plots of the bin-averaged turbulent Prandtl number, Prt , (a) and gradient Richardson number,
Ri, (b) versus ζ . Notation for symbols and lines is the same as in Figs. 4 and 5

(2005) parameterization is based on the recent CASES-99 data and covers a range
up to ζ ≈ 5, there is some discrepancy between their results and the SHEBA data,
as discussed above. In this section, we propose new functional forms for ϕm and ϕh in
stable conditions based on the SHEBA data.

The functional forms for ϕm(ζ ) and ϕh(ζ ) proposed here are based on the following
principals: (i) the functions should have proper behaviour, i.e., ϕm(ζ ) → 1 + βmζ and
ϕh(ζ ) → 1 + βhζ for small ζ , and ϕm ∝ ζ 1/3 and ϕh → constant for ζ → ∞; (ii) ϕm(ζ )

and ϕh(ζ ) should fit the SHEBA data reasonably well for the entire range of ζ > 0;
and (iii) ϕm(ζ ) and ϕh(ζ ) should be analytically integrable, that is, �m(ζ ) and � h(ζ )

should be analytical functions (see Eq. 6).
A number of functions that satisfy the above criteria have been tested. Note that

some interpolations suggested earlier for free convection and modified for ζ > 0 can
be applied here for ϕm(ζ ). Power law interpolations have the general form suggested
by Wilson (2001), ϕm(ζ ) = (1 + γm ζ km)nm and ϕh(ζ ) = (1 + γh ζ kh)nh . The exponent
combination used by Carl et al. (1973) is (km , nm ) = (kh , nh ) = (1, –1/3). Kan-
sas-type relationships are associated with the combination (km , nm ) = (1, –1/4) and
(kh , nh ) = (1, –1/2) for unstable conditions and (km , nm ) = (kh , nh ) = (1, 1) for
stable stratification (see Eq. 4), and Wilson (2001) suggested an alternative function
(km , nm ) = (kh , nh ) = (2/3, – 1/2) for ζ < 0. These functions, however, have the



SHEBA flux–profile relationships 329

undesirable property that the derivatives of both ϕm and ϕh approach infinity as ζ

approaches zero.
The concept of ‘u∗-less’ stratification requires that kmnm = 1/3. The following com-

binations have been tested on the SHEBA dataset (km , nm ) = (1/3, 1), (1, 1/3), (2/3,
1/2), (1/2, 2/3). Our analysis demonstrated that all these cases lead to unsatisfactory
agreement with the data. Thus, a simple interpolation with one coefficient (γm) cannot
describe the SHEBA data. Functional forms suggested by Kader and Yaglom (1990,
their Eq. 3.6) for ζ < 0 with several calibration coefficients could also be adopted for
the stable case, but these equations are not analytically integrable.

We thus suggest the following functional forms of ϕm(ζ ) and ϕh(ζ ) based on the
SHEBA data (‘the SHEBA profile functions’):

ϕm SHEBA = 1 +
amζ(1 + ζ )1/3

1 + bmζ
≡ 1 +

6.5ζ(1 + ζ )1/3

1.3 + ζ
, (9a)

ϕh SHEBA = 1 +
ahζ + bhζ 2

1 + chζ + ζ 2
≡ 1 +

5ζ + 5ζ 2

1 + 3ζ + ζ 2
, (9b)

where am ≡ βm = 5, bm = am/6.5, ah ≡ βh = 5, bh = 5, and ch = 3. Coefficients am

and ah are determined from the asymptotic behaviour of ϕm(ζ ) and ϕ h(ζ ) for small
ζ (see Eq. 4); the ratio am/bm and coefficient bh are derived from the asymptotic
behaviour of these functions at ζ → ∞. Note that ϕm → (am/bm)ζ 1/3 = 6.5ζ 1/3 and
ϕh → 1 + bh = 6 as ζ → ∞. Coefficient c h is derived by fitting the data for moderate
ranges of ζ . The proposed parameterizations for the stability functions ϕm and ϕh, Eq.
9, are plotted versus the stability parameter in Figs. 4 and 5 (solid lines). As discussed
above, the surface scaling is superior to the local scaling.

Parameterizations (9) have also been used to study the behaviour of the turbulent
Prandtl number and the gradient Richardson number (Fig. 7) (cf. Andreas 2002). Note
that the difference between ϕm and ϕh is best demonstrated by plots of the turbulent
Prandtl number defined by

Prt =
km

kh
=

< u′w′ > dθ/dz

< w′θ ′ > dU/dz
≡

ϕh

ϕm
, (10)

where km = −<u′w′>

dU/dz
is the turbulent viscosity, and kh = −<w′θ ′>

dθ/dz
is the turbulent

thermal diffusivity. The turbulent Prandtl number (10) describes the difference in tur-
bulent transfer between momentum and sensible heat; turbulent momentum transfer
is more efficient than turbulent heat transfer when Prt > 1 and vice versa.

The gradient Richardson number, Ri, is defined by

Ri =
(

g

θv

)

dθv/dz

(dU/dz)2
=

ζϕh

ϕ2
m

. (11)

Note that Prt and Ri depend more sensitively on the parameterizations for ϕm(ζ ) and
ϕh(ζ ) because both parameters are combinations of ϕm and ϕh. The flux Richardson
number, in contrast, contains only one function, Rf = ζ/ϕm. According to Eq. 10, Prt

may be defined for local and for surface scaling as we have done for ϕm(ζ ) and ϕh(ζ ).
The relationship (11) for Ri contains no fluxes, and therefore Ri is defined only locally.

