
Abstract
One of the primary outputs of the scientific enterprise is data, but 
many institutions such as libraries that are charged with preserving 
and disseminating scholarly output have largely ignored this form 
of documentation of scholarly activity. This paper focuses on a par-
ticularly troublesome class of data, termed dark data. “Dark data” is 
not carefully indexed and stored so it becomes nearly invisible to 
scientists and other potential users and therefore is more likely to 
remain underutilized and eventually lost. The article discusses how 
the concepts from long-tail economics can be used to understand 
potential solutions for better curation of this data. The paper de-
scribes why this data is critical to scientific progress, some of the 
properties of this data, as well as some social and technical barriers 
to proper management of this class of data. Many potentially useful 
institutional, social, and technical solutions are under development 
and are introduced in the last sections of the paper, but these so-
lutions are largely unproven and require additional research and 
development. 

Background
The majority of the work being done by scientists is conducted in rela-
tively small projects with one lead researcher with part-time commitment 
to the project and perhaps two or three graduate students or part-time 
staff scientists. The raw product of these efforts is scientific data, the data 
that forms the foundation of all of scientific theory. While great care is 
frequently devoted to the collection, preservation, and reuse of data on 
very large projects, relatively little attention is given to the data that is 
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being generated by the majority of scientists. New social structures and 
technical developments could greatly increase the availability and value of 
individual scientists’ data and related research. We can organize science 
projects along an axis from large to small. The very large projects sup-
porting dozens or more scientists would be on the left side of the axis and 
generate large amounts of data, with smaller projects sorted by decreas-
ing size trailing off to the right. The major area under the right side of the 
curve is the long tail of science data. This data is more difficult to find and 
less frequently reused or preserved. In this paper we will use the term dark 
data to refer to any data that is not easily found by potential users. Dark 
data may be positive or negative research findings or from either “large” 
or “small” science. Like dark matter, this dark data on the basis of volume 
may be more important than that which can be easily seen. The challenge 
for science policy is to develop institutions and practices such as institu-
tional repositories, which make this data useful for society.

When asked, almost all scientists will quickly acknowledge that they are 
holding dark data, data that has never been published or otherwise made 
available to the rest of the scientific community. An example of dark data 
is the type of data that exists only in the bottom left-hand desk drawer of 
scientists on some media that is quickly aging and soon will be unreadable 
by commonly available devices. The data remains in this dark desk drawer, 
inaccessible to the scientific community until the scientist retires. At the 
point of retirement some scientists rush to find a more suitable home 
for their data, be they in the form of slides, photographs, specimens, or 
electronic media files. More often than not, even in a well-planned retire-
ment the desk drawer is eventually emptied into a dumpster because no 
one, including the scientist, knows exactly what the data is since it lacks 
adequate documentation. 

Many factors drive the need to pay closer attention to the long tail 
of science, including the growing number of scientists globally and the 
increase in the amount of data each scientist can generate with modern 
instrumentation. This vast growth in the collection of data does not in any 
way insure that the data is accessible now or that it will be accessible in the 
future. It has always been the case that scientists have generated more data 
than they eventually publish but as discussed below, new social structures 
and rapidly expanding information management tools are making new 
modes of science data management possible. 

Chris Anderson (2004) popularized the economics of the long tail in 
Internet commerce. Some of the same information properties and tools 
discussed in Internet economics apply to scientific data. Before the Inter-
net, stores like Blockbuster™ rented movies from physical store fronts. 
The physical inventory was limited by the cost of space. The stores would 
stock only titles that would rent frequently enough to justify the storage 
space. Blockbuster concentrated on the head of the long-tail graph (see 
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figure 1). Less frequently viewed movies were not easily available to people 
in the area of the Blockbuster store. Customers may not even know of the 
existence of films that they would like to see because they did not see them 
in the local Blockbuster. These films were essentially dark data. Netflix and 
the Internet changed these economics by separating inventory from the 
point of sale. To the surprise of many, it turned out that there was a great 
deal of value in the rarely viewed movies. While there may only be a few 
dozen or hundred people interested in seeing a boutique title in a particu-
lar year, there are many thousands of such rarely viewed titles. Search tools 
and the Internet allowed people to find and rent boutique films and bring 
them to light and their television screens.

The long-tail phenomenon can repeat itself in science data. There may 
only be a few scientists worldwide that would want to see a particular bou-
tique data set but there are many thousands of these data sets. Access to 
these data sets can have a very substantial impact on science. It seems likely 
that transformative science is more likely to come from the tail than the 
head. For the most part, by the time large-scale projects that generate high 
volume data are developed, the questions to be answered are relatively well 
understood. The long tail is a breeding ground for new ideas and never 
before attempted science. Improbable and risky projects are less likely to 
attract large grants if they can get any grant at all. (Peck, 2008). A parallel 
can be seen in bibliometrics where high impact articles are not necessarily 
found in high impact journals (Seglen, 1997; Sun & Giles, 2007). 

