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Abstract Data preparation is an important step in mining
incomplete data. To deal with this problem, this paper intro-
duces a new imputation approach called SN (Shell Neigh-
bors) imputation, or simply SNI. The SNI fills in an incom-
plete instance (with missing values) in a given dataset by
only using its left and right nearest neighbors with respect
to each factor (attribute), referred them to Shell Neighbors.
The left and right nearest neighbors are selected from a set
of nearest neighbors of the incomplete instance. The size
of the sets of the nearest neighbors is determined with the
cross-validation method. And then the SNI is generalized to
deal with missing data in datasets with mixed attributes, for
example, continuous and categorical attributes. Some exper-
iments are conducted for evaluating the proposed approach,
and demonstrate that the generalized SNI method outper-
forms the kNN imputation method at imputation accuracy
and classification accuracy.

Keywords kNN · Shell-NN · Missing data imputation ·
Mining incomplete data

1 Introduction

Real data is often of low quality, whereas machine learn-
ing (or data mining) algorithms are designed based on qual-
ity data. That is, researchers have assumed that the input to
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these algorithms conforms to well-defined data distribution
and contains no missing, inconsistent, or incorrect values.
This leaves a large gap between the available data and the
machinery available to learn the data [29]. To investigate this
issue, this research is focused on missing data imputation.

According to (The Free Encyclopedia, Wikipedia), miss-
ing values occur when no data value is stored for the vari-
able in the current observation. An instance with missing
values is called incomplete data. Missing values are a com-
mon occurrence, and statistical methods have been devel-
oped to deal with this problem, referred to as missing data
imputation. Generally, missing data imputation is defined as
a procedure of completing the missing values with plausible
values that are estimated based on the observed data (called
complete data) in the given dataset [1]. A well-known miss-
ing data imputation technique is to construct a regression
function based on the observed data in the dataset, referred
to as the regression imputation (RI). Each missing datum is
approximated with the regression function. The simplest RI
technique is to replace missing values with only the mean of
the known values in the complete instances.

Another commonly used and efficient imputation is the k

nearest neighbor imputation (called kNN imputation, or
kNNI), which is one of the hot deck techniques used to com-
pensate for missing data [3, 28]. It uses only the k most rel-
evant complete instances in the dataset for imputing a miss-
ing datum. Without other information, the k most relevant
complete data are the k nearest neighbors of the incomplete
instance in the dataset.

Due to its simplicity, easily understanding and relatively
high accuracy, the kNNI has been widely used in diverse real
applications [26]. However, k nearest neighbors can be im-
proper to most missing data when using the kNNI method
for an imputation application, because some of the k near-
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est neighbors may be far from a missing instance (which is
illustrated with graphs in Sect. 3).

This research introduces a new imputation approach
called SN (Shell Neighbors) imputation, or simply SNI,
which is designed specifically to deal with the above issue
faced by kNN based imputation methods. The SNI method
fills in an incomplete instance in a given dataset using only
its left and right nearest neighbors with respect to each fac-
tor (attribute). The left and right nearest neighbors are se-
lected from a set of nearest neighbors of the incomplete
instance. The size of the sets of the nearest neighbors is
determined by the cross-validation method. Further, the SNI
is extended to deal with the missing data in mixed attribute
datasets where their attributes are valued in different types,
for example, continuous and categorical values. Intensive
experiments were conducted to evaluate the proposed ap-
proach. The experimental results demonstrated that the SNI
method outperforms the kNNI method in accuracy.

The rest of this paper is organized as follows. Section 2
briefly recalls some basic concepts and related work on
missing value imputation. Section 3 presents the SNI impu-
tation approach, while Sect. 4 extends the SNI to deal with
missing data in those datasets where their attributes are val-
ued in different types. The proposed approach is evaluated
in Sect. 5, and the paper is concluded in Sect. 6.

2 Preliminary

This section first recalls some relevant concepts and then
reviews related works on missing data imputation.

2.1 Basic concepts

Let X be a d-dimensional vector of factors and let Y be a
response variable influenced by X. In practice, one often ob-
tains a random sample (sample size = n) of incomplete data
associated with a population (X,Y, δ),

(Xi, Yi, δi), i = 1,2, . . . , n

where all the Xi ’s are observed and δi = 0 if Yi is missing,
otherwise δi = 1. Suppose that (Xi, Yi) satisfies the follow-
ing model:

Yi = m(Xi) + εi, i = 1,2, . . . , n (1)

where m(.) is an unknown function, and the unobserved εi

(with population ε) are i.i.d. random errors with mean 0 and
unknown finite variance σ 2, and are independent of the i.i.d.
random variables Xi ’s.