According to Fig. 7a, on average, Prt tends to be less than 1 with increasing stability
by virtue of the asymmetric behaviour of the ϕm and ϕh functions (Figs. 1, 2, 4 and 5).
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Note also that according to Grachev et al. (2002, 2003, 2005), a small but still signifi-
cant heat flux (several W m−2) and negligibly small stress characterize the very stable
regime. This asymmetric flux decay causes km to decrease faster than kh and therefore
leads Prt to decrease (see Eq. 10). Our result Prt < 1 is consistent with Howell and Sun
(1999) but disagrees with the measurements of Kondo et al. (1978) and Yagüe et al.
(2001), the Beljaars and Holtslag (1991) relation, and the Zilitinkevich and Calanca
(2000) model.

Note also that a plot of Ri versus ζ by definition is not affected by the self-corre-
lation. For this reason, Fig. 7b is simply a plot of Ri versus zn/Ln. The plots in Fig.
7 are an additional verification of the proposed SHEBA profile functions (9) (solid
lines in the figure). The greater scatter of points in Fig. 7 for ζ < 0.05 results from the
relatively small sensible heat flux and unreliable temperature-gradient measurements
in near-neutral conditions. The obtained asymptotic behaviours of ϕm(ζ ) and ϕh(ζ )

for ζ → ∞ imply that Prt ∝ ζ−1/3, Ri ∝ ζ 1/3, and Rf ∝ ζ 2/3 in the limit of very strong
stability.

The integral form of ϕm SHEBA can be obtained by integrating Eq. 6a with ϕm(ζ )

defined by Eq. 9a,

�m SHEBA (ζ ) =
∫ ζ

0

1 − ϕm SHEBA(ξ)

ξ
dξ

= −
3am

bm
(x − 1) +

amBm

2bm

[

2 ln
x + Bm

1 + Bm
− ln

x2 − xBm + B2
m

1 − Bm + B2
m

+ 2
√

3

(

arctan
2x − Bm√

3Bm

− arctan
2 − Bm√

3Bm

)]

, (12)

where x = (1 + ζ )1/3, Bm =
(

1−bm
bm

)1/3
> 0. In a similar way to Eq. 12, the integral

form of the ϕh SHEBA can be obtained from Eqs. 6b, 9b:

�h SHEBA (ζ ) =
∫ ζ

0

1 − ϕh SHEBA(ξ)

ξ
dξ

= −
bh

2
ln

(

1 + chζ + ζ 2
)

+
(

−
ah

Bh
+

bhch

2Bh

)

×
(

ln
2ζ + ch − Bh

2ζ + ch + Bh
− ln

ch − Bh

ch + Bh

)

, (13)

where Bh =
√

c2
h

− 4 =
√

5. Equations 12 and 13 are more complicated than the

Kansas-type, the Beljaars–Holtslag, and Cheng–Brutsaert �m(ζ ) and �h(ζ )functions.
However, Eqs. 12 and 13 are analytical relationships based on the ϕm(ζ ) and ϕh(ζ )

functions (9a) and (9b) that better fit the SHEBA data. Applying the functional forms
(12) and (13) to wind speed (5a) and temperature (5b) profiles is straightforward. The
proposed SHEBA profile functions (9) are valid for RiB < RiB cr ≈ 0.2. The bulk
Richardson number, Eq. 8, may be estimated from Eqs. 5, 12, and 13.

6 Conclusions

We have used the comprehensive SHEBA flux–profile data to understand the
behaviour of the profile stability functions, ϕm and ϕh, and derive quantities such
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as the turbulent Prandtl number, Prt, and the gradient Richardson number in the
stably stratified atmospheric boundary layer.

According to the SHEBA data, both stability functions ϕm and ϕh increase more
slowly in very stable conditions than predicted by the linear equations (4) and the
Beljaars–Holtslag relationship. In the limit of very strong stability, ϕm varies as ζ 1/3;
whereas ϕh initially increases with increasing ζ , reaches a maximum at ζ ≈ 10, and
then tends to level off with increasing ζ . The scaling law ϕm ∝ ζ 1/3 is associated with
our proposed frictionless or ‘u∗-less’ scaling. As a consequence of the observed depen-
dences for the stability functions ϕm and ϕh, the turbulent Prandtl number decreases
and tends to be less than 1 (Prt ∝ ζ−1/3) with increasing stability. This result implies
that heat transfer is more efficient than momentum transfer in the very stable regime.

Based on the SHEBA data, we propose new mathematical forms for ϕm and ϕh

in stable conditions, Eq. 9. The SHEBA measurements also show that profile stabil-
ity functions based on local scaling are more scattered than those based on surface
scaling. We took special care when analyzing ϕm and ϕh as functions of ζ in light of
the self-correlation problem. For independent estimates of how ϕm and ϕh behave
in very stable stratification, we plotted these functions against the bulk Richardson
number. In addition, to analyze ϕm and ϕh as functions of ζ , we used an independent
bin-averaging method instead of conventional averaging.
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