Of course science data is different from DVD rentals and offers unique 
challenges and opportunities. Searching for DVDs was relatively easy: Peo-
ple could search for titles, favored actors or actresses, directors, genre, and 
a few other descriptors. The format of the returned items is also relatively 
limited with VHS, DVD, or Blu-ray. Determining the fields that are needed 
to effectively describe and index scientific data is much more challenging. 
Once an interesting data set is found, scientists must deal with apparently 
infinite variability in the format of different data sets. These challenges 
require new practices and new technologies for data handling.

The long tail of science and science’s dark data share the same eco-
nomic and social constraints. There is a wealth of science data that is al-
most impossible to see. This is science’s dark data. We can find much of 
this dark data in the long tail of science data. Because it is difficult to find 
dark data, it is underutilized and routinely lost. With appropriate planning 
and technology this data can be brought to light and made more useful to 
the scientific community. For an initial analysis of the scope of this issue, 
we can sort and graph science projects by the volume of data that they 
generate. At the left side of the graph in figure 1 are projects such as super 
colliders and Earth-observing satellites that routinely collect hundreds of 
gigabytes of data each day. On the right side of the graph are science proj-
ects that produce small data sets. We hypothesize that this data collection 
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size distribution follows many of the other distributions in nature and hu-
man endeavor, such that it follows a power law distribution.1 

The characteristics of the data sets in the left, high volume head of 
the graph differ from the characteristics of the data on the right, low vol-
ume tail of the graph. The high volume data tends to be well-planned, 
well-curated, and highly visible to scientists worldwide. Data gathering at 
the head of the graph tends to be highly automated with specialized in-
strumentation. Data on the right, in the tail of the graph, tends to be less 
well planned, more poorly curated and less visible to other scientists. The 
graph’s tail also contains a higher proportion of dark data. 

A study of the size of research awards granted by the U.S. National Sci-
ence Foundation (NSF) is a measure of the distribution of size of research 
projects. Figure 1 was created by sorting all research grants awarded by 
NSF in 2007 based on the dollar value of the grant. Grants range in size 
from multi-million dollars to just several hundred dollars. While we do not 
know the quantity or type of the data generated by each of these projects, 
we can assume that each dollar of investment in scientific research does 
generate some relatively constant amount of data. If this is true, then a 
plot of data generation by science projects would have roughly the same 
shape as the funding curve in figure 1 and the individual projects would 
be in approximately the same location relative to one another. Table 1 
provides a breakdown of NSF funding in 2007 in terms of the 80/20 rule. 

Figure 1. Distribution of NSF Awards by Dollar Value
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This can be viewed by both the dollar value of the largest 20 percent of 
grants and as the number of grants that are needed from the high end of 
the curve to account for 20 percent of the revenue. There are a total of 
12,025 grants in 2007 awarding a total of just under $2.9 billion.2 The top 
20 percent of grants, 2,405 grants, received a little over 50 percent of the 
total funds. If viewed not by the number of grants but by the percent of the 
dollar value, the top 254 grants received 20 percent of the revenue. That 
is, 2 percent of the largest grants received 20 percent of the total amount 
awarded. We argue that the top 20 percent measured either way has better 
curated data.

A special issue of Nature (2008), titled “Big Data,” provides a good over-
view of current successes and challenges in managing large data sets. How-
ever, an important observation is that most scientists work on the right side 
of the graph on smaller research projects usually generating small data 
sets as can be seen in table 1. Because of the length of the tail, while the 
data volumes are small when viewed individually, in total they represent 
a very significant portion of the country’s scientific output. In fact, the 
frequently used term big science is somewhat misleading. Many smaller sci-
ence projects in the tail are actually intellectually interlinked efforts run-
ning under a distributed funding model. While GenBank and Long Term 
Ecological Research (LTER) site data repositories are centrally financed, 
the research projects that provide their data are independently financed 
and certain aspects, but not all, of the resulting data are pooled, in essence 
creating big science from organized small science. The percentage of data 
from the tail that is collected into well-managed repositories is unknown. 
While it is critical to continue to curate the data in the head of the graph, 
it is important to improve curation of the data in the tail. Curation is an 
old concept that is being applied to digital information. Digital curation is 
the management and appraisal of data over the life cycle of scientific inter-
est. “[C]uration embraces and goes beyond that of enhanced present-day 
re-use, and of archival responsibility, to embrace stewardship that adds 
value through the provision of context and linkage: placing emphasis on 
publishing data in ways that ease re-use and promoting accountability and 
integration” (Rusbridge et al., 2005). To accomplish this level of accessibil-
ity, the data in the long tail of science requires different curation practice 
than monolithic large volume data sets. These curatorial differences are 
discussed in the sections below on barriers and solutions to data access.

Other researchers have pointed out properties of scientific data related 
to the long tail. For example, John Porter makes the distinction between 
deep and wide databases (Porter, 2000, p. 63). “Deep” databases special-
ize in a few data types making up relatively homogeneous collections of 
data and allowing the development of sophisticated search tools. “Wide” 
databases collect many types of data, making tool development to deal 
with the data much more difficult. We speculate that the head of the data 
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curve might tend to hold more “deep” data sets, since much of this infor-
mation is collected with dedicated instrumentation. The tail tends to be 
much more heterogeneous as a whole, but the tail may also contain many 
projects working with similar data types. This scattered but similar data 
in the tail represents an opportunity—which some fields of science have 
already capitalized on—to collect data into “deep” data collections; this is 
discussed below in the section on technical solutions.