To impute the missing values, m(.) must be estimated.
The m(.) are often measured with the statistical parame-
ters of the response variable Y such as μ = EY, θ = F(y)

and θq . In many complex practical situations, m(.) is not a
linear function. To avoid estimating m(.), the kNNI method
replaces a missing value in a dataset with the mean of the
k nearest neighbors when imputing. However, as will be il-
lustrated in Sect. 3, when some of the nearest neighbors are
far from a missing instance, the kNNI algorithms are often
of low efficiency. These issues will be explained in the next
section.

2.2 Related work

There are two general approaches when dealing with the
problem of missing values: the missing values could be ig-
nored (removed) or imputed (filled in) with new values [5].
The first method is to simply omit those instances with miss-
ing data and to run analyses on what remains [27]. Although
the method often results in a substantial decrease in the sam-
ple size available for the analysis, it presents little advantage.
For example, under the assumption that data is missing at
random (MAR, one of three missing mechanisms, and the
other two are MCAR, NMAR, see [14]), this leads to unbi-
ased parameter estimates. However, the method, which gets
complete data through decreasing the original data, will lose
a lot of resources and information, especially when the rate
of missing data is larger or the distribution of missing data is
non-random; therefore, the method can result in very serious
bias and erroneous conclusions. Missing values imputation
which replaces missing values with some plausible values is
a popular solution for dealing with missing values. One ad-
vantage of this approach is that the missing data treatment
is independent of the learning algorithm used. This paper
focuses on the imputation methods.

There are many ways of dealing with missing feature
values though the most commonly used approaches can be
found in the statistics literature. The ideas behind them and
various types of missingness introduced in [21] are still in
use today and the multiple imputation method is considered
as state of the art alongside the Expectation Maximization
(EM) algorithm [4, 8, 23, 24]. In general the missing value
imputation methods are the prevalent way of coping with
missing data. However, as it has been pointed out in many
papers [2, 8, 16, 17, 24] such a “repaired” data set may no
longer be a good representation of the problem at hand and
quite often leads to the solutions that are far from optimal.

Imputation techniques can be categorized into many
types, based on different principles [25]. For example, one
can partition the existing imputation techniques into ma-
chine learning methods in which missing values are im-
puted with machine learning techniques and statistical meth-
ods. The researchers design statistical methods to deal with
missing values first, such as the classical algorithm mul-
tiple imputation (MI) method [14], the EM algorithm [4].
The most popular method in statistics is the regression im-
putation method. Common regression methods include the
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parametric methods (such as linear regression and the non-
linear imputation method) and the non-parametric methods
(such as kernel imputation in [28]). The parametric regres-
sion imputations are superior if a dataset can be adequately
modeled parametrically, or if users can correctly specify the
parametric forms for the dataset. However, such a paramet-
ric approach is potentially more sensitive to model viola-
tions than those methods based on implicit models. If the
regression model is not a good fit, then the predictive power
of the model might be poor [19]. Moreover, one expends
much time on modeling the real distribution, even if the real
distribution of the datasets is known. The non-parametric
imputation method offers a nice alternative if users have
no idea of the actual distribution of a dataset, because the
method can provide superior fits by capturing the structure
in the datasets (a mis-specified parametric model cannot).
The kNNI algorithm belongs to the non-parametric method.
Several nice ML algorithms have also been applied to the de-
sign and implementation of imputation methods, such as the
C4.5 method [20], and EM-based approach [8], incomplete
data learning . In this paper, the proposed algorithm belongs
to the machine learning methods under the non-parametric
models.

In the context of pattern recognition or classification sys-
tems the problem of missing labels [12, 15] and the problem
of missing features are very often treated separately [6]. This
points to a very interesting discussion point related to the is-
sue of the trade-off between the information content in the
observed data (in this case available labels) versus the im-
pact that can be achieved by employing sophisticated data
processing algorithms as the approaches dealing with miss-
ing feature values. Some authors [7, 9] advocate a different,
unified approach to both learning from a mixture of labelled
and unlabelled data as well as robust approaches to using
data with missing features without a need for imputation of
missing values.

Imputation techniques can also be categorized based on
imputation times, such as single imputation (SI), multi-
ple imputation (MI), fractional imputation (FI) and itera-
tive imputation (II) methods. Single imputation strategies
provide a single estimate for each missing value. Many
methods for imputing missing values are single imputation
methods, such as the C4.5 algorithm, the kNNI method,
and so on. Without special corrective measures, single-
imputation inference tends to overstate precision, because
it omits the between-imputation component of variability.
When the fraction of missing information is small (say, less
than 5%), then single-imputation inferences for a scalar es-
timation may be fairly accurate. For joint inferences about
multiple parameters, however, even small rates of missing
information may seriously impair a single-imputation pro-
cedure. In this case, multiple imputation algorithms attempt
to provide a procedure that can get the appropriate measures

of precision relatively simply in (almost) any setting. In or-
der to generate imputations for the missing values, the MI
method must impose a probability model on the complete
data (observed and missing values). For example, software
NORM uses the multivariate normal distribution, and CAT
is based on log-linear models (all the details on these mod-
els are given by [22]). In multivariate analysis, MI meth-
ods provide good estimations of the sample standard er-
rors. However, data must be missed at random in order to
generate a general-purpose imputation. In this domain, how
to satisfy the Bayes theory in MI processes is a key idea
and is also a challengeable issue. The recently proposed FI
method [11] is a trade-off between single imputation meth-
ods and multiple imputation methods. In contrast, II ap-
proaches can be better developed for missing data since they
can utilize all useful information, including the instances
with missing values [25]. This can receive a significant per-
formance in the datasets, even with a high missing ratio.
Some research presents an EM-style non-parametric itera-
tive imputation model embedded with the kNNI algorithm
to impute missing attribute values, such as the GBKII algo-
rithm [25]. Except for the existing methods for dealing with
missing values, the well known method is the Expectation-
Maximization (EM) algorithm for the parametric model. Re-
cently, Kang et al. [11] commented that the FI imputation
method is more efficient than the single imputation method
when compared with the MI method, because unbiased vari-
ance estimation is possible, it can handle auxiliary variables,
and it can be made robust against the failure of the imputa-
tion model. The experimental results in [18] generally favor
MI over EM.

In this study, the algorithm is the single imputation
method, and it can be applied easily to the other methods,
namely the MI, II and FI methods. This research focuses
on the single imputation method, because the other methods
(such as the MI, II and FI) can be implemented easily if the
single imputation method is successful.

3 Missing data imputation based on shell neighbors

For self-contained content, this section presents the SNI ap-
proach, including the formal definition of the Shell Neigh-
bors and the SNI algorithm by formulizing the basic idea
in [26].

3.1 The size of the sets of nearest neighbors

Many methods have been designed for determining the size
of sets of nearest neighbors of missing data. This paper seeks
the size of the sets of the nearest neighbors with cross vali-
dation.

Let r = ∑n
i=1 δi , m = n − r , Dr and Dm be the sets

of labels of complete data and incomplete data in a given
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dataset D, respectively. For i ∈ Dm, i.e., for missing Yi ,
find s points in {Xj , j ∈ Dr} nearest to Xi (measured in
Euclidean distance in Rd), where s is the size of the sets of
the nearest neighbors of incomplete data. The s points will
be used for determining the Shell neighbors of incomplete
data. The s points are denoted as Xij , j = 1,2, . . . , s, and

Y ′
i = 1

s

∑s
j=1 Yij is used to impute the missing Yi .

To determine s, one can use the cross-validation method
to the complete data as follows. Let

CV (s) =
∑

i∈Dr

(Yi − Y ′
i )

2

One can choose s according to the following formula

s = arg MINr
j=1{CV(j)} (2)

It is possible that the size of D is very large. To scale
up the above algorithm, one can seek the s in a training set
(a sample) of D.

3.2 Imputation model

From (2), the size of the sets of the nearest neighbors of
incomplete data, s, can certainly be taken as the k for the
kNNI method. Although k = s is the best selection with re-
spect to all complete data, it can be improper for most of the
missing data when using the kNNI method for an imputation
application, because there may be some exceptional points
(outliers) in a given dataset, and the exceptional points often
influence the value of s. Even when a compromise k(= s)

is determined, the k nearest neighbors of a missing datum
cannot be the right choice. For example, let k = s = 5, A be
a missing datum, and B,C,D,E,F be the 5 nearest neigh-
bors. A and its 5 nearest neighbors can be distributed as one
of 7 cases shown in Fig. 1 as follows.

Certainly, Fig. 1(1) is the best one among the 7 cases
and A can well be approximated by its 5 nearest neighbors.
There is a bias selection in Figs. 1(2) to (5), whereas A can-
not be approximated when point A and its 5 nearest neigh-
bors are distributed as one of the cases in Figs. 1(6) and (7).
This means that 6 out of the 7 cases are bias selections. To
avoid bias selections, this subsection builds a new imputa-
tion model that uses the left or right nearest neighbor for a
missing datum in a given dataset.

For an (n + 1)-dimensional imputation problem, one se-
lects such 2n complete data, T −

1 , T +
1 , . . . , T −

n , T +
n from a

given dataset, where T −
i , T +

i are the left and right nearest
neighbors of an incomplete datum T with respect to the fac-
tor Xi , respectively.

Definition 1 Let T = (Xl1,Xl2, . . . ,Xln, Yl,0) in the
dataset D, NT is a set of all the nearest neighbors of T

Fig. 1 Missing datum A and its nearest neighbor

in the dataset, and T ’s left and right nearest neighbors with
respect to the factor Xi are defined as follows:

T −
i = (X−

i1,X
−
i2, . . . ,X

−
in, Yi−,1), i = 1,2, . . . , n

T +
i = (X+

i1,X
+
i2, . . . ,X

+
in, Yi+,1), i = 1,2, . . . , n

where T −
i or T +

i may not exist in NT . They satisfy that, for a
nearest neighbor (Xj1,Xj2, . . . ,Xjn,Yj+,1) in NT , either
Xji ≤ X−

ii if there is a T −
i in NT , or Xji ≥ X+

ii if there is a
T +

i in NT .

With these nearest neighbors, one can replace Yl with the
mean of all the Yi− and Yi+. Or

Yl = 1

2n

n∑

i=1

(Yi− + Yi+) (3)

From the selection of the left and right nearest neighbors
of a missing datum with respect to the factor Xi , there are
three cases as follows.

1. There may be no left or right nearest neighbor for a miss-
ing datum in a given dataset, with respect to the factor Xi .

2. A complete datum may be selected multiple times in the
set of the left/right nearest neighbors of a missing datum
in a given dataset with respect to the factor Xi .
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3. Some left or right nearest neighbors of a missing datum
in a given dataset, with respect to the factor Xi may be
far from the missing data.

For the first case, one can simply give up all the missed
left or right nearest neighbors when estimating the missing
datum. The second case shows that fact: the more times a
complete datum is selected, the closer to the missing datum
the complete datum is.

For the third case, one can use a weighting technique to
weaken their impact to the missing data when estimating the
missing data. The weight of a left or right nearest neighbor
of a missing datum can be determined as follows.

For a left or right nearest neighbor Ti = (Xi1,Xi2, . . . ,

Xin, Yi,1) of the missing datum T = (Xl1,Xl2, . . . ,

Xln, Yl,0), one obtains

di =
√

(Xi1 − Xl1)2 + · · · + (Xin − Xln)2

Hence, one can get the weight wi of Ti as follows.

wi = 1 − di

d1 + d2 + · · · + dm

(4)

where “m” is the number of the selected left or right nearest
neighbors of the missing data. With these weights, one can
estimate Yl as follows.

Yl =
n∑

i=1

(wi−Yi− + wi+Yi+) (5)

Further, one can waive all the left or right nearest neigh-
bors that are far from the missing data according to di or wi .
In other words, one can select those left or right nearest
neighbors that are very close to the missing data. After fil-
tering some nearest neighbors, it is easy to estimate Yl by
improving (4) and (5).

3.3 Imputation algorithm

From the above, the new approach called SNI (Shell Neigh-
bor Imputation) is similar to the kNNI method. There are
two essential differences between the SNI and kNNI ap-
proaches as follows:

• The SNI approach takes into account the left and right
nearest neighbors of a missing datum, whereas the kNNI
method selects the k nearest neighbors.

• In the SNI approach, the number of the selected nearest
neighbors is a variable determined by data when imputing
missing data, whereas the kNNI method uses a fixed k.

With the SNI approach, the process of the missing data
imputation is as follows. Let X be an n-dimensional vector
of factors, Y a response variable influenced by X, a dataset

of incomplete data associated with a population (X,Y, δ)

will be as follows

(Xi, Yi, δi), i = 1,2, . . . ,N

1. For each incomplete data T = (Xl1,Xl2, . . . ,Xln, Yl,0),
search all the left or right nearest neighbor of T :
T1, T2, . . . , Tm;

2. Use the formula (4) to calculate the weight wi of Ti, i =
1,2, . . . ,m;

3. Estimate Yl with formula (5);
4. Repeat Steps 1–3 until no incomplete data are in the

dataset.

This process is simple and easy to understand and im-
plement. With this SNI approach to the missing datum A

in Fig. 1, the 5 nearest neighbors of A may be selected in
Fig. 1(1); the nearest neighbors B and C of A may only be
selected in Fig. 1(2); the nearest neighbors B , C and D of
A may be selected in Fig. 1(3); the nearest neighbors B and
C of A may be selected in Fig. 1(4); the nearest neighbors
B , C and D of A may be selected in Fig. 1(5); there may
be no nearest neighbor selected for the missing datum A in
Fig. 1(6) and 1(7).

The selected nearest neighbors look like a shell of A and
are called the Shell Neighbors of A. In Fig. 1, only 1(1)
looks like a shell of A; there is only an incomplete shell
for 1(2)–1(5) in the set of nearest neighbors of A, and it may
not be a shell for 1(6) and 1(7) in the set of nearest neighbors
of A.

From the above, the kNNI method uses a fixed k. How-
ever, in the SNI approach, different numbers of the nearest
neighbors are selected for the missing datum A in the 7 cases
in Fig. 1. From the extrapolation, the SNI approach is there-
fore more reasonable than the kNNI method.

4 Generalizing the SNI approach

This study has designed the SNI algorithm against those
datasets that have only numerical attributes. However, in real
applications, a dataset often contains attributes of different
types, such as continuous attribute, binary attribute, categor-
ical attribute, ordinal attribute, etc. This is called mixed at-
tribute dataset in this paper. Therefore, the SNI algorithm is
extended to deal with the missing data in the mixed attribute
datasets in this section. To do so, one should

1. Normalize the data to avoid bias due to the magnitude of
difference among attributes (detailed in Sect. 4.1).

2. Analyze how to compute the distance in mixed attributes
(detailed in Sect. 4.2).

3. Extend the existing SNI approach to the case in which
the missing attribute is mixed, including both continuous
and discrete attributes (detailed in Sect. 4.3).
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4.1 Attribute value normalization

One attribute may not be as significant as the same unit dif-
ference in another attribute because of differences in the or-
der of magnitude and/or range of data of the different input
attributes. For example, in a relational database, the salaries
of the inhabitants can take up values of anywhere between
50k and/or even beyond 250k, whereas the ratio of the em-
ployment content ranges from 0 to a maximum of 1. Gener-
ally, the result is prone to the data with the bigger magnitude,
that is, a unit difference in the ratio of the employment is ex-
pected to be more significant than the same unit difference
in the income of the inhabitants.

In this paper, all input attributes are first transformed to
obtain temporary variables with the distribution having a
zero mean and a standard deviation of 1 using the follow-
ing transformation:

aij (temp) = [(aij ) − āj ]/σ(aj )

where aij represents the value of the j th attribute of the ith
instance, āj and σ(aj ) represent the mean and standard de-
viation of the observed values of the j th attribute respec-
tively in the reference data set.

aij (trans) = aij (temp){MAX[range(aj=1(temp)), . . . ,

range(aj=x(temp))]}/range(aj (temp))

where aj (temp) represents the data of the j th attributes nor-
malized using the first formula; and aij (trans) represents the
final transformed value of the j th attribute of the ith instance
that are to be used as input.

After the normalization process, the magnitude of all at-
tributes is confined to between 0 and 1, which can avoid the
bias towards the attributes with a larger magnitude due to
different ranges in the attributes.

4.2 Distance measures for attributes of different types

There are many kinds of attribute types in real applications,
for example, continuous attribute, categorical attribute, bi-
nary attribute, and ordinal ones. Furthermore, they can be
found in one dataset at the same time. In this subsection,
all these attributes, except for continuous attributes, are re-
garded as discrete attributes, and how to combine the mixed
attributes for computing the distance between two instances
is discussed in detail. In this subsection, we first analyze how
to deal with these types respectively; then a method is pro-
posed to combine them.

4.2.1 Continuous attributes

Usually, one can employ the Euclidean distance or the
Minkowski distance to compute the distance between two

Fig. 2 A weakness of Minkowski distance

continuous attributes. However, one shortcoming of the
Minkowski distance is demonstrated in Fig. 2: the red line
(the upper one) is parallel to the black line; in this case,
one can get some values (for example, 100) based on the
Minkowski distance, but in the sequence data application,
the distance between the red line and the black line should be
0, because the red line can be shifted up vertically to obtain
the black one and vice versa. Thus, the Minkowski distance
is changed as follows:

d(i, j) =
√
√
√
√

n∑

k=1

((Ai,k − Aj,k) − (Āi − Āj ))2

where Ai,k is the kth continuous attributes in ith instance,
Āi is the average of all n continuous attributes, and n is the
number of continuous attributes.

Obviously, the new definition can deal with this problem
and can also give a better estimation than the Minkowski
distance.

4.2.2 Binary attributes

A binary variable has only two states, such as 0 or 1 (nega-
tive or positive). A binary variable is symmetric if both of its
states are equally valuable and carry the same weight [10].
That is to say, no preference should be coded as 0 or 1. The
distance between symmetric binary attributes can be defined
as:

d(i, j) = r + s

q + r + s + t

where q is the number of variables that equal 1 for both
objects i and j , r is the number of variables that equal 1 for
object i but are 0 for object j , s is the number of variables
that equal 0 for object i but equal 1 for object j , and t is the
number of variables that equal 0 for both objects i and j .

An asymmetric binary variable is when the outcomes of
the states are not equally important, for example, the posi-
tive and negative outcomes of the HIV disease. In fact, posi-
tive HIV presents more serious outcomes than negative HIV
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Fig. 3 Example of ordinary values

does for tests. Hence, the distance between asymmetric bi-
nary attributes are defined as:

d(i, j) = r + s

q + r + s

4.2.3 Categorical attributes

A categorical variable is a generalization of the binary vari-
able in that it can take on more than two states [10]. For
example, the attribute ‘color’ can be regarded as a categor-
ical attribute that may have these states, such as red, yel-
low, green, and blue. The distance between the categorical
attributes can be defined as:

d(i, j) = p − m

p

where m is the number of matches (i.e., the number of vari-
ables for which i and j are in the same state), and p is the to-
tal number of variables. Weights can be assigned to increase
the effect of m or to assign greater weight to the matches in
variables having a larger number of states.

4.2.4 Ordinal attributes

An ordinal variable is a categorical variable with ordering.
For example, the attribute “quality” can be represented as
(see Fig. 3): excellent, good, average, bad and awful, and
there exists an ordering, such as the attribute value “excel-
lent” is better than “good”. As Lin [13] defined: The dis-
tance between A and B is measured by the ratio between
the amount of information needed to state the commonal-
ity of A and B and the information needed to fully describe
what A and B are:

dist(A,B) = 2 × logP(common(A,B))

logP(description(A,B))

= −2 × logp(A ∪ B)

− logp(A) − logp(B)

where ‘common’ and ‘description’ are tied to a particular
domain. Based on Fig. 3, this example explains the defini-
tion as follows:

The “quality” attribute can take one of the following val-
ues “excellent”, “good”, “average”, “bad”, or “awful”. Now
it will be shown that such definition of similarity could pro-
vide a measure for the similarity between two ordinal values.

If “the quality of X is excellent” and “the quality of Y

is average”, then the maximally specific statement that can
be said of both X and Y is that “the quality of X and Y are
between average and excellent”. Therefore, the commonal-
ity between two ordinal values is the interval delimited by
them. Suppose the distribution of the “quality” attribute is
known (shown in Fig. 3):

dist(‘excellent’, ‘good’)

= 2 × logP(‘excellent’ ∪ ‘good’)

logP(‘excellent’) + logP(‘good’)

= 2 × log(0.1 + 0.2)

(log 0.1 + log 0.2)
= 0.62

dist(‘excellent’, ‘average’)

= 2 × logP(‘excellent’ ∪ ‘good’ ∪ ‘average’)

logP(‘excellent’) + logP(‘good’) + logP(‘average’)

= 2 × log(0.1 + 0.2 + 0.4)

log 0.1 + log 0.2 + log 0.4
= 0.15

The results show that, given the probability distribution in
Fig. 3, the similarity between “excellent” and “good” is
much higher than the similarity between “excellent” and
“average”.

4.2.5 Combination

To begin with, how to compute the distance between objects
described by variables of the same type, where these types
may be either continuous, symmetric binary, asymmetric bi-
nary, categorical, or ordinal is discussed here. However, in
many real databases, objects are described by a mixture of
variable types. In general, a database may contain all of the
variable types listed above. Suppose that the dataset contains
p variables of mixed type. The distance d(i, j) between ob-
jects i and j is defined as:

d(i, j) =
∑n

k=1 δ
f
ij d

f
ij

∑n
k=1 δ

f
ij

where δ
f
ij = 0 if the f th type attribute is missing, otherwise,

δ
f
ij = 1, and n is the number of attributes.

4.3 Estimating missing discrete values

In fact, the imputed values based on the SNI algorithm is al-
ways focused on continuous values, and this algorithm can
also impute the discrete missing attribute. This subsection
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presents a method for estimating plausible values for miss-
ing discrete values based on the Shell Neighbors method.

Let D be a mixed attribute dataset, X be a vector of (con-
tinuous or discrete) attributes in D, and Y a discrete attribute
in D. A datum in D is represented as follows:

(Xi, Yi, δi), i = 1,2, . . . ,N

where all the Xi ’s are observed and δi = 0 if Yi is missing,
otherwise δi = 1. Assume T = (Xl1,Xl2, . . . ,Xln, Yl0,0) to
be a missing datum, then the Shell neighbors of T are as
follows:

T1, T2, . . . , Tm

where Ti = (Xi1,Xi2, . . . ,Xin, Yi,1). Based on the Shell
neighbors of T , the procedure of estimating the plausible
value of Yl0 is as follows:

1. Cluster Yi, i = 1,2, . . . ,m;
2. Replace Yl0 with the major class.

There may not be a major class. A simple example is:
m = 2 and Y1 �= Y2. For this case, one of the following ap-
proaches can be taken:

1. Count the frequency of Y1 and Y2 in D, and then replace
Yl0 with the more frequent one.

2. Compare the distance of T1 and T2 to T , and then replace
Yl0 with the one closer to T .

If one cannot get a plausible value for Yl0 with the above
two approaches yet, the missing data T is unpredictable. If
one must make a choice, any one of Y1 and Y2 can be used
to fill in the missing value Yl0.

4.4 Algorithm design for the extended SNI

With the above definition of the distance of mixed attributes
and the estimation of the missing discrete values, the algo-
rithm of the extended SNI can be designed to be similar to
that in Sect. 3.3.

It is worthwhile to note that, for simplicity, one can take
the value match for measuring the proximity of discrete at-
tributes. In other words, let Xi be a discrete attribute, xji

and xki the two entrances of the two instances at Xi , then
the two instances are of proximity with respect to only Xi if
and only if xji = xki .

5 Experiments

In order to show the effectiveness of the proposed methods,
extensive experiments were undertaken on 9 real datasets
with the algorithm implemented in C++ and executed using
a DELL Workstation PWS650 with 2 G main memory, and
2.6 G CPU.

Table 1 The datasets used in our experiments

#(Inst.) Conditional attr. Decision attr.

Stock 950 Continuous (9) Continuous

Delta 7129 Continuous (5) Continuous

Bodyfat 252 Continuous (13) Continuous

Iris 150 Continuous (4) Categorical (3)

Wine 178 Continuous (13) Categorical (3)

Letter 20000 Continuous (16) Categorical (26)

Abalone 4177 Binary (1), Continuous (8) Continuous

Housing 506 Binary (1), Continuous (12) Continuous

Auto-mpg 392 Continuous (4), Categorical (3) Continuous

5.1 Experiment setting

We compare the performance of the proposed algorithm
named SNI with the traditional method kNN imputation,
named kNNI, in our experiments with real datasets from
WEKA software and the UCI dataset archive. After build-
ing imputor based on our algorithm and kNNI imputation
method, we show the performance for imputing a contin-
uous missing target attribute in terms of imputation accu-
racy with RMSE (Root Mean Square Error) in Sect. 5.2,
and we also present the comparison for imputing discrete
missing target attributes in terms of classification accuracy
in Sect. 5.3.

Some datasets are employed in our experiments, some of
them come from WEKA datasets, such as, ‘Stock’, ‘Delta’
and ‘Bodyfat’, and the others come from UCI datasets, such
as, ‘Iris’, ‘Wine’, ‘Letter Recognition’, ‘Abalone’, ‘Hous-
ing’ and ‘Auto-mpg’. These 9 datasets include almost all
types explained in Sect. 4.2, such as, continuous attribute,
categorical attribute and binary attribute. The details of each
dataset are decrypted in Table 1.

In Table 1, the first column is the name of the datasets,
the following three columns represent the number of the in-
stances, the description of conditional attributes, and the de-
scription of decision attributes respectively. The number in
parenthesis in the last two columns represents the size of
attribute in the dataset. For example, in dataset Iris, contin-
uous (4) means there are 4 continuous conditional attributes
and categorical (3) means there are 3 classes in the decision
attribute.

All the 9 datasets have no missing values, and we did not
intentionally select those datasets that originally come with
missing values, because if they contain missing values, we
could not know the real values for the missing values and do
not know how to evaluate the imputation performance. In
our experiments, we random missed the target values (sim-
ilar to the MAR mechanism in [14]) in each dataset, and
repeated to impute each dataset for 1000 times, and the final
result for RMSE or classification is the mean of the results
in the 1000 imputations.
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Fig. 4 RMSE for two
algorithms in six datasets

5.2 Experiments for the SNI

Initially, we design different algorithms (i.e., SNI and kNNI)
to impute continuous missing values, by employing datasets,
‘stock’, ‘delta’, ‘bodyfat’, ‘abalone’, ‘housing’ and ‘auto-
mpg’. We used RMSE to assess the predictive ability:

RMSE =
√
√
√
√ 1

m

m∑

i=1

(ei − ẽi )2

where ei is the original attribute value; ẽi is the estimated
attribute value, and m is the total number of prediction. The
larger the RMSE is, the worse the prediction accuracy is.

Figure 4 presents the values of RMSE in the six datasets
that have a missing rate of 5%, 10%, 20% and 40%, respec-
tively.

As shown in Fig. 4, we can conclude two facts: (1) the
SNI algorithm outperforms the kNNI algorithm at different
missing ratios in all datasets; (2) the higher the missing ra-
tio, the lower imputation performance is. It is obvious that,
as more missing values are imputed, the probability of the
chance of generating imputation errors is larger.

If we only focus on the datasets where all the attributions
are continuous in our experiments, such as, ‘stock’, ‘data’,
and ‘bodyfat’, when the missing ratio is 10%, the SNI algo-
rithm is better than kNNI with maximal difference, which
is 0.0864, 0.000015 and 0.055746, respectively. However,
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Table 2 Classification accuracy
for two algorithms in four
datasets

Iris (unit: %) Wine (unit: %) Letter (unit: %)

SNI kNNI SNI kNNI SNI kNNI

5% 94.4000 87.5375 96.0667 95.7889 96.5740 96.1690

10% 94.0200 86.9600 95.9667 95.6333 96.4685 96.0995

20% 93.7933 87.0367 96.1278 95.6889 96.2015 95.7980

40% 93.9767 86.9067 95.6972 94.8352 95.3608 94.9063

the conclusion will not be preserved in the left datasets as
their conditional attributes are combined with the mixed at-
tributes. For example, the best difference between SNI and
kNNI is 0.003473 (40%), 0.11578 (5%), and 0.635345 (5%)
respectively in the datasets ‘abalone’, ‘housing’ and ‘auto-
mpg’. The value in parenthesis is the corresponding missing
ratio, while taking the maximal difference in the dataset. We
can analyze the reason, based on the types of the dataset,
the rule is not preserved due to the affect of the mixture at-
tributes so that it makes it difficult to build a more effective
imputation model.

5.3 Experiments for the extended SNI

The UCI datasets ‘Iris’, ‘Wine’, and ‘Letter Recognition’,
in which class attribute is discrete, are applied to compare
the performances in terms of classification accuracy on the
above two methods.

We assess the performance of these prediction procedures
with the term, Classification Accuracy (CA), which is de-
fined as:

CA = 1

n

n∑

i=1

l(ICi ,RCi )

where t is the number of missing values, and n is the number
of instances in the dataset. The indicator function l(x, y) = 1
if x = y; otherwise it is 0. The ICi and RCi are the impu-
tation and real class label for the ith missing value, respec-
tively. Obviously, the larger the value of CA, the more effi-
cient is the algorithm.

Table 2 shows the results of classification accuracy in the
two imputation algorithms (i.e., SNI and kNNI) at the dif-
ferent missing ratio 5%, 10%, 20% and 40% respectively.

As shown in Table 2, we can easily find the results fol-
lowing the conclusion that the SNI algorithm outperforms
kNNI algorithm for imputing missing values at different
missing ratios in all datasets.

Based on the experimental results, we are unable to find
some rules about the difference between the SNI and kNNI
methods. We can also see that, when the missing ratio is
40%, the difference between the two algorithms is maxi-
mal, which is 7.0700%, 0.8620% and 0.4545% respectively.
This can be explained with the same reason as outlined in
Sect. 5.2.

Based on the results in both Sects. 5.2 and 5.3, we
can know our proposed algorithm, which does not consider
the parameter in nearest neighbor algorithm, is better than
the traditional algorithm—kNNI imputation algorithm in all
kinds of conditions, for example, different missing ratio,
different types of dataset. However, due to the discrete at-
tributes added into continuous attributes, the decision at-
tribute is discrete and makes it difficult to simulate a smooth
function (i.e., imputor) between the missing attribute and the
other attributes. Thus, it is not easy to find more interesting
rules for the proposed algorithm based on our experimental
results.

6 Conclusions

While data preparation is an important step in mining in-
complete data, this paper has proposed a new imputation,
the SNI. It is different from the kNNI method, because

1. The SNI approach takes into account the left and right
nearest neighbours of missing data, whereas the kNNI
method selects k nearest neighbors.

2. In the SNI approach, the number of the selected near-
est neighbors is variable when imputing missing data,
whereas the kNNI method uses a fixed k.

From the extrapolation, the SNI approach is more reason-
able than the kNNI method. The experimental results have
also demonstrated that the SNI is more effective than the
kNNI method.

Future work will apply the SNI approach to real machine
learning and data mining applications to enable improve-
ment in methods.
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