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Shell Source Burning Stars with Highly Condensed Cores 

S. REESDAL and A. WEIGERT 
Behlen Laboratory of Physics, University of Nebraska 

Institute of Theoretical Astrophysics, University of Oslo 
Hamburger Sternwarte 

Received February 10, 1970 

Simple analytical relations are derived - similar to the homology relations for homogeneous stam - which 
describe the behaviour of shell source burning models with highly condensed cores. Many features which are 
known from evolutionary calculations (and partly &om observations) of such stars can be understood as coming 
essentially from the increase of the mass Ma of the core. 

Changes of the r d u s  RE of the core, of the radiation pressure, and of the chemical composition are also 
conaidered. For e comparison, sequences of numerically calculated equilibrium models are pmnted.  They 
show that the analytical relations give, even quantitatively, good approximations to the numerical results. 
Key words: stellar stmcture - stellar evolution 

I. Introduction 
In stellar evolutionary theory, one often encoun- 

ters stellar models with a nuclear burning in a con- 
centric shell source which surrounds a highly con- 
densed core. Such models occur when a nuclear fuel 
has been exhausted in a central core of not too large 
mass; this core then has contracted and the electron 
gas has become degenerate by which the ignition of 
the next fuel is, for the moment, prevented. Such 
models show many peculiar properties and have 
caught considerable attention by several authors, see 
for instance Eggleton (1967). 

The most important example for these shell 
source burning stars are the stars on the ascending 
branch of globular cluster diagrams. In this case the 
hydrogen burning shell source surrounds a degen- 
erate helium core, and the phase under consideration 
is terminated when the helium flash starts at  the top 
of this mcending branch. 

(We will, as an example, concentrate mainly on 
this evolutionary phase of low massive stars, although 
the discussion applies also to quite different cases.) 

Stars on the ascending branch evolve with steeply 
increasing luminosity (up to a factor of loS). The 
relatively large number of stars observed there 
indicates that it is essentially a nuclear phase while 
normally the (shorter) Kelvin-Helmholtz time scale 
is characteristic for the evolution between two cen- 
tral burnings. Numerical models for this phase show, 
in addition, that the central part of the star con- 

tracts while the outer layers expand; the mass A M ,  
contained in the shell source is steeply decreasing 
and this shell source remains always radiative. 
Moreover, calculations for mass loss of such stars 
(for binary evolution) show that the luminosity (and, 
in fact, the whole structure of the shell source region 
where this luminosity is generated) is in a wide range 
nearly independent of the mass in the envelope, i.e. 
independent of the total mass of the star. However, the 
physical understanding of these results of numerical 
calculations still seem to be unsatisfactory. In such 
a situation, a simple analytical description of the 
models can be very useful not only for interpreting 
the numerical results, but also for generalizing them. 
(The well known homology relations offer the best 
example for the use which one can make of such 
descriptions in other cases.) 

The very important region inside and above the 
shell source will be analysed in the following chap- 
ter 11. This region of the star is apparently influenced 
mainly by the highly condensed central core. Since 
practically no energy is flowing out of the core during 
this phase, the core can Muence its surroundings 
only by its large gravitational potential 0 .  In fact, 
while the radius of the core Re < R (radius of the 
star), the mass of the core M e  is a considerable frac- 
tion of M .  Therefore, in the shell source @ = 0, 
N M,/R,  is rather large. This leads us to try a 
discussion of this region in terms of M e  and R ,  as 
given parameters. (Thia means, we treat formally the 
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central part as if it would be a hard core of radius R, 
and mass M,, the surface temperature of which is 
the same as the temperature in the bottom of the 
shell source.) Though R, is formally treated as an 
independent parameter, it can be shown that an 
M, - R, relation must exist for such models so that 
R, will adjust according to any new value of M, 
(see Appendix). Then, a sequence of models with 
gradually increasing M, can represent an evolution- 
ary sequence of a real star in which M, grows due to 
the outwards burning of the shell source. The influ- 
ence of changing radiation pressure and changing 
chemical composition are also treated. 