There is another previously used definition of dark data, which defines 
it as the unpublished data of “failed” experiments (Goetz, 2007). In this 
use of the term, failed refers not to bad science but to the fact that only 
positive results tend to be published. Experiments that accurately dem-
onstrate no effect of the treatment condition are valid findings but are 
less likely to be published. The data therefore becomes dark data and 
later meta-analyses of the literature provide a skewed view of the actual 
scientific findings. This definition of dark data is subsumed by the broader 
definition used in this paper. While such unpublished data indeed are 
difficult to find (and therefore “dark”), there are many types of “positive” 
research findings and raw data that lie behind published works which are 
also difficult or impossible to access as time progresses. 

Long-tail science is not synonymous with small scientific questions or 
even small science. The results of multiple projects in the tail can contrib-
ute to truly big data, grand accomplishments, and accumulated knowl-
edge if handled properly. A prototypical example of this type of research is 
biomolecular biology projects that contribute to GenBank and the Protein 
Data Bank (PDB). Principles established by funding bodies such as the 
National Institutes of Health and the publishing industry have fostered ac-
cumulation of large collections of genomic and protein data respectively. 
This data has helped fuel rapid development within these fields. This type 
of molecular data is relatively simple and standards commensurately easy 
to establish. While other data may be more difficult to organize, the collec-

Table 1. Grant Size Distribution

Total Grants 12,025 
over $500 $2,865,388,605

 20% by number of grants 80% by number of grants

Number Grants 2405 9621
Total Dollars $1,747,95,7451 $1,117,431,154
Range $38,131,952- $300,000- 
 $300,000 $579

 20% by total value =   80% by total value =  
 $573,077,721 $2,292,310,884 

Number of grants 254 11,771
Range $38,131,952- $1,029,9984- 
 $1,034,150 $579
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tion of this data may lead to advances that we cannot easily predict ahead 
of the collection.

Dark data exists throughout the fabric of science. While some may in-
deed be incorrect data that should be discarded because of mistakes, a 
substantial amount of time and money is spent to collect potentially useful 
data that is then underutilized. Much of this dark data resides in the long 
tail of science, in innumerable projects and labs. The next section will 
focus on the importance of this data. The following section will examine 
some of the properties of data in the tail to better understand the oppor-
tunities and problems at hand. The remainder of the paper will explore 
barriers and the institutional and technical solutions that can make this 
data more useful. Finally the paper addresses some of the outstanding 
research questions that must be answered before science will be able to 
make fuller use of the raw fruits of its efforts.

The Dark Data in the Tail Matters
The data in the long tail is an important resource for science. Most data 
generated and collected in science is important to the scientific process of 
theory development and evaluation. This fact is understood by the popu-
lar culture as expressed even in crime mysteries. “I have no data yet. It is 
a capital mistake to theorize before one has data. Insensibly one begins to 
twist facts to suit theories, instead of theories to suit facts” (Sherlock Hol-
mes, in “A Scandal in Bohemia” by Sir Arthur Conan Doyle). In addition, 
science is built on the principle of replicability. Independent researchers 
should be able to collect data and analyze it to produce similar results. If 
the results of prior research are unavailable, or only available in a highly 
abstracted form, then replication is difficult.

The history of science is a reflection of the history of communication 
of knowledge and is based on reproducible data. If evidence for a theory 
cannot take the form of replicable data, then the theory is in question. 
Theories that are not testable with verifiable data are not scientific theo-
ries but rather unsubstantiated belief systems. Scientists live in a world 
of changing and evolving theory with new or refined theories replacing 
previously accepted theories only on the evidence of hard3 data collected 
using well-documented methods. The availability of the data behind ex-
periments helps to insure scientific integrity by keeping the process open 
to external evaluation. The data itself is often too voluminous or varied 
for humans to understand by looking at the data in its raw unprocessed 
form, so scientists use graphs, charts, mathematical equations, and statis-
tics to “explain,” “describe,” or “summarize” the data. These representa-
tional tools help us to understand the world around us. The use of data 
simplification and data reduction methods in science is repeated at all 
scales of natural phenomena from the subatomic to the physics of our hu-
man scale world, to the function of a cell, a mating behavior of birds, or 
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the functioning of ecosystems. But these summary representations of data 
rely on the underlying data, and the published papers do not capture the 
richness of the original data and are in fact an interpretation of the data. 
If the dark data in the tail is not selectively encoded and preserved, then 
the underpinning of the majority of science research is lost.

The number of journal articles and the number of scientists is growing 
globally (Mabe & Amin, 2001), so we can infer that the amount of dark 
data is also growing. As the world economy expands along with the expan-
sion in the number of scientists and science findings, it becomes increas-
ingly unlikely that traditional publishing, word-of-mouth and ephemeral 
project Web pages will lead to sufficient data preservation and data shar-
ing. The limited increase in publishing slots in comparison to the vast in-
crease in data may be exasperating the situation. “Only a small proportion 
of the explosively expanded output of biological laboratories appears in 
the modestly increased number of journal slots available for its publica-
tion, even if more data can be compacted in the average paper now than 
in the past” (Young, Ioannidis, & Al-Ubaydli, 2008).

While some data can be discarded because it can be generated again 
by replicating the conditions of the original data gathering, the fact that 
data can be regenerated does not necessarily mean that data should be 
discarded. One reason to keep replicable data is economics. Here the in-
terests of the individual scientists and the interest of the society of science 
may diverge. Once the originator of scientific data has exercised its utility 
through theory validation and publishing, he may decide that the data no 
longer has value and therefore discard it. However, from the perspective 
of the larger scientific community this data may have value and utility 
above the cost required to preserve it. Some data cannot be duplicated 
because it records unique events. Finally, data may contain a hidden sig-
nal that is lost in the summary statistics. For example, some genes are ex-
pressed through protein production following circadian rhythm. Special 
procedures are required to discern which fraction of the expression is due 
to circadian rhythm and which part of the protein production is due to 
other processes. As a consequence the signal can be overlooked (Refinetti, 
Cornélissen, & Halberg, 2007).

The Properties of Dark Data in the Tail
There are a number of important features that distinguish data in the 
head and data in the tail of science as presented in table 2.

As noted by Porter (2000), high volume data, such as those that ap-
pear in the large projects, tends to be more homogeneous. In well-coor-
dinated projects of this type researchers agree ahead of time on what data 
will be generated, how it will be formatted and stored for later access. 
This is in part because there are immediately other users of the data, the 
other scientists on the project. As noted earlier, data from large projects 
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also tends to be homogeneous and voluminous because data gathering 
is often mechanized with instrumentation. Of course there can be huge 
variation in the instrumentation being used among projects, but within 
a project the same instruments tend to be used. Also, where projects are 
large, instrument manufacturers, be they the scientists themselves or com-
mercial entities, have a greater motivation to coordinate instrument data 
format. As the size of projects exists on a continuum from large to small, 
the quality of this organization exists on a continuum from highly struc-
tured industry-wide standards to relatively independent proprietary data 
formats. This uniformity in the head makes it much easier for the data to 
be stored in structured databases. This makes the data more accessible. In 
contrast, the hand-collected data of the smaller science projects in the tail 
are not uniform. Each project might invent their own data format, and 
this may or may not be committed to a structured database. More often 
the highest level of structure attained in this end of the graph is encoding 
into spreadsheets. In fact, many scientists make no distinction between 
databases and spreadsheets although databases are much more amenable 
to selection, sorting, and data merging than are spreadsheets. This extra 
labor is a barrier to reuse.

In the head it becomes economical to centrally curate the data of the 
project. Since the scientists of the project are working together it is natural 
for the information to be gathered together. Sometimes disjoint projects 
in the tail are organized by funding agencies to answer scientific questions 
or for economies of scale. This essentially moves these projects from the 
tail toward the head of the graph whether you count the dollars in the joint 
projects or the joint data production, as is the case with disciplinary or ref-
erence repositories such as GenBank or the Protein Data Bank (PDB) and 
each of the model organism databases. These repositories have relatively 
uniform internal structure. With important exceptions discussed below 
such as LTER, data from projects in the tail generally do not make it into 
repositories and fall into disuse and darkness. In those cases where they 
do make it into repositories, these data are generally put into institutional 

Table 2. Differences between Head and Tail Data

Head Tail

Homogeneous Heterogeneous
Mechanized Hand Generated
Uniform Procedures Unique Procedures
Central Curation Individual Curation
Disciplinary and  
 Reference Repositories Institutional Repositories
Maintained Not Maintained
Open Access Obscured or Protected
Immediately Reused Seldom Reused
Make Careers Currently Unnoticed
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repositories, not because of the similarity of the data format to the other 
information in the repository but because of properties extrinsic to the data 
such as the university where it was generated. Queries to access data in the 
disciplinary collections typically allow future users to pull out individual re-
cords of measurements from the previous studies. For example, a researcher 
can retrieve a sequence of nucleotides in a particular gene from a particular 
species or individual in GenBank. In contrast, many institutional reposito-
ries save many different file formats. For example, both Fedora (http://
www.fedora.info) and DSpace (http://www.dspace.org/) treat data such as 
relational databases as a unitary digital object with metadata describing 
the set of records rather than the individual records. Later users cannot re-
trieve individual records but must retrieve an entire collection of records 
as they were deposited by the original researcher. If this data is properly 
documented with metadata, then a person retrieving the data will be able 
to perform operations on their local computer to access particular re-
cords. For example, an Excel spreadsheet of the measurements of trees in 
a study plot could be retrieved from the institutional repository and then 
the user would need to manually load this into compatible spreadsheet 
software and manually select tree or records of interest.

When data does not make it into a repository, then it is much less likely 
to be maintained over time. Data distributed on individual researcher 
websites are not maintained and often quickly vanish. This is much more 
likely to happen in the tail. 

Private and government funding agencies for larger projects often pay 
special attention to the resulting data. When public funds are used or 
when private agencies are trying to insure the greatest impact of their 
research investment, they often require explicit data sharing plans and 
frequently require open access to the data for the rest of the scientific 
community. Smaller projects are not as likely to attract such oversight, so 
the resulting data can end up in obscure locations (such as desk drawers) 
or protected from access, again leading to dark data from the perspective 
of the broader science community.

A final difference between data in the head and data in the tail is the im-
pact that access to the data has on people’s careers. For data in the tail, the 
only definition of success is the publication of a very abstract representation 
of the data (e.g., graph or statistics) in a journal. In the large science proj-
ects, the data management itself is frequently the object of academic and 
social interest so people’s careers can be built on successful management of 
the primary data so that it can be effectively reused. However, in some cases 
the person receiving credit may be an informaticist and not the scientists.

Barriers to Bringing Dark Data to Light
An irony is that dark data is initially very visible, at least to one individual. 
Scientists spend time and effort carefully collecting, formatting, and saving  
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data about some phenomenon of interest. This may be the location of a 
planet, the flow of water in a river, the behavior of a mammal, a virus, or a 
molecule. While there is already much dark data that can be exposed and 
reused, there are also forces that move data into obscurity that must be recog-
nized and addressed. Table 4 in the next section lists some of the barriers.

Data becomes dark because no one is paying attention. There is little 
professional reward structure for scientists to preserve and disseminate 
raw data. Scientists are rewarded for creating high-density versions of their 
data in statistics, tables, and graphs in scholarly journals and at confer-
ences. These publications in some ways are the sole end product of scien-
tific inquiry. These products, while valuable, may not be as useful as some 
authors hope. In a comparison of offline and online papers Lawrence 
(2001) showed that the mean number of citations to offline articles is 2.74, 
and the mean number of citations to online articles is 7.03. If a scientist 
were to have a data set used at least as often, it might justly be judged to 
be a greater service to science than the publication. We might expect that 
if it is available online it would be more likely to be used than if it is kept 
private. Yet there is largely no reward built into the promotion and tenure 
process for developing valuable data. Perhaps part of this barrier of lack of 
reward is because mechanisms are not in place to track data use as closely 
as we track citation of a paper.

It should also be noted that provision of data and sufficient documen-
tation/metadata for its reuse requires time and financial expense, yet fre-
quently scientists are not provided with the financial resources required 
to properly curate data. In some cases researchers may receive funds for 
data maintenance but only for the duration of the grant with an average 
duration of three years. Where there is some uncommitted capital, priori-
ties and barriers being as they are the capital is spent on some other cause 
than data. This lack of financial resources to keep data visible may be 
rooted in part in a broader lack of appreciation of the worth of the data. 
The true worth of the data is not determined by the cost for gathering it 
but in the savings incurred by someone else not needing to gather it again. 
Sometimes this value is immeasurable, as in historic data on climate for 
example, or the genetic makeup of a rare species, which cannot be recre-
ated without far greater expense — even if it can be gathered again. For 
example, a recent study of impact of climate change on bloom time and 
consequent impact on pollinators was based on dark data from personal 
nature diaries of nature lovers from the end of the nineteenth century 
to the beginning of the twentieth: dark data that could easily have been 
lost, but was able to be used to demonstrate a relationship between early 
bloom time and higher temperatures over a century ago (Primack, Miller-
Rushing, Primack, & Mukunda, 2007). 

Every scientific endeavor is different so there is a tendency to develop 
specialized data repositories. Even in the area of molecular biology that 
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has GenBank and PDB there are numerous specialized databases, includ-
ing one for each model species and databases for functional annotation 
and individual gene and protein families. Each database has special fea-
tures that add value for the particular data within the database but there 
is also little coordination between collections and few sustainability plans 
and replication of management structure. Lack of integrated design has 
led to a cottage industry of computer programs and books designed to 
help scientists scrape information from the independent interfaces of 
each database.

Even if scientists were more inclined to make data available and if they 
had the finances to do so, they still could not because neither the scientists 
nor those under their employ have the skill set required to efficiently and 
effectively make the data available. The enterprise of science as a whole 
is lacking in sufficient number of individuals who are familiar with the 
institutions and technologies available to make data visible to the broad-
est number of individuals. They are unaware of repositories, database 
technology, and representations such as XML or RDF. Perhaps scientists 
should not be required to have a deep knowledge of such things anymore 
than they are required to understand the subtleties of journal layout or 
distribution channels for their paper publications. But there are few data 
curation specialists to handle the technical details.

There is also an educational deficit in the understanding and application 
of intellectual property rights (IPR). Some scientists believe that in releasing 
data they are forfeiting their IPR. While this may be true of trade secrets it 
is not true of all rights anymore than an author of a book gives up rights to 
the book by publishing it. Some authors choose to give up limited rights in 
exchange for services from a publisher. Scientists need to make informed 
decisions about the impact of different intellectual property decisions on 
the dissemination of knowledge and attribution of intellectual credit.

In addition, there is a lack of tools for metadata generation, which is an 
example of the broader lack of tools in most aspects of data curation in-
cluding acquisition tools, data migration tools, validation tools, and others 
all the way to the end of data usefulness where there is a need for culling 
tools to support deaccessioning and destruction.

Some of these many barriers might be reduced with the application of 
technology, but easy to use technology is not always available. Many of the 
processes of efficient data curation have yet to be automated, thus keeping 
the burden on the scientists. In addition, in many fields the expenditures 
have not been made to create the institutions that might organize and 
hold the data although some federal and private efforts have begun to 
address the issue as discussed below. 

A final barrier that cannot be overlooked is the Digital Tower of Babel 
that we have created with seemingly countless proprietary as well as open 
data formats. This can include versions of the same software products that 
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are incompatible. Some of these formats are very efficient for the individ-
ual applications for which they were designed including word processing, 
databases, spreadsheets, and others, but they are ineffective to support 
interoperability and preservation.

The visibility of data is often a matter of perspective. Some data is some-
times very visible and “light” from one point of view and user community. 
The same data may however be “dark” from a different point of view or a 
different community of potential users. For example, a group of ecologi-
cal genomicists may be generally aware of a set of data and its underlying 
semantics. This mutual knowledge may evolve from shared projects or 
education. However, a group of system biologists who could use the data 
may be completely unaware of the data, and if they did have the data, 
would not be able to interpret the semantics. 

Developments in telecommunications and computing make it much 
more feasible to bring this data to light than was economical in the past. 

Bringing Dark Data to Light: Potential Solutions

Institutional Solutions
Existing and developing institutions will play a critical role in improving 
access to dark data. Some of the same solutions for data management that 
are being developed for big science can also be applied to the data in the 
tail. In fact, in some disciplines the process has already begun as listed (see 
Table 3). One solution is to create science data centers around individual 
disciplines. Many initiatives within federal agencies such as NSF, NASA, 
NOAA, and by individual principal investigators are already addressing 
these issues. For example, at the organizational level, NSF funded the cre-
ation of the National Center for Ecological Analysis and Synthesis (NCEAS) 
(http://www.nceas.ucsb.edu/) in part to address data issues. The mission 
of NCEAS is threefold. First, advance the state of ecological knowledge 
through the search for general patterns and principles in existing data. Sec-
ond, organize and synthesize ecological information in a manner useful to 
researchers, resource managers, and policy makers addressing important 
environmental issues. Third, influence the way ecological research is con-
ducted and promote a culture of synthesis, collaboration, and data sharing. 
Other examples are the National Evolutionary Synthesis Center (NESCent) 
(http://www.nescent.org) and the Plant Science Cyberinfrastructure Cen-
ter (PSCIC - iPlant) (http://www.iplantcollaborative.org/). Select social 
science data is managed by the Inter-university Consortium for Political 
and Social Research (ICPSR) (http://www.icpsr.umich.edu/). While this 
is a useful step it is certainly not the case that all or most of ecological 
data is curated by NCEAS, or evolutionary data by NESCent, plant data 
by iPlant, or social science data by ICPSR. Also, the long-term economic 
sustainability of some institutions of this type is questionable.
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Libraries are already addressing long-tail issues introduced by the In-
ternet for their text collections (Dempsey, 2006). Libraries are increas-
ingly playing a role in science data curation as well (Treloar 2006, 2007) 
but face cultural and financial challenges (Carlson, 2006; Davis & Vickery, 
2007). While many initiatives began with a focus on digital text, these ex-
periences have paved the way for management of other scholarly output. 
The Association of Research Libraries (ARL) has been participating in a 
series of workshops and publications on data curation (http://www.arl 
.org/). Many libraries have already established institutional data reposi-
tories, which are sometimes centered on particular disciplines, including 
GIS, ecological, and chemical structure data to name a few. There is well-
established library collaboration for chemical crystallography data (Coles 
et al., 2006). While academic libraries are nearly as stable as the academic 
institutions where they reside, and have funding models supported in part 
by a sustainable fraction of overhead collected from the research and edu-
cation missions of the institutions, it is unlikely that the added burden of 
data curation can be managed within current funding levels.

Museums are in a similar state of development to libraries in terms of 
data management. Museums have been moving from independent data-
bases run by individual investigators to at least the availability of central 
databases. This data can increasingly be shared across institutions as for 
example with natural history collection and observation data through the 
Global Biodiversity Information Facility (GBIF) portal (http://www.gbif 
.org/). However, this type of data represents only a small portion of the 
data collected by museum scientists, staff, and volunteers.

Publishers through the twentieth century came to dominate scientific 
journal production and some are now beginning to associate data with 
publications. In the biology literature this is well established with Gen-
Bank. Publishers avoid using valuable page space on DNA sequences be-
cause the sequences can be included now by reference. More publications 
now are allowing deposit of data behind graphs and statistics that is a 
valuable advance but leaves many issues unresolved. These include limited 
data searching capability, lack of storage for more voluminous underlying 
data, and mechanisms for storing unpublished data.

Table 3. Institutional Solutions

Institutions Roles

Science Centers  Disciplinary Repositories and Specialized Tool  
  Development
Museums, Libraries and Archives  Institutional Disciplinary Repositories
Funding Bodies Seeding Innovation, Technology Development
Publishing Industry Referencing and Storing “Published” Data
Educational Institutions Training Scientists and Science Information  
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Promising Approaches
The services and organizations listed above and ones like them are work-
ing on solutions to the barriers to effective data use enumerated above. 
This section lists some of the solutions and the organizations working on 
them (see Table 4). While the solutions listed here are not exhaustive, and 
in some cases may not prove to be practicable, they do represent a sample 
of the solution space for the curation problem. Unfortunately, there is no 
one solution to the optimization of data preservation and use. 

As with many of the barriers to optimal data use, many institutions 
need to be involved in establishing a professional reward structure for sci-
entists to participate. Sharing and long-term preservation of data should 
lead to professional success. Scientists currently get credit for the citation 
of their published papers. Similar credit for data use will require a change 
in the sociology of science where data citation is given scholarly value. The 
publishing industry including, for example, Nature and Science is already 
beginning to provide a solution by allowing data to be connected with 
publications. However, space limits, format control, and indexing of data 
remain a major problem. Institutional and disciplinary repositories need 
to provide facilities so that citations can return the same data set that was 
used in the citation without adding or deleting records. Standards bodies 
for the sciences can set up methods to cite data in databases and not just 
data in publications (Altman & King, 2007). Once publishers and index 
services include these citations in calculation of impact factors for data 
sets as they now do with journals there is little doubt that tenure and pro-
motion committees will acknowledge the value of data and give profes-
sional credit to the scientists responsible for gathering the data. 

There must be sufficient funds to select, annotate, preserve, and dis-
seminate data. Libraries are one obvious solution but libraries face finan-
cial constraints (Carlson, 2006; Davis & Vickery, 2007). Most often, disci-
plinary and reference repositories also survive only on project funds that 
will terminate or require new funding every three to five years. These 
are currently addressed with project-oriented grants and therefore time 
limited solutions with funds from the Institute of Library and Museum 
Services, the National Science Foundation, and other agencies. But ini-
tiatives such as NSF’s Sustainable Digital Data Preservation and Access 
Network Partners (DataNet, n.d.) are intended to explore and establish 
more sustainable models. Also, NSF’s Community-based Data Interoper-
ability Networks (INTEROP, n.d.), designed to foster solutions for data 
interoperability, has fostered projects to improve data annotation. These 
IMLS and NSF programs, as well as e-Science programs in Europe, are 
funding the study of work practices and economics of different solutions, 
including the estimation of the value of data. Economies of scale may also 
help overcome the financial barriers. Corporations such as Google and 
Microsoft as well as traditional publishers are beginning to provide storage 
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for data on the scale of hundreds of terabytes. As an example, for smaller 
data sets Google released the Google Data API (n.d.). Commercial entities 
are also involved in making molecular life science data tools, for example 
NextBio (http://www.nextbio.com/). The financial models for this work 
are not yet clear. In spite of all of this effort, there continue to be special-
ized data collections with little interoperability.

Universities and data centers are beginning to deliver data curation 
education programs. The U.S. federal agency, the Institute of Museum 
and Library Services (IMLS) (http://www.imls.gov/), funds programs 
for concentrations in master of science degrees and professional develop-
ment workshops that are offered by the University of Illinois (n.d.), the 
University of North Carolina (n.d.), and the University of Arizona (n.d.), 
and others. The Digital Curation Centre (http://www.dcc.ac.uk/), in the 
UK provides professional training, and international collaboration in edu-
cation is beginning through the International Data curation Education 
Action (IDEA) Working Group (n.d.). Conferences provide a venue for 
education and the dissemination of best practices. These include for ex-
ample DigCCurr II (n.d.) and the International Digital Curation Confer-
ence (n.d.).

Table 4. Barriers and Solutions to Data Reuse

Barrier Potential Solutions

Lack of Professional Reward Structure Funding Body Requirements
 Data Citation Requirements, Data  
  Citation Index
 Replace or Educate the Old Guard
Lack of Financial Reward Structure Funding Initiatives:  
   NSF DataNet, INTEROP  
   IMLS Data Curation Initiative
Undervaluation / Lack of Investment Public and Private Foundation Initiatives 
  Sociology of Science Research
Lack of Education in Data Curation Formal Education Programs
Intellectual Property Rights (IPR)  Formal Education Programs 
  Science Commons
Lack of Metadata Standards and  Metadata Working Groups, Metacat 
 Creation Tools
Lack of Sustainable Technology DataNet
Cost of Infrastructure Creation Data Repositories
 Cyberinfrastructure Development (OCI, 
  eScience) Metadata Tool Development
 Research Initiative e.g. DataNet
 Publishers, Data Federation Technology  
  (TAPIR)
Cost of Infrastructure Maintenance  Long Term Collaborations and  
  Institutionalization and Economies of Scale
(Babble) PDF, Excel, MS Word,  Open Formats, translation tools, migration 
 ArcView, Floppy Disks  tools (e.g. Fedora)
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To some degree intellectual property barriers can be addressed with 
education of the scientists and their support staff. As curation is profes-
sionalized and receives proper funding we can expect copyright mecha-
nisms to follow those that are developing for text with a broad range of 
options available. It is critical, however, that scientists make informed de-
cisions about control of intellectual property rights so that the positive 
impact on science is maximized. 

Technologies have been slow to develop to make data curation easy. Gov-
ernmental and nongovernmental organizations are funding tool develop-
ment and evaluation. Institutional and disciplinary repositories are begin-
ning to run on common platforms so that the development costs can be 
shared over many users. The barriers are still high enough however that the 
majority of scientists do not properly manage their data for the long term.

Several technologies are particularly well suited to exposing dark data. 
These include for example, thesauri and controlled vocabularies to de-
scribe the data to make it easier to find. An example is the Biocomplexity 
Thesaurus maintained by the National Biological Information Infrastruc-
ture (http://www.nbii.gov/). Metadata formats allow data descriptions to 
be integrated. An example is the Ecological Metadata Language (EML, 
n.d.). Ontologies help to define the relationships among individual el-
ements of data sets to make them interoperable. Examples include the 
Gene Ontology (GO) (http://www.geneontology.org/), the Plant Ontol-
ogy (http://www.plantontology.org/), and the collection of the Open 
Biomedical Ontologies (OBO) (http://www.obofoundry.org/). Confed-
erated data sharing frameworks have been developed with free or low cost 
software tools including for example Dublin Core being shared over Open 
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH, n.d.) for 
mostly text and Darwin Core (n.d.) or ABCD (n.d.) being shared through 
DigIR or TAPIR (n.d.) for biodiversity occurrence data. These initiatives 
expose data that would otherwise be sequestered in individual institu-
tional databases. The semantic Web promises to make substantial contri-
butions to solving the problems of data access but the long tail data is not 
frequently the focus of these efforts. There are other existing technologies 
and as yet to be invented technologies that could assist with improving ac-
cess and use of dark data.

Understanding Dark Data
In order to better manage the dark data of the tail of science, it is neces-
sary to understand that data. The DataNet solicitation from NSF addresses 
some of the issues for making data more accessible and more useful. As is 
reasonable most proposals focus on the head of the graph first, the most 
frequent data, and then some move on to the tail. These efforts do not 
however directly address some of the questions about the dark data in the 
tail. Some important questions are as follows:
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•	 How	long	is	the	tail?
•	 What	is	the	area	under	the	tail?
•	 What	data	in	the	tail	and	the	head	are	“dark”?
•	 How	do	we	determine	the	value	of	dark	data?
•	 What	is	different	between	tail-science	and	head-science?
•	 What	is	the	differential	distribution	of	sciences	based	on	data	size	and	

funding?
•	 Which	data	is	more	likely	to	contribute	to	transformative	science?

A number of methods can be used to understand dark data but all in the 
end are a study of the behaviors of individual scientists. Economists and 
sociologists of science are currently conducting surveys, interviews, and 
observation studies to understand how data is handled and stored in dif-
ferent scientific disciplines. This information will help us to design better 
mechanisms to support broader reuse of scientific data.

Conclusions
Data is the underpinning of the scientific method. Without data to back 
up theory science becomes ungrounded conjecture. While the majority 
of data from large scientific enterprises is well curated, there is little scien-
tific infrastructure in place to support the storage and reuse of data cre-
ated by smaller projects. In order to maximize our return on investment in 
scientific research we need to develop this science infrastructure through 
existing institutions such as libraries and museums that have traditionally 
been the guardians of scholarly productivity. We need to develop tech-
nologies that make it cost effective for scientists to document and deposit 
their data in these repositories. We also need tools that make it easy to 
search and retrieve data from these repositories. We need to educate a 
new generation of curators of our scholarly output, who are trained in 
appropriate computer technology, and who have an appreciation of sci-
ence and the sociology of science. Most of all we need new educational 
initiatives and incentives that will give the next generation of scientists the 
knowledge they need to make informed decisions about the broader use 
of their data and broader impact of their research. 
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Notes
1. A curve that follows the power law is characterized as beginning relatively high on the 

y-axis with the value of y dropping very quickly but levels off before approaching a y of 0. 
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This is characterized in the equation, f(x)=axk+o(xk), where k defines the steepness of the 
curve and o defines a constant increase in y (Simon, 1955). 

2. There are differences between when funds are awarded and when funds are distributed 
so the figures given here are approximate. Grants of less than $500 have been excluded 
since these smaller amounts are generally corrections and accounting adjustments rather 
than actual research awards. 

3. “Hard data” is used here in common sense usage as in “hard facts” that cannot be re-
futed. 
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