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ABSTRACT
The key role that video quality plays in impacting user engage-
ment, and consequently providers’ revenues, has motivated recent
efforts in improving the quality of Internet video. This includes
work on adaptive bitrate selection, multi-CDN optimization, and
global control plane architectures. Before we embark on deploy-
ing these designs, we need to first understand the nature of video
of quality problems to see if this complexity is necessary, and if
simpler approaches can yield comparable benefits.

To this end, this paper is a first attempt to shed some light on
the structure of video quality problems. Using measurements from
300 million video sessions over a two-week period, we identify
recurrent problems using a hierarchical clustering approach over
the space of client/session attributes (e.g., CDN, AS, connectiv-
ity). Our key findings are that: (1) a small number (2%) of criti-
cal clusters account for 83% of join failure problems (44–84% for
other metrics); (2) many problem events (50%) persist for at least 2
hours; (3) a majority of these problems (e.g., 60% of join failures,
30–60% for other metrics) are related to content provider, CDN,
or client ISP issues. Building on these insights, we evaluate the
potential improvement by focusing on addressing these recurrent
problems and find that fixing just 1% of these clusters can reduce
the number of problematic sessions by 55% for join failures (15%–
40% for other metrics).

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed sys-
tems—Distributed applications; C.4 [Performance of Systems]:
[measurement techniques]

General Terms
Performance, Measurement

1. INTRODUCTION
With the rapid growth of Internet video, content providers and

delivery systems are constantly striving to deliver a higher quality
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of viewing experience to users. Delivering high quality content is
especially critical given the subscription- and advertisement-driven
revenue models that have driven this growth in recent years. Sev-
eral independent studies have confirmed what industry practitioners
have known implicitly for several years—quality impacts user en-
gagement and determines the likelihood of users viewing the con-
tent and returning to the content providers [13, 1, 19].

Motivated by these observations, there is a growing body of re-
cent work that aims to improve the video delivery quality. This in-
cludes work on developing better bitrate adaptation and transport-
layer algorithms (e.g., [8, 16]); better CDN and server selection
strategies (e.g., [4, 5]); the use of multi-CDN optimizations (e.g., [25,
20]); and even cases made for global control plane solutions that
take a centralized approach to optimize video quality [21].

While these efforts are valuable and demonstrate potential im-
provements, a key missing piece is an understanding of the struc-
ture of Internet video quality problems. More specifically, given
that some of these aforementioned efforts require significant de-
ployment effort, it is important to analyze if the complexity envi-
sioned by them (e.g., global coordination or TCP fixes) is really
necessary or if most of these improvements can be achieved with
simpler alternatives. For instance, if there are a common set of re-
current problems and root causes (e.g., specific ISPs or CDNs or
content providers) that account for most of the observed problems,
then we can improve the aggregate quality by focusing our efforts
on these few “bad apples” rather than a wholesale change.

This paper is a first step to understand the structure of the ob-
served quality problems in the wild and thus bridge this gap in
our understanding of Internet video quality. To this end, we use
a dataset of observed video quality collected over 300 million ses-
sions across a diverse set of 379 content providers (i.e., video host-
ing sites) with viewers distributed across 213 countries. This pro-
vides us a unique opportunity to obtain a panoramic view across
a wide spectrum of content providers, content delivery networks
(e.g., traditional CDNs vs. data center CDNs), user viewing plat-
forms (e.g., mobile vs. desktop vs. TV set-top boxes), and content
genres (e.g., live vs. VoD). This is especially relevant as this means
that our observations are not tightly coupled to a single content
provider or content delivery system, which has been a perceived
drawback of prior large-scale measurement studies (e.g., [22]).

Using this dataset, we identify video viewing sessions suffering
quality issues (problem sessions) with respect to four key video
quality metrics: buffering, bitrate, join time (delay in loading the
video), and join failures (video failed to load), and we study these
metrics independently. We group together problem sessions that
share one or more client or session attributes (e.g., ISP, CDN, con-
tent provider, connection type, user platform) into problem clusters.
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Intuitively, these clients potentially share some common underlying
phenomenon that led to these sessions manifesting as problem ses-
sions. Starting from the problem clusters, we also identify critical
clusters that represent likely root causes of the vast majority of the
problem clusters. For example, a specific poorly performing ISP
may manifest as several distinct problem clusters each with a dif-
ferent CDN, but the underlying problem can be logically attributed
to the ISP.

Our key observations are:
• The problem clusters show a natural skewed distribution in

terms of (a) prevalence: more than 20% of the problem clus-
ters appear for more than 25% of the time; and (b) persistence:
more than 50% of the problem clusters last for more than 2
hours.

• A small number of critical clusters (50× lower than the number
of problem clusters) can account for up to 74% of the observed
problem sessions.

• While the types of attributes (e.g., provider, ISP) defining the
dominant critical clusters are common across different quality
metrics, the specific content providers or ISPs that exhibit prob-
lems are different across the quality metrics.

• Analyzing the most prevalent critical clusters, we see inter-
esting patterns with a few less-provisioned content providers
that do not offer multiple bitrates, ISPs in non-US regions, and
users viewing video from mobile wireless (i.e., 3G or 4G) con-
nections.

Motivated by these observations, we analyze the potential im-
provement if we focus our efforts on addressing problems associ-
ated with the few critical clusters and find that:
• Across all quality metrics, a proactive approach, which focuses

on “fixing” the poor performance of the top 1% of the critical
clusters, can alleviate up to 58% of all problem sessions.

• Even a reactive approach, which detects persistent critical clus-
ters after they occur and addresses them, can reduce the number
of problem session by up to 51%.

These results have important (and positive) implications for im-
proving the current state of Internet video quality. In some sense,
we can have considerable benefits in globally improving the state
of video quality by focusing on these problems which are amenable
to simple (and well known) solutions rather than embarking on
wholesale deployment efforts. For instance, the problems associ-
ated with non-US users may be alleviated by contracting with local
CDN operators. Similarly, simple solutions such as offering a more
fine-grained selection of bitrates can alleviate issues w.r.t. specific
providers and mobile users. We do acknowledge that our analy-
sis does not provide a prescriptive alleviation strategy or perform a
cost-benefit analysis; the goal of this paper is to quantify the num-
ber of quality problems that are potentially amenable to proactive
or reactive strategies.

In the rest of the paper, we begin by describing our dataset in
Section 2 and methodology in Section 3. We analyze the spatial
and temporal properties of the problem clusters and critical clus-
ters in Section 4 and the potential for improvement in Section 5.
We discuss directions for extending our analysis in Section 6 and
related work in Section 7, before concluding in Section 8.

2. DATASET AND MOTIVATION
In this section, we begin by describing our dataset. We also

present preliminary statistics to motivate the types of structural in-
sights we would like to obtain regarding the nature of video quality
problems. As an ongoing effort, we are working on anonymizing
the relevant data for releasing of the dataset used in this work.

Dataset: Our dataset is based on client-side measurements of
video quality from over 300 million sessions over a duration of
two weeks. The unique feature of our dataset is that it is col-
lected over 379 distinct content providers spanning diverse genres,
both live and video-on-demand content, different content delivery
platforms, different types of bitrate adaptation algorithms, and de-
vice/browser platforms. Though US viewers dominates the dataset
(∼55%), there are a fair number of European (∼12%) and Chinese
(∼8%) users in the dataset. This is especially relevant as it provides
us with a panoramic view of state of Internet video delivery today.

The basic unit in our dataset is a video session. A session repre-
sents a user viewing a video on one of our affiliates’ sites for some
duration of time. Each session is associated with a set of seven
attributes:
1. ASN: The Autonomous System Number (ASN) that the client

IP belongs to. Note that a single ISP (e.g., Comcast) may own
different ASNs both for management and business reasons. We
focus on the ASN as it is more fine-grained than the ISP gran-
ularity. We observe in aggregate 15K unique ASNs spanning
multiple countries.

2. CDN: In total, we observe 19 unique CDNs spanning popular
CDN providers as well as several in-house and ISP-run CDNs.
(Some providers use proprietary CDN switching logic; in this
case we pick the segment of the session with the CDN used for
the longest duration.)

3. Content provider (Site): This is the specific affiliate content
provider from which the client requested some content. We
have 379 content providers that span different genres of con-
tent. We use the terms site and content provide interchange-
ably.

4. VoD or Live: Video content falls in one of two categories:
video-on-demand (VoD) or Live. We use a binary indicator
to see if the particular content was a Live event or a VoD video.

5. Player type: We see diverse players such as Flash, Silverlight,
and HTML5.

6. Browser: We see diverse client browsers including Chrome,
Firefox, MSIE, and Safari.

7. Connection type: Finally, we have the type of access network
connection such as mobile/fixed wireless, DSL, fiber-to-home.
These annotations come from third party services [2].

We focus on four key quality metrics that are common across
different content providers and have been shown to be critical for
measuring quality as well as user engagement [13]:
1. Buffering ratio: Given a video session of duration T seconds,

if the player spent B seconds in buffering (i.e., waiting for the
player buffer to replenish midstream, the buffering ratio is de-
fined as B

T
. Prior work has shown that buffering ratio is a key

metric that impacts user engagement [13].
2. Join time: This is the time taken for the video to start playing

from the time the user clicks on the “play” button on the player.
While join time may not directly impact the amount of a spe-
cific video viewed, it does have long term effects as it reduces
the likelihood of repeated visits [13, 19].

3. Average bitrate: Many video players today support adaptive
bitrate selection and midstream bitrate switching to adapt to
changing bandwidth availability. The average bitrate of a ses-
sion is simply the time-weighted average of the bitrates used
in a given session. (Bitrate refers to the video playback rate,
rather than throughput or download rate.)

4. Join failures: Some sessions may not even start playing the
video; either the content is not available on the CDN server or
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Figure 1: CDF of observed quality metrics – buffering ratio, bitrate, and the join time. We see that a non-trivial number of sessions suffer
quality problems. For instance, more than 5% of sessions have a buffering ratio larger than 10%.
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Figure 2: Timeseries of the fraction of problem sessions for the four quality metrics. The fraction of problem sessions is consistently high
over time and the different quality metrics seem slightly uncorrelated.

the CDN is under overload or other unknown reasons. We mark
as a session as a join failure if no content was played during this
session.1

Figure 1 shows the distribution of the first three quality met-
rics over the 1-week dataset. (Join failures are binary events; it
is not meaningful to look at a distribution.) The result reconfirms
prior observations that there are a non-trivial number of sessions
with less-than-ideal quality [13, 21]. The key difference here is
that these past efforts only considered a small set of 3–4 content
providers. In contrast, we are considering the aggregate data from
over 300 content providers. For instance, more than 5% of all ses-
sions have a join time greater than 10 seconds; i.e., users had to wait
for 10 seconds before the video even started playing! Similarly,
more than 5% of sessions had a buffering ratio that was greater
than 10%. This is particularly bad as past studies show that even
a 1% increase in buffering ratio can lead to 3-4 minutes of lost
viewership [13]. Finally, we also see that more than 80% of ses-
sions observe an average bitrate less than 2 Mbps; i.e., less than the
lower end of today’s “HD” content.

Identifying problem sessions: Our focus is on understanding
quality problems as they appear in the wild. To this end, we iden-
tify problem sessions w.r.t. each of the quality metrics. Note that
a given session may appear as a problem session on a subset of
metrics; i.e., it might have a low join time but may have a high

1Join failures are reported by the client-side measurement module
that sends a “heartbeat” on the player status.

buffering ratio or vice versa. We consider the metrics separately to
avoid implicitly assuming that the metrics or failures are correlated.
• For join failures, we use a binary indicator if the session failed

or not. For the remaining metrics, we choose specific thresh-
olds based on domain-specific knowledge and observations in
prior work. Our specific thresholds and rationale are follows.

• For buffering ratio, we identify a problem session if the value
is greater than 5%; this is based on the observation that be-
yond this value there is a sharp decrease in amount of video
viewed [13].

• For bitrate, we mark a problem session if the average bitrate
is less than 700kbps; this value roughly corresponds to the
recommended “360p” setting on video providers. We use a
fixed threshold of bitrate in this work for simplicity, but we do
acknowledge that bitrate settings are content-dependent (e.g.,
some contents do not provide high resolution streams).

• Third, we mark all sessions with a join time greater than 10
seconds; this represents a conservative upper bound on the tol-
erance of users [3, 19].

We do acknowledge that there is no ideal choice of threshold
and it is likely that these thresholds will evolve as user expectations
and network conditions improve. As such, the choice of thresholds
is illustrative of the structure of video quality problems that occur
today. The methodology and qualitative observations we present
are not tied to the specific thresholds. We have confirmed that the
results are qualitatively similar for other choices of these thresholds
as well.
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Aggregate statistics: Figure 2 shows a timeseries of the fraction of
problem sessions or problem ratio over the week-long trace. Each
point here is the fraction of problem sessions on each metric for
each hour-long epoch. First, the result shows that the fraction of
quality problems is relatively consistent over time and the quality
problems from the previous CDFs are not concentrated in time and
are quite evenly spread out. For instance, for buffering ratio the
average problem ratio is 0.097 per hour and the standard deviation
is less than 10−3. Second, we see that the different quality metrics
do exhibit slightly different patterns of activity; we do not see a
significant temporal correlation between metrics and we do see a
small number of uncorrelated peaks.

Motivating questions: The above results reconfirm that quality
problems exist and that the fraction of problem sessions is consis-
tently high. These results raise several natural questions about the
structure of these quality problems w.r.t. the different session at-
tributes:
• Are the problems uniformly spread through the space of at-

tribute combinations or are there specific combinations that have
a higher concentration?

• While the fraction of problem sessions is relatively consistent,
a natural question is if the “events” (e.g., outages with specific
sites or CDNs) underlying these problems are also consistent?

• Is each problem a transient or one-off event for a specific ISP,
CDN, or provider (or combination of these) or are these prob-
lems persistent over long periods?

• While the different quality metrics appear to be slightly tempo-
rally uncorrelated, a natural question is if these metrics are also
structurally uncorrelated; e.g., do the same set of ISPs or CDNs
contribute to the problematic sessions across all metrics?

These questions have key implications for video delivery de-
sign and optimization. For instance, recurrent problem events may
guide us to proactively identify a few “bad apples” to improve the
aggregate quality. Similarly, the duration of problem events has key
implications for systems that attempt to reactively identify and al-
leviate quality problems [21]—do we have enough time to observe
and react or are the problems very transient? Finally, the structural
correlation across metrics has key implications in terms of the ef-
fort required to address the quality problems; i.e., will fixing one
provider alleviate problems w.r.t. all metrics or do we need a multi-
pronged approach catering to each metric independently?

3. METHODOLOGY
The previous section raises several natural questions regarding

the structure of the problem events both across the space of client-
side attributes as well as in time. In this section, we describe our
basic data analysis building blocks.

3.1 Identifying Problem Clusters
We begin by dividing our dataset into discrete one hour epochs.2

As a first step to analyze the structure, we cluster3 together sessions
that share one or more client/session attributes within the same
epoch. For instance, the cluster “ASN=ASN1 ” describes all ses-
sions where the user belongs to ASN1 and the cluster “ASN=ASN1 ,
CDN=CDN1 ”, describes all sessions where the user belongs to
ASN1 and the session was assigned to a server from CDN1 .
2One hour is the finest granularity of the dataset and thus we cannot
analyze effects at smaller timescales.
3The term “cluster” represents a group of sessions that share com-
mon attributes, and it is indeed different from traditional clustering
algorithms where a cluster can be a group of any data points.

ASN1 ASN2 

CDN1 

CDN2 

ASN1, CDN1 

ASN1, CDN2 

ASN2, CDN1 

ASN2, CDN2 

Problem session Good quality session 

Figure 3: Simple example to illustrate the notion of problem
clusters (with respect to one quality metric).

In order for our observations to be reliable, we want to focus
on clusters that are deemed to be statistically significant sources of
problem sessions. To this end, we define the problem ratio of a
cluster as the ratio # of problem sessions

# of sessions . Then, we cull out the clusters
whose problem ratio is significantly higher than the global average
problem ratio. We also remove all clusters that have a small number
of sessions in aggregate; i.e., problems observed within a small
cluster may not be statistically significant. Combining these two
steps, we define a problem cluster as a cluster that has a problem
ratio ≥ 1.5× the global problem ratio,4 and the number of sessions
in this cluster is ≥ 1000. In the rest of this paper, we start from the
problem clusters as our basis and subsequently refine the analysis.

Figure 3 shows a simple example to illustrate the definition of
problem clusters. Here, we have several sessions (the filled rect-
angles represent problem sessions and the non-filled rectangles are
“good” sessions) spanning 2 ASNs and 2 CDNs. In this example,
we have eight clusters in total, 2 each for ASN, CDN, and 2 each
for ASN-CDN combinations. However, not all clusters are inter-
esting for our analysis. For instance, the cluster “CDN2 ” has only
one problem session out of 9 sessions, so we may remove this as
it does not have significantly high problem ratio. Cluster “ASN1 ,
CDN2 ”, “ASN2 , CDN1 ” and “ASN2 , CDN1 ” each has a very
small number of sessions, so we may also remove them as they are
not significant enough.

Note that we are not simply identifying clusters that have high
volume—we are identifying clusters of sufficient volume that have
a problem ratio that is significantly higher than the global average.
In fact, we found close to zero correlation between the size of a
problem cluster and its problem ratio (not shown).

3.2 Identifying Critical Clusters
While the grouping of problem sessions into problem clusters

provides some insights into the structure of problems, there is still
one key missing aspect. Specifically, we may have different gran-
ularities of problem clusters that may be intrinsically related to the
same underlying root cause. Thus, our next step is to refine these
problem clusters to identify such potential causal structures across
the problem sessions.

The set of all clusters can be viewed as a hierarchical structure
across the space of client/session attributes with natural parent-

4This value roughly represents two standard deviations away from
the mean of the per-cluster problem ratio distribution.
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child relationships. We can visualize these parent-child relation-
ships as a DAG as shown in Figure 4. A cluster C1 is a parent
of cluster C2 , if the set of attributes defining the cluster C1 is a
strict subset of that of C2 . For instance, the cluster “ASN1 ” is a
parent of the more specific clusters “ASN1 , CDN1 ” and “ ASN1 ,
CDN2 ”. Note that a single cluster may have multiple parents; e.g.,
“ASN1 ” and “CDN1 ” are parents of the cluster “ASN1 , CDN1 ”.

Our goal is to identify a small number of critical clusters that can
potentially explain the occurrences of different problem clusters.
In fact, it will be shown later that there is a relative small number
of critical clusters that explain the occurrences of most problem
clusters (see Table 1). In our example in Figure 4, intuitively we
should pick the “CDN1 ” cluster rather than pick “ASN1 , CDN1 ”
and “ASN2 , CDN2 ” clusters separately. Given that we do not
have ground truth, critical clusters can serve as starting points for
further investigation.

An intuitive criterion for identifying a critical cluster is anal-
ogous to the notion of the minimum description length (or Oc-
cam’s razor) from the machine learning literature. Conceptually,
we should pick the most compact description to explain an obser-
vation. Building on the above intuition, we can identify a criti-
cal cluster as consisting of the minimal set of attributes that when
combined together can lead to significantly high problem ratio in
its cluster (e.g., a problem cluster) and removing even one attribute
from this set will reduce the problem ratio. To this end, we identify
critical clusters using a phase transition algorithm as follows. For
each session, we construct all logical paths in the DAG from the
root to the leaf. Then, for each of these paths, we identify the point
closest to the root along this path such that every cluster that is a
descendant is a problem cluster and once removing it every cluster
that is an ancestor is not a problem cluster.

We use Figure 5 to explain the intuition. In this figure, “CDN1 ,
ASN1 ” is the critical cluster—every cluster that is a child of this
combination is a problem cluster and if we remove the sessions in
this combination, the parents “CDN1 ” and “ASN1 ” cease to be
problem clusters. That is, this combination of attributes represents
a key “transition point” in this hierarchy between problem clusters
and non-problem clusters.

There are two subtle concerns with this algorithm. First, we may
not be able to clearly identify such phase transition points if the data
is quite noisy; i.e., we may not be able to attribute problem clusters
to a specific critical cluster. Fortunately, as we will in the next
section the coverage over problem sessions that appear in problem
clusters is quite high. Second, there might be corner cases where
we may find two potential phase transitions. This can happen if
some of the attributes are themselves correlated; e.g., if a specific
Site only uses a single CDN or most of its clients appear from a
single ISP. In such low probability events, we equally divide the
attribution across both potential critical clusters.

4. ANALYSIS OF PROBLEM AND
CRITICAL CLUSTERS

In this section, we analyze the properties of the problem clus-
ters and critical clusters. For brevity, we present results from the
first week of the dataset in this section noting that the results are
consistent across both weeks.

At a high level, we find that: (1) There are a non-trivial number
of problem clusters that are prevalent (i.e., recurrent problems) and
persistent (i.e., long lasting); (2) The majority of these problem
clusters are covered by a small number of critical clusters—a few
potential causes that can explain most of these observations; (3)
Most of critical clusters correspond to either the Site, the ASN, or

ASN1,&CDN1&
ProbRa/o&&=&0.3&

ASN1,&CDN2&
ProbRa/o&&=&0.1&

ASN2,&CDN1&
ProbRa/o&&=&0.3&

ASN1&
ProbRa/o&&=&0.2&

CDN1&
ProbRa/o&&=&0.5&

ASN2&
ProbRa/o&&=&0.1&

CDN2&
ProbRa/o&&=&0.05&

Root&
ProbRa/o&&=&0.1&

Figure 4: Representing the relationship between clusters using
a DAG. The dashed-green boxes show clusters without a high
problem ratio and the solid-red boxes identify the problem clus-
ters.

Root$

CDN1$ ASN1$

CDN1,ASN1$

CDN1,ASN1,Site1$ CDN1,ASN1,Wireless$

CDN1,ASN1,Site1,wireless$

Not$problem$cluster$
once$removing$
(CDN1,ASN1)$

Problem$cluster$

Cri>cal$cluster$of$
leaf$(CDN1,$ASN1,$
Site1,$wireless)$

Figure 5: An example to illustrate the phase transition idea for
identifying a critical cluster. Intuitively, removing any one at-
tribute from this critical cluster will cease to be a problem clus-
ter and adding any attribute to it will continue to be a problem
cluster.

the CDN; and (4) While the critical attributes for different quality
metrics are similar, the specific values of ASN, Site, or CDN that
appear as critical clusters varies quite significantly.

4.1 Prevalence and Persistence
Recall that a problem cluster is a group of problem sessions that

occur in the same one-hour epoch that has a problem ratio ≥ 1.5×
global problem ratio and that has at least ≥ 1000 sessions. That is,
we are focusing on statistically significant problem events. Here,
we begin by analyzing the temporal prevalence and persistence of
the problem clusters.

We define the prevalence of a problem cluster as the fraction
of the total number of epochs in which this cluster appears as a
problem cluster. Consider the example in Figure 6 with a total
of 6 epochs, the prevalence of the cluster “ASN1, CDN1” is
4
6

= 0.67 and similarly the prevalence of the cluster “CDN2”
is 5

6
= 0.83. Figure 7 shows the distribution of the prevalence

of the problem clusters for the different quality metrics. We see a
consistent pattern across all quality metrics that around 10% of the
clusters have a prevalence greater than 8% across all metrics. In
other words, many of these problem clusters are repeated observa-
tions that are recurrent problem events.
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Epoch1' Epoch2' Epoch3' Epoch4' Epoch5' Epoch6'
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CDN2% CDN2%
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ASN1,%CDN1%=%%{2,2}%
ASN2,CDN1%=%{2}%

CDN1%=%{1}%
CDN2%=%{3,2}%

Persistence%

Prevalence%%

Figure 6: Illustrating the notion of prevalence and persistence.
For persistence analysis, we group together “events” that appear
continuously.
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Figure 7: Distribution of the prevalence of problem clusters
across quality metrics. We find a natural skewed distribution with
a few clusters having high prevalence.

We define the persistence of a problem cluster in terms of the
length of the consecutive occurrences of this cluster as a problem
cluster. To this end, we coalesce consecutive occurrences of the
cluster into a single logical event that lasts for multiple hours. For
each problem cluster, we consider the distribution of the length of
these “streaks” and report the median and the maximum value. For
the timeseries in Figure 6, the “ASN1,CDN1” cluster has a me-
dian and maximum persistence of 2 while the “ASN2” cluster has
a maximum persistence of 4. (In this simple series, the median and
max coincide, but more generally they will not.)

Figure 8(a) shows the distribution of the median persistence and
Figure 8(b) shows the distribution of the longest persistent event
across the problem clusters for the 4 quality metrics. For three of
the metrics, more than 60% of the problem clusters have a median
duration that last more than 2 hours. Furthermore, we see that more
than 1% of clusters have a peak duration that last more than a day!

As we will see later, these observations have key implications for
addressing video quality problems. The prevalence analysis sug-
gests that we may be able to alleviate video quality problems by
proactively diagnosing the pathological clusters and taking some
remedial measures. The persistence analysis suggests that we may
also be able to reactively diagnose and alleviate problems events
even after they occur because many of these events last several
hours.
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Figure 8: Inverse CDF of the median and max persistence of
problem clusters. Many problem clusters last multiple hours and
that a non-trivial number of problem clusters last for tens of
hours.

4.2 Critical cluster analysis
The previous results showed that there are a non-trivial number

of persistent/prevalent problem clusters that last for several hours.
As we discussed earlier, multiple problem clusters may be implic-
itly related by a single root cause as we saw in Figure 4. To this
end, we focus next on the critical clusters using the algorithm de-
scribed in Section 3. Recall that every critical clusters is also a
problem cluster; i.e., it has a sufficiently high problem ratio and it
has a significant number of sessions. The motivation to focus on
a few critical cluster rather than all problem clusters is the obser-
vation (as shown shortly) that a small fraction of problem clusters
cover most of the problem sessions.

Figure 9 shows the number of problem clusters relative to the
number of critical clusters in the case of the Join Time metric.
We see that number of critical clusters is almost 50× lower than
the number of problem clusters suggesting that there are indeed a
small number of events that might have “caused” most problems.
One natural question is whether the critical clusters cover most of
the problem sessions. Table 1 summarizes the mean coverage and
reduction of the critical clusters for the four quality metrics and in
all cases, we see that the number of critical clusters is only 2-3% of
the number of problem clusters (i.e., 50× fewer), but they manage
to cover 44–84% of the problem sessions. As a point of reference,
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Figure 9: The number of critical clusters is significantly smaller
than the number of problem clusters. The timeseries shown here
is for the join time; we see similar results for the other quality
metrics too.

Metric Mean
problem
clusters

Mean criti-
cal clusters

Mean
problem
cluster
coverage

Mean crit-
ical cluster
coverage

BufRatio 10433 286 (2%) 0.8 0.66 (82%)
JoinTime 9953 247 (2%) 0.86 0.83 (96%)

JoinFailure 9620 302 (3%) 0.87 0.84 (96%)
Bitrate 9437 287 (3%) 0.57 0.44 (77%)

Table 1: Reduction via focusing only on critical clusters and the
effective coverage of the critical clusters.

we also show the coverage of the problem clusters; i.e., not all ses-
sions are part of a problem cluster as they may be part of small
clusters or clusters with very small problem ratio. We see that the
critical clusters cover almost all problem sessions that are part of
some problem cluster; i.e., many of the coverage gaps are really
due to problem sessions that belong to a statistically insignificant
cluster (i.e., either with too few sessions or with too few problem
sessions).

We also repeated the prevalence and persistence analysis for the
critical clusters and find similar patters of skewed distribution and
a few pathological cases that span several hours. We do not show
these for brevity.

4.3 Types of Critical Clusters
Next, we analyze the structure of the critical clusters for the dif-

ferent quality metrics. First, we analyze the types of client/session
attribute combinations that appear frequently in the critical clusters.
Then, we analyze if the different metrics are correlated in the crit-
ical clusters. Finally, we highlight some interesting observations
and some hypothesis to explain the most prevalent critical clusters.

Types of clusters: Figure 10 shows a breakdown of the types of
critical clusters for different quality metrics. We aggregate critical
clusters into the different attribute dimension(s) they represent. For
instance, if we see a critical cluster for CDN1 and CDN2, we
count these toward the CDN contribution in the pie chart. Some
problem sessions may remain unaccounted for in this breakdown
for two reasons: (a) they are not part of a significant enough prob-
lem cluster or (b) our algorithm did not assign a critical cluster for
a problem cluster. This mirrors the coverage observation we saw
earlier in Figure 9 and Table 1. In almost all cases, most of the
unaccounted for sessions fall outside any problem cluster; i.e., this
is not due to the critical cluster detection algorithm. The result
shows that the most dominant category of critical clusters actually
corresponds to a content provider (labeled as “Site”). We also see
that CDN, ASN, and ConnectionType are also prominent types of

BufRatio
vs. Bi-
trate

BufRatio
vs. Join-
Time

BufRatio
vs. Join-
Failure

Bitrate
vs. Join-
Time

Bitrate
vs. Join-
Failure

JoinTime
vs. Join-
Failure

0.07 0.23 0.13 0.08 0.01 0.09

Table 2: Average Jaccard similarity index between the top 100
critical clusters for the different metrics. We see that most metrics
are relatively uncorrelated, possibly because the critical attributes
are very different.

critical clusters across all quality metrics. This suggests that most
quality issues are potentially caused by server-side (Site or CDN)
or client-side (ASN, ConnectionType) problems rather than a com-
bination (which indicates a bad path between client and server) or
other attributes.

Overlap across metrics: We saw in the previous graph that the
types of critical clusters that contribute the most problem sessions
are very similar across different quality metrics. Note, however,
that this does not necessarily mean that the actual set of critical
clusters are identical. In other words, a different set of CDNs or
Sites may be responsible for problems across buffering ratio and
join time. To analyze this, we compute the Jaccard similarity in-
dex between the top-100 in terms of the total number of problem
sessions covered critical clusters for the different metrics. (The Jac-
card similarity measure for two sets A and B is |A∩B||A∪B| .) We find
that the overlap between the different metrics is only around 23%
in the best case (buffering ratio and join time) and in the worst case
is only around 1% (between bitrate and join failure). We manually
analyzed the specific clusters and we found that the actual set of
Site, CDN, and ASN critical clusters are indeed very different.

Understanding most prevalent critical clusters: In order to il-
lustrate the causes for the problem, we consider the critical clusters
with a prevalence higher than 60% for the different quality met-
rics. For clarity of presentation, we only consider the critical clus-
ters whose attributes fall in one of the following categories: ASN,
CDN, Site, and ConnectionType as our previous breakdown shows
these as the most dominant attributes. We present this analysis with
two disclaimers. First, due to the sensitive nature of this data, we
do not present the names of the actual providers, but focus on their
characteristics. Second, this involves a fair amount of manual anal-
ysis and domain knowledge. As such, we intend this result to be
illustrative (and somewhat speculative) rather than attempt to be
conclusive. This said, we still believe that the high-level insights
are still useful to inform future video delivery architectures.

Table 3 presents some of the anecdotal examples we observed.
The empty cells simply indicate that there were no critical clusters
in this category with a prevalence higher than 60%. We see a few
interesting patterns here. In terms of buffering ratio, we see that the
top ASNs are typically in Asia, and the content providers that had
issues typically only had a single bitrate of content. The CDNs with
buffering/join time problems are also typically “in-house” CDNs
run by the Site itself; i.e., not a third-party CDN like Akamai or
Limelight. We also see that wireless connections and wireless ISPs
appear in the buffering and bitrate cells respectively, which is some-
what expected.

One interesting artifact we uncovered in the case of join time
was that these were mostly ASNs in China accessing content from
Chinese CDNs but there were third-party player modules loaded
from US providers that led to higher join times. Another curious
observation is that all the Sites with significant join failures tended
to use the same global CDN. However, the CDN in aggregate does

363



[Site,'*,'*,'*,'*,'*,'*]'
[*,'*,'*,'*,'*,'VodOrLive,'*]'
[*,'*,'ASN,'*,'*,'*,'*]'
[*,'CDN,'*,'*,'*,'*,'*]'
[*,'*,'*,'Connec7onType,'*,'*,'*]'
[*,'CDN,'*,'Connec7onType,'*,'*,'*]'
[*,'*,'*,'*,'*,'*,'PlayerType]'
[Site,'*,'*,'Connec7onType,'*,'*,'*]'
Othes'combina7ons'
Not'aBributed'to'cri7cal'cluster'
Not'in'any'problem'cluster'

(a) BufferingRatio

[Site,'*,'*,'*,'*,'*,'*]'
[*,'CDN,'*,'*,'*,'*,'*]'
[Site,'*,'*,'Connec0onType,'*,'*,'*]'
[Site,'*,'*,'*,'Browser,'*,'*]'
[Site,'*,'ASN,'*,'*,'*,'*]'
[*,'CDN,'*,'Connec0onType,'*,'*,'*]'
[*,'CDN,'*,'*,'Browser,'*,'*]'
[*,'*,'ASN,'*,'*,'*,'*]'
Othes'combina0ons'
Not'a>ributed'to'cri0cal'cluster'
Not'in'any'problem'cluster'

(b) Bitrate
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(d) JoinFailure

Figure 10: Analyzing the structure of the critical clusters: The result show a breakdown of the total number of sessions attributed to a
specific type of critical cluster. Note that there may be multiple values of these attributes; i.e., there can be many Sites and many CDNs
contributing to the Site and CDN sector.

ASN CDN Site ConnType
BufRatio Asian ISPs In-house,

single bitrate
Single bitrate Mobile wire-

less
JoinTime Chinese ISPs

accessing
CDNs in
China, but
player loads
modules
from US
CDN

In-house
CDNs
of UGC
providers

High bitrates

JoinFailure Same set as
buffering ra-
tio

Same sin-
gle global
CDN, maybe
low priority
providers

Bitrate Wireless
provider

UGC Sites

Table 3: Analysis of the most prevalent critical clusters. A empty
cell implies that we found no interesting cluster in this combina-
tion.

not have a significant presence in terms of failures, except in the
case of these Sites.5 We speculate that these, presumably low-end,
providers may have lower priority service and could have poten-
tially benefited from using multiple CDNs.

5These Sites used a single CDN; recall that our critical clus-
ter algorithm will prefer more compact descriptions and thus at-
tributes these problems to the Site rather than the single Site-CDN
combination.

4.4 Summary of main observations
Our key observations from the analysis of problem clusters and

critical clusters are:
• There is a distinct skewed distribution in the prevalence; around

8-12% of the problem clusters appear more than 10% of the
time.

• There is also a skewed distribution in the persistence; more
than 20% of problem clusters have a median duration greater
than 2 hours and 1% of clusters have a peak duration lasting
more than 1 day.

• We find that a small number of critical clusters (2-3% of the
number of problem clusters) can account for 44-84% of all
problem sessions.

• While the set of attribute combinations in the critical clusters
that cover the most number of problem sessions is very similar
across the quality metrics (i.e., Site, CDN, ASN), the actual
values of these attributes is very different (with a max overlap
of 23%).

• We see a few expected patterns such as Asian and wireless ISPs
appearing as most prevalent critical clusters. We see some un-
expected patterns that can be easily alleviated (e.g., the player
modules loaded remotely for Chinese users) and Sites that could
benefit from standard strategies such as using more fine-grained
bitrates or using multiple CDNs.

5. WHAT-IF IMPROVEMENT ANALYSIS
In the previous section, we observed that a small number of crit-

ical clusters can potentially explain most common video quality
problems and that many of these problems are both persistent and
prevalent. These observations seem to suggest that focusing on
these few critical clusters can yield quite significant improvements.

364



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.0001  0.001  0.01  0.1  1

F
ra

c
ti
o

n
 o

f 
p

ro
b

le
m

 s
e

s
s
io

n
s
 a

lle
v
ia

te
d

Top fraction of the most prevalent critical clusters

Buffeirng ratio
Bitrate

Join time
Join failure

(a) Prevalence

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.0001  0.001  0.01  0.1  1

F
ra

c
ti
o

n
 o

f 
p

ro
b

le
m

 s
e

s
s
io

n
s
 a

lle
v
ia

te
d

Top fraction of the most persistent critical clusters

Buffeirng ratio
Bitrate

Join time
Join failure

(b) Persistence
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Figure 11: Overall improvement by fixing the top-k critical clusters ranked in order prevalence, persistence, and coverage of attributed
volume for the four quality metrics. Across the metrics we see a manifestation of the Pareto rule where 1% of the top-k clusters can
alleviate up to 60% of the potential problems.

In this section, we run a series of what-if analyses to estimate the
potential improvement in video quality if we focus our efforts on
some of these key clusters. Our goal in this section is not to eval-
uate a specific deployment strategy for alleviation; e.g., through
multiple CDNs or better initial bitrate selection or better bitrate
adaptation algorithms. Rather, we want to evaluate the potential
for improvement and quantify the number of sessions amenable to
simple strategies rather than an observed/actual improvement. We
cannot conclusively say that a) the specific sessions we consider
are actually fixable or b) fixing them incurs zero/low cost or that c)
we have a prescriptive strategy for the specific “principals” such as
ISP or Site or CDN.

Methodology: At a high-level, we consider two key dimensions
that together define the what-if analyses:
1. What types of critical clusters?

For instance, should we focus on prevalent vs. persistent clus-
ters or clusters that cover the most sessions? Should we focus
only a few key attributes such as Site or ASN or should we con-
sider a broader approach? Finally, how many of these critical
clusters should we select; e.g., what is the marginal utility of
the top-10% clusters vs. the top-1% clusters?

2. Do we use a proactive or reactive approach?
A proactive approach would involve offline analysis to iden-

tify the clusters and address the problems before new problems
can occur. A reactive approach waits for problem incidents to
occur and then considers temporarily alleviating the problems
(e.g., [21]).

Once we identify the candidate critical clusters along these axes,
we evaluate the impact of logically “fixing” problem sessions. First,
we identify the epochs in which this candidate cluster was flagged
as a critical cluster. Then, we evaluate a scenario in which the prob-
lem ratio for the clusters attributed to this critical cluster can be re-
duced to global observed average problem ratio across all clusters.
Intuitively, this conversion to the global average is simulating the
fact that there are likely to be some background effects due to which
some baseline number problem sessions are unavoidable. Thus, the
best we can do is roughly to reduce the problem ratio of the given
critical cluster to the global average.

5.1 Type of clusters to select
We begin by analyzing the types of critical clusters we want to

select and consider three natural approaches by selecting the top-k
critical clusters in terms of: (1) prevalence, (2) persistence, and (3)
coverage in terms of number of problem sessions attributed to it.

In Figure 11, we see a consistent pattern across all three ap-
proaches. First, we see a manifestation of the Pareto rule, with
the top few clusters account for a significant fraction of all problem
sessions; e.g., in the case of Join failure and coverage combination
(Figure 11(c)), the top 1% can account for almost 60% of all prob-
lem sessions. Second, we see that the relative benefit for different
metrics are slightly different, with join failure and join time show-
ing significantly higher potential improvement rates compared to
buffering ratio and bitrate. In these results, the maximum possible
values do not reach 1 on the y-axis; this is because even choosing
all critical clusters will not cover all problem sessions as we already
saw Table 1.

We also see that choosing the top-k critical clusters in terms of
problem session coverage yields significantly more improvement
than the persistence or prevalence based selection. In some sense,
this is not surprising as the persistence and prevalence rankings
are volume agnostic; they simply look at the number of epochs
in which the critical clusters appear. That said, the critical clusters
with the highest coverage may also have a large volume of traffic
and thus incur a higher cost (e.g., potential upgrades or disruption
to users). We revisit this aspect in the next section.
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Figure 12: Comparison between heuristic selection of critical
clusters using on specific attributes vs. broader approaches that
consider more attribute combinations.

One natural question, building on the breakdown in Figure 10,
could be that focusing on only one of the attributes can itself yield
most of the benefit. To analyze this, we compare the effect of pick-
ing the top-k critical clusters but focusing only on specific attributes
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such as CDN, ASN, or Site in Figure 12. (The x-axis here is nor-
malized by the total number of critical clusters; thus, attributes that
only have a few distinct values such as CDN do not appear through-
out the x-axis.) For clarity, we only consider the join failure and
the top-k clusters in terms of the coverage criterion. We see that
focusing on any one attribute alone cannot provide significant im-
provements compared to considering all types of critical clusters
(marked as “any” in the graph). We do, however, see that con-
sidering the union of the top-4 attributes does provide comparable
improvement.

5.2 Proactive history-based approaches

Metric Intra-week Inter-week
New Potential New Potential

BufRatio 0.35 (71%) 0.49 0.19 (61%) 0.31
Bitrate 0.13 (68%) 0.19 0.09 (64%) 0.14

JoinTime 0.47 (84%) 0.56 0.42 (85%) 0.49
JoinFailure 0.68 (85%) 0.8 0.54 (86%) 0.63

Table 4: Trace-driven simulation of a proactive alleviation strat-
egy. Here, we identify the top 1% critical clusters observed in
offline data, simulate the effect of reducing the problem ratio for
these clusters (“New”) in the future epochs, and compare it with
the effect of reducing the problem ratio for 1% critical clusters of
the future epochs (“Potential”). Percentage in the bracket shows
how close to the potential improvement the proactive alleviation
strategy is.

The previous result considers an “oracle” setting where we alle-
viate the critical clusters after-the-fact. Next, we consider a proac-
tive alleviation strategy where we use offline analysis based on his-
torical data to identify the key critical clusters. Then, we consider
the potential improvement in the future epochs assuming that these
few critical clusters have improved performance. As before, we as-
sume that the problem ratio for the problem clusters attributed to
these chosen critical clusters are reduced to the global average for
the epoch.

We consider two settings here. In the first intra-week setting, we
identify the top 1% critical clusters (by coverage) using the first 4
days of the first week trace, and test the improvement on the re-
maining three days. In the second inter-week setting, we use the
first week to identify the top 1% critical clusters and analyze the
improvement in the second week. Table 4 shows the mean problem
ratio for the intra-week and inter-week simulation. As a point of
reference, we also show the upper bound if we did the “oracle” sim-
ulation from the earlier experiment where we identify the top 1%
critical clusters in each epoch and fix them; i.e., using after-the-fact
analysis rather than history. We see that even using historical mea-
surement data can yield close-to-optimal (70–85%) benefits across
the four metrics.

5.3 Reactive approaches
Next, we consider a setting where we detect and react to prob-

lem incidents after they occur. Conceptually, this approach focuses
on the persistent events by detecting them after the first hour in
which it appears as a critical cluster and then using some remedial
action(s) to reduce the problem ratio for the remaining duration of
the event to the global average problem ratio. Again, our goal is
not to focus on the specific type of remedial action such as reduc-
ing bitrates or switching CDNs [21]. Rather, we want to highlight
the potential for improvement in the spirit of the previous analysis.

Figure 13 shows a trace-driven simulation of this reactive ap-
proach in the case of the join failure metric. The result shows that
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Figure 13: Improvement with a reactive approach for the join
failure. We see that even reactive approaches can yield significant
improvement. “Not in critical clusters” refers to those sessions
cannot be associated with any critical cluster and thus cannot be
alleviated by fixing critical clusters. They are more likely to be
“random” problems.

New Potential
BufRatio 0.43 (95%) 0.45
Bitrate 0.12 (70%) 0.17
JoinTime 0.48 (78%) 0.61
JoinFailure 0.51 (81%) 0.63

Table 5: The average improvement with a reactive approach for
different quality metrics.

even a reactive strategy that takes 1 hour to detect a problem and
then attempts to remedy it, can still reduce the overall problem ratio
by 50%. We summarize the mean improvements for the remaining
metric in Table 5, and find consistent trends across all quality met-
rics.

5.4 Summary of main observations
There are three main takeaways from our what-if analysis:
• We see that even just selecting the top 1% of critical clusters

(in terms of coverage) can yield a potential improvement of 15-
55% across the quality metrics.

• Proactively alleviating the dominant critical clusters observed
in history can also yield close-to-optimal improvement (60–
85% of the upperbound) in the future.

• Even a simple reactive strategy of waiting for critical clusters to
emerge after 1 hour and taking remedial actions to address these
critical clusters can reduce up to 51% of problem sessions.

6. DISCUSSION
While our work provides several insights into the structure of

Internet video quality problems, we acknowledge that this is only a
first step. Here, we identify some potential limitations and suggest
some directions to extend our analysis.
Cost of remedial measures: Our improvement analysis does not
capture the costs that might be incurred to logically “fix” a par-
ticular critical cluster; e.g., does it need infrastructure upgrades or
contracting new CDN service or using multiple CDNs or multiple
bitrates. It will be interesting to also consider a natural cost-benefit
analysis that considers the complexity of upgrading or taking reme-
dial actions for each critical cluster. A more comprehensive solu-
tion will involve an automated system that identifies the bottleneck
as well as provides remedial actions.
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Hidden attributes: There might be hidden attributes associated
with each viewing session on two fronts: (1) the attribute may be
measurable but implicit (e.g., we found many ASNs in non-US re-
gions, so it is natural to consider geography as an additional at-
tribute) and (2) the attribute may not be immediately measurable
(e.g., does a particular ASN use rate limiting or excessive buffers
in switches). That said, the analysis techniques we use is quite gen-
eral and can be repeated when more client attributes are available.
More diagnostic capabilities: In our current framework, we largely
rely on domain knowledge and manual diagnosis to explain the
phenomena we observe (as seen in Section 4.3). Furthermore, we
currently consider a static setting where the set of attributes and
problem sessions are given as input. One natural extension to this
framework if we can trigger more fine-grained measurements (pos-
sibly from third-party sources) when we observe a specific critical
cluster. For instance, if we observe a specific CDN having quality
issues, then we may request server load statistics from that CDN.
Similarly, if a specific combination of ASN-CDN has quality is-
sues, then we may need deployment maps for that CDN near that
ASN to diagnose problems. We leave this for future work.

7. RELATED WORK
We briefly highlight some of the key related work to place our

work in context.
Impact of quality on users: Dobrian et al. showed that the buffer-
ing percentage is the most critical metric [13]. More recent stud-
ies demonstrate a more causal relationship between quality and en-
gagement [19] and also identify specific externalities (e.g., mobile
device) that impact the relationship between quality and engage-
ment [9]. These efforts focus on the impact of quality on engage-
ment and do not analyze why and where these quality problems
occur.
Improving video quality: This includes the work on identifying
problems existing in client-adaptation algorithms (e.g., [8]), inter-
actions with TCP control loops (e.g., [15, 14]), and techniques to
improve bitrate adaptation (e.g., [7, 17]). Other efforts have demon-
strated inefficiencies in CDN and server selection strategies [27, 4].
Recent work has suggested cross-CDN optimizations to improve
video quality [21, 20]. Each of these efforts focuses on particular
aspect of the video delivery ecosystem. Our work takes a broader
view of the entire ecosystem. Our findings can inform the design
of these optimizations and further suggests simpler strategies that
can alleviate a significant number of potential problems.
Other video measurements: There is a large literature in un-
derstanding content popularity and access patterns (e.g., [11][24]),
flash crowds during highly popular events (e.g., [28]), and their im-
plications for CDN and caching designs. Our focus is not on the
popularity or caching implications but on understanding the struc-
ture of quality problems.
Video streaming bottlenecks: Mahimkar et al. characterize per-
formance problems in a large scale IPTV network [22] and Wu
et al. have analyzed performance problems in a P2P live streaming
system [10]. While our work follows in this spirit, our work differs
in two aspects. First, our vantage point gives us a unique opportu-
nity to study multiple content providers rather than focus on ineffi-
ciencies in one specific provider. Second, we focus on web-based
Internet video which is the dominant fraction of video traffic rather
than IPTV or P2P deployments.
Network performance variability: Past measurement studies have
shown that the network performance can be quite variable (e.g., [18,
6, 23]). Recent work on crowdsourcing focuses on network perfor-
mance bottlenecks [26, 12]. Our specific focus in this work is not

on identifying network bottlenecks. That said, a natural direction
of future work is to integrate such bottleneck detection techniques
for deeper diagnosis.
Clustering algorithms: The problem of detecting critical clus-
ters is conceptually similar to detecting hierarchical heavy hitters
(HHH) [29, 22]. The goal with HHH is to detect all clusters that
contribute a significantly high fraction to the total volume even after
removing all of its descendants already marked as a HHH cluster.
While we also seek to identify common patterns in multidimen-
sional data, there is a key difference. The critical cluster genera-
tion step is not a simple volume counting application; we want to
attribute problems to one specific parent cluster. Thus, HHH ap-
proaches are not directly applicable.

8. CONCLUSIONS
The growth of Internet video and the role that video quality plays

in user engagement (and thus revenues) has sparked a renewed in-
terest in redesigning various aspects of the content delivery ecosys-
tem ranging from video players, CDNs, multi-CDN optimizations,
and global control planes. While these efforts are valuable, what
is critically lacking today is a broad spectrum understanding of the
nature of video quality problems as they occur in the wild. In some
sense, the trajectory of these efforts, including our own prior work
in this space, has been somewhat backwards—as a community we
have proposed solutions without necessarily understanding if they
are necessary or why they provide improvements.

This paper was an initial attempt to bridge this gap. We find, per-
haps surprisingly, that a small number of potential problem causes
can account for a large number of problem sessions. Furthermore,
these problem causes are amenable to simple solutions, either via
using offline traces to identify the sources of these problems or by
reacting only to long-lasting outages. We believe that these obser-
vations bodes well for the Internet video ecosystem going forward
as many of the aforementioned efforts to improve video quality
could be simplified to achieve the same benefits.

Acknowledgments
We thank our shepherd Fabián E. Bustamante and the anonymous
reviewers for their feedback. This research was supported in part
by the National Science Foundation under awards CNS-1040757,
CNS-1040800, and CNS-1040801.

9. REFERENCES
[1] Driving Engagement for Online Video.

http://events.digitallyspeaking.com/
akamai/mddec10/post.html?hash=
ZDlBSGhsMXBidnJ3RXNWSW5mSE1HZz09.

[2] Quova. http://developer.quova.com/.
[3] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in the Eye

of the Beholder: Meeting Users’ Requirements for Internet
Quality of Service. In Proc. CHI, 2000.

[4] V. K. Adhikari, Y. Chen, S. Jain, and Z.-L. Zhang. Where
Do You ’Tube’? Uncovering YouTube Server Selection
Strategy. In Proc. IEEE ICCCN, 2011.

[5] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, , and Z.-L. Zhang. A
Tale of Three CDNs: An Active Measurement Study of Hulu
and Its CDNs. In Proc. IEEE Global Internet Symposium,
2012.

[6] A. Akella, S. Seshan, and A. Shaikh. An empirical
evaluation of wide-area internet bottlenecks. In Proc.
Internet Measurement Comference, 2003.

367



[7] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C.
Begen. What Happens when HTTP Adaptive Streaming
Players Compete for Bandwidth? In Proc. NOSSDAV, 2012.

[8] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental
Evaluation of Rate Adaptation Algorithms in Adaptive
Streaming over HTTP. In Proc. MMSys, 2011.

[9] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica,
and H. Zhang. A quest for an internet video
quality-of-experience metric. In Hotnets, 2012.

[10] C. Wu, B. Li, and S. Zhao. Diagnosing Network-wide P2P
Live Streaming Inefficiencies. In Proc. INFOCOM, 2009.

[11] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I
Tube, You Tube, Everybody Tubes: Analyzing the World’s
Largest User Generated Content Video System. In Proc.
IMC, 2007.

[12] D. R. Choffnes, F. E. Bustamante, and Z. Ge. Crowdsourcing
service-level network event monitoring. In ACM SIGCOMM
Computer Communication Review, volume 40, pages
387–398. ACM, 2010.

[13] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph,
A. Ganjam, J. Zhan, and H. Zhang. Understanding the
impact of video quality on user engagement. In Proc.
SIGCOMM, 2011.

[14] J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac.
Interactions Between HTTP Adaptive Streaming and TCP. In
Proc. NOSSDAV, 2012.

[15] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate
Limiting YouTube Video Streaming. In Proc. USENIX ATC,
2012.

[16] T.-Y. Huang, N. Handigol, B. Heller, N. Mckeown, and
R. Johari. Confused, timid, and unstable: picking a video
streaming rate is hard. In Proc. IMC, 2012.

[17] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-Based Adaptive Streaming
with Festive . In ACM CoNext, 2012.

[18] C. Kreibich, B. Nechaev, V. Paxson, and N. Weaver.
Netalyzr: Illuminating The Edge Network. In Proc. IMC,
2010.

[19] S. S. Krishnan and R. K. Sitaraman. Video stream quality
impacts viewer behavior: inferring causality using
quasi-experimental designs. In IMC, 2012.

[20] H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang.
Optimizing Cost and Performance for Content Multihoming.
In in Proc. SIGCOMM, 2012.

[21] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica,
and H. Zhang. A Case for a Coordinated Internet Video
Control Plane. In Proc. SIGCOMM, 2012.

[22] A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang,
and Q. Zhao. Towards Automated Performance Diagnosis in
a Large IPTV Network. In Proc. SIGCOMM, 2009.

[23] J. S. Otto, M. A. Sánchez, D. R. Choffnes, F. E. Bustamante,
and G. Siganos. On blind mice and the elephant. In Proc. of
ACM SIGCOMM, 2011.

[24] L. Plissonneau and E. Biersack. A longitudinal view of http
video streaming performance. In Proc. MMSys, 2012.

[25] D. Rayburn. Telcos and carriers forming new federated cdn
group called ocx (operator carrier exchange). June 2011.
StreamingMediaBlog.com.

[26] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes,
F. E. Bustamante, B. Krishnamurthy, and W. Willinger. Dasu:
Pushing experiments to the internetâĂŹs edge. In Proc. of
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