The approach used here ia very similar to that for 
deriving the usual homology relations. As well known, 
these homology relations are extremely useful for 
interpreting and generalizing the numerical results 
for homogeneous stars (or homogeneous parts of a star, 
for instance, a contracting core). I n  homology, the 
suitable independent variable is I& and the para- 
meter - varied from model to model - is R. For two 
models with R and R', one has r (Mr)/rl (M,) = RIR' 
for all M, ; and corresponding relations (with Werent 
powers of RIR') hold for the other functions as 
P(MT), T(Mr) or Q (Mr). 

If we now look for a similar type of relations for 
the shell source region, it would be very inconvenient 
to take Mr as the independent variable or to express 
the changes from model to model in terms of R. 
However, simple relations are obtained if one uses 
r/R, as independent variable; the changes of P, T, q 
and L, can be expressed then in terms of certain 
powers of M, and R,, for instance, q (r/Rc)/ql (r1/R;) 
= (M,/MI.)"l. (R,/R;)Q for all r/R, = r'/RL in the 
region under consideration. 

Of course, as in the case of the homology relations, 
one has to prove by numerical calculations that the 
derived relations describe the behaviour of the 
models to a good approximation. For this purpose, 
several sequences of stellar models were calculated 
which are presented in chapter 111. For simplicity, 
the sequences consiet of equilibrium models; these 
are good approximations to the real evolutionary 
sequences of the phase in question except for the 
very last part of evolution just before the onset of 
the helium flash. 

In  the calculated sequences, M, was varied from 
about 0.16 to 0.45 M,. Furthermore, M was varied 
over a rather wide range (0.20 . . . 1.4 M,). This was 
done not only to test the dependence (or independence) 
of the shell source region on M, but also for deriving 
numerical values and relations for the mass exchange 

Fig. 1. The functions P (in dyne cm-=), T (in OK) and 
e (in g are plotted over MJM, and over M,/M for an 
equilibrium model of M = 1.4 M,. The curves cover the 
region inside and above the shell source. The stripped area 
indicates the extension of the shell source burning (LJL 

= 0. . .0.99) 

in close binary systems of low mass. The agreement 
between these numerical models and the analytical 
relations is satisfactory. 

In the appendix, the relation between M, and R, 
is discussed. For this, the highly condensed central 
core is treated essentially as consisting of a "white 
dwarf". The main difference turns out to be that the 
so-called transition layer is here an isothermal layer 
of high temperature (the shell source temperature) ; 
this provides a much larger extension of this layer 
than in the case of a normal white dwarf. 

IT. Analytical Treatment 
a) Assumptions and Bmic E q m t i m  . 

Many numerical models are available in which a 
shell source surrounds a highly condensed core. If we 
examine such a model in the region inside and above 
the shell source, we h d  the following important 
behaviour of the relevant functions P, T and q : from 
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Fig. 2. For two equilibrium models of Y = 1.4 Ma, log P 
(Pin dyne cm-s) is plotted over r/R, (R, = core radius). The 
stripped area indicates the extension of the shell source 

burning (LJL = 0 . . .0.99) 

the bottom of the shell source (i.e, from the surface 
of the central core) and outwards, these functions 
drop by several powers of 10 over a very small 
interval A M, of the mass, such that A M, < M,, or 
M, m M, (mms of the central core) in this whole 
region. An example is given in Fig. 1, where log P ,  
log T and log Q are plotted over M, for such a model. 
Consequently, the structure of the shell source region 
depends very little on the structure of most of the 
matter in the envelope. 

One can now compare two models of different 
masses M,, Mi and radii R,, RI, of the core. If then 
the functions P and P', T and T' . . . are plotted 
over r/R, and rl/RI,, the differences A log P, A log T . . . 
between the two models in corresponding points 
(r/R, = rP/RI,) are nearly constant throughout and just 
above the shell source (see Fig. 2). 

For the analytical treatment, we make the 
following simplifying assumptions which are fairly 
well fulfilled by the numerical solutions : 

(1) we consider only the region from the bottom 
of the shell source, r = R,, up to a point r = r, where 
P ,  T and e have already decreased appreciably (and 
where, of course, L, = L);  

(2) we take M, = const. = M, (mass of the 
core) ; 

(3) we treat equilibrium models. This means that 
dL,/dM, = EN so that L, = 0 throughout the iso- 
thermal core and L = Lehen ; 

(4) we consider a perfect gas and allow for the 
presence of radiation pressure Pa ;  

ry = 1 - PR/P can vary inside a model. If we, 
however, compare two models with core radii R, and 
Ri, then y/y' should be constant in all corresponding 
points (i.e. for all r/R, = r1/Ri); 

(6) the whole region is radiative; 
(6) for two different models with core radii R, 

and RI, respectively, the ratios PIP', e / ~ ' ,  TIT' and 
L,/Li are constant for all r/R, = r1/RL. W h e r m o r e  
we assume the X-profle (X = hydrogen content) to 
be "similar" in both models, i.e. X/X,,eIo,e 
= X'/X~,,l,pe for all corresponding points (r/R, 
= r1/R;). 

The basic equations which will be comidered are: 
the equation of state and the equations for hydro- 
static equilibrium, for radiative transport of energy, 
and for energy generation. We need only the pro- 
portionalities and write : 

I n  Eqs. (3) and (4) we have used the expressions 

where xo and E, will depend on the chemical com- 
position, i.e. they are functions of r. In Eq. (2), M, 
is replaced by M, according to msumption (2). For 
the same reason we need not consider an equation 

S 8 
for dM,/dr. In Eq. (4), the term e, = - T gt is put 

equal to zero according to assumption (3). 

b )  Changes of M, and R, 

As discussed in the introduction, we will here 
treat formally the mass and the radius of the core, 
M ,  and R,, as independent parameters which may 
vary from model to model. Thus, we certainly cover 
a much wider range of possible models than will 
actually occur, since there wi l l  exht a M, - R, 
relation. In this section, y, p, x, and E, are assumed 
not to vary from model to model in corresponding 
points (although they can be functions of r inside 
one model). We will always use the independent 
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variable r/R, which is suggested by assumption (6). 
The range under consideration is r/R, = 1 . . . ro/R,. 

Let us think that a solution of the Eqs. (1)-(4) is 
known for a special pair of values Mi and RE, i.e. that 
Q', T', P', and L: are given as functions of r1/R;. We 
now try to find another solution Q, T, P, and LT as 
functions of r/R, for any other values M,, Re. As- 
sumption (6) suggests to try the following relation 
for, say, q :  

for all r/R, = rl/R;, and corresponding relations for 
T, P, and L,. These relations may be briefly written 
in the following way: 

From Eqs. (8), (9), (10) and (I), it then follows that 

By integration of Eq. (2), one gets the pressure P at 
any point r inside or just above the shell source: 

1P 

P (rIR.1 = P (rolRe) + J OM, Qd (+) (13) 
1lro 

where we start at a point ro so far outside that 
P (ro/R,) < P (r/R,). (a! is the gravitational con- 
stant.) Then, with x = R,/r, 

For the other model (with ME, Ri) we can make a 
corresponding integration and eliminate Q' by using 
relation (7) : 

for ro/R, = ri/Ri and r/R, = rl/R;. Eliminating the 
integral in Eqs. (14) and (15), we get 

or briefly 
P (r/R,) - M : t 1 .  R,"I-l. (17) 

From this and Eq. (10) we find that 

An integration and elimination similar to that in 
Eqs. (13)-(17) can be done for the transport Eq. (3). 
In fact, it can easily be seen from the exponents in 
Eq. (3) that this integration yields 

Comparing the left aide with Eq. (9), we get 

E'inally, a similar integration of the energy Eq. (4) 
gives 

LTN M ; a ~ t % % .  p a , + v B , + Q  c @I 

and comparing the left aide with Eq. (11) one finds 

We have now obtained the eight algebraic Eqs. (12), 
(IS), (20) and (22) from which the eight exponents 
al, a2, . . . , ba can be found: 

Thus, we have derived a set of exponents for the 
relations (8)-(11) such that the basic Eqs. (1)-(4) 
are fulfiued. 

It should be noted that only the equation of state 
and the condition for hydrostatic equilibrium are 
needed in order to determine the dependence of T 
on Me and R, (PI = - pa = 1 from Eqs. (12) and (18)). 

Typical numerical values for the exponents are 
given in Section (g) of this chapter, after we have 
discussed changes of the radiation pressure and of 
the chemical composition. 

It may be emphasized, however, that already the 
above results can give a surprisingly good under- 
standing of many evolutionary features. This can be 
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w i l y  understood: an evolutionary sequence for such 
models is essentially a sequence of increasing M,, 
where the relative change of M ,  is usually much 
larger than the relative change which one has to 
consider for other parameters; and the exponents of 
M, (a,. . .dl) can have rather large values. Thus, 
the effects which will be treated in the next sections 
in many cases add only corrections to the dominating 
effects coming from the increase of M,. 

c) Changes of the Radiation, Pressure 

For the moment let us forget that y (ratio of gas 
pressure to total pressure) depends explicitly on P 
and T, so that we formally can treat it as a free 
parameter. From one model to another, y is assumed 
to change by a constant factor in corresponding 
points. The procedure is similar to that in the forego- 
ing section (but now M, and R, are constant). We 
try the relations: 

(Since R, = const., we could, of course, as well have 
dropped here the normalization of the independent 
variable.) 

By integrating the basic Eq. (2), (3), (4) one gets 

[Compare this with the analogous results (17), (19), 
(21) of the corresponding integrations in the foregoing 
section.] 

Inserting the f i s t  two of Eqs. (24) into the 
equation of state (I),  we obtain (for p = const.) 

By using Eq. (24), the left sides of Eqs. (25) and (26) 
can be expressed as powers of y. A comparhon of the 
exponents gives four algebraic equations which can 
be solved : 

For simultaneous changes of M,, R, and y,  one has 
only to multiply the right sides of Eqs. (24) by the 
corresponding ones of Eqs. (8)- (1 1). Some typical 

numerical values for the exponents a,, . . ., 13, are 
given in Section g) of this chapter. It may be noted 
that any deviation from the perfect gas (such as the 
presence of radiation pressure) can be included in this 
whole analysis by using the general differential form 

as the equation of state. 

d) C-es of the Chemical Composition 

For simplicity, let us h t  assume that we can 
describe the change of the chemical composition 
from one model to another by a change of only p 
(mean molecular weight), and that the relative change 
A In p is constant throughout the whole region. Then 
we treat p as a new free parameter of the model. 
However, p appears explicitly only in the basic 
Eq. (I) ,  P- eT/(yp) ,  in the same way as y does. 
A change of p is thus completely equivalent to a 
change of y. (In fact, we could have treated in the 
last section the product y . p as a single parameter.) 
Consequently, the results for the changes of y can be 
used, and we have 

e - pug , T - p ~ ~ ,  P pya, L, - pda (29) 
where the exponents a,. . . 8, are given by Eqs. (27). 

This procedure means to assume that a change of 
the chemical composition can be completely de- 
scribed by scaling up the function p (r/R,) in the 
whole region with a constant factor. This is rather 
artificial, a t  least for the p-value a t  the bottom of the 
shell source. In  practice, one is normally interested 
in discussing changes of X (hydrogen content) 
rather than of p. A reasonable way to change X is to 
scale up X (r/R,) by a constant factor throughout the 
whole region inside and above the shell source. This 
is obviously not equivalent to a constant A log p in 
the shell source where X varies inside a model from 
0 (at r = R,) to the value X, in the outer layers. 
Instead, one would then have A log p = 0 a t  the 
bottom of the shell source, while a maximum value of 
A log ,u is reached where X = X,. 

But also in this case of A log X = const., the 
resulting changes of, say, L can well be estimated 
from the above formulae (which assume Alogp 
= const.). One only has to take a proper average value 
A log p = log p - log ,u' (which corresponds to the 
X-change in an average point) and assume this 
A log p to be representative for the whole region. 
For example, a scaling up of the whole X-profile by 

0.7 
a factor corresponds to roughly A logp = -0.03. 
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Usually, x, and eo [Eqs. ( 4 ,  (6)] will depend on X 
and are thus functions of r/R,. A scaling up of X (r/R,) 
will require changes of x, and e,. This can be treated 
analytically, if we assume that the functions xo(r/R,) 
and eO(r/RC) are also scaled up by a constant factor. 
This is very reasonable for E, - X or -Xa. However, 
since x, is usually not proportional to any power of X, 
one has the same situation as with changes of p and 
some proper average value for A logx, must be used. 
In order to fmd the corresponding effects on the 
models, we now treat x, and e, as independent 
parameters and write 

Using the same procedure as in the above sections 
(say, for the changes of M, and R,), we fmd : 

The numerical examples in Section g) will show that 
the effects of changing x, and E, can often be con- 
sidered as corrections to the dominating effect 
coming from the change of p. 

e) Extemim of the Shell Source Region 

Let us d e h e  the shell source (subscript "8") to be 
the layer between the points with L,/L = 0 to, say, 
L,/L = 0.9 (or to any other fixed value near 1). This 
shell contains a mass AM, and has a r d a l  extension 
AT,= r, - R,. 

Consider two models with r,, R,, and T:, Ri 
respectively. Then assumption (6) requires that 
L,/Li is the same for all corresponding points r/R, 
= rl/RE, i.e. also far outside where L, = L. This 
means that in corresponding points L,/Li = L/L1, or 
that L,/L = L;/L1 = 0.9 for r,/R, = r:/R:. Then 
A r,/R, = - 1 + r,/R, = - 1 + ri/Ri = A ri/RE. The 
relative radial extension Ar,/R, of the shell source 
remains constant. [This discussion shows also that 
the relation given in Eq. (11) holds for the total 
luminosity L as well.] 

The extension in mass, AM,, of the shell source 
can easily be evaluated 

In another model where M,, R, and y may be 
changed, we get by using Eqs. (7) and (24): 

Very similar, the mass A M, can be found which is 
contained in the whole region under consideration 
(i.e. from r = R, to r = r,, cf. Eq. (13)). An integration 
as in Eqs. (32) and (33), however extended from 
r/R, = r1/RL = 1 to r,/R, = ri/RL, gives obviously the 
same proportionalities as for A M,: 

!,J   om par is on 
with Numerical Models 

As shown in the foregoing Sections b)-d), it is 
possible to derive a simple analytical description for 
the shell source region when starting from the 
assumptions in Section a) and using the basic 
Eqs. (1)-(4). Now we will check these assumptions 
by comparing the analytical results with strict 
numerical solutions. For this comparison we h t  use 
the sequences of numerical equilibrium models which 
are described in detail in Chapter 111. 

From the equilibrium sequence with M = 1.4 M,, 
we use the models with M, = 0.276 M, . . .0.448 M, 
(M,/M = 0.197 . . .0.320). This whole range of M, 
was divided into four intervals (Tables 1-3), since 
the value of v changes over the whole range of M, 
and the exponents of M,, R,, and y are very sensitive 
to v.  Table 1 contains characteristic values of the 
f i s t  and last model of each of the intervals. The 
subscript "50" indicates that the quantity is taken 

Table 1. Characteristic values aa taken from 5 numerical d e l s  
with M = 1.4 M, 

Subscript "50" means the point with L, = 0.5 L. R, is given 
in cm, T5',, in O K ,  P,, in dynelcm' 
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Table 2. Change8 in the four irctemrals of M ,  (compare Table 1) v, a and b [of. Eqs. (5), (6)] are average values for an interval 

M4/M A log M ,  A log R, A 1% Ips0 v a b 

Table 3. Changes of logTKO, logP,,, and logL in the four 
interval8 of M ,  (compare Tables 1 and 2), ae taken from 
numerical models for M = 1.4 Mo ("num") and predicted by 

the analytical re la th  ("an") 

A log Trim A log Pnu A log hu 
M J M  A log Tan A log Pan A log La, 

a t  the point where L,. is 60% of L. (For simplicity, 
the given value of R, is also taken a t  that point.) 
The values of v,  a and b in Table 2 are arithmetic 
means from the first and the Iaat model of the 
corresponding M,-interval; and in each of these 
models, the values a t  L,./L = 0.5 were taken to be 
representative. 

The differences A log M,, A log R, and A log y 
between the first and the last model of the various 
intervals are given in Table 2, the corresponding 
differences A log T,,, A log P,,, and A log L are given 
in Table 3 with subscript "num". On the other hand, 
these latter differences can be predicted from those 
in Table 2 by using Eqs. (8)-(11) and (24): 

A log T,, = B, A log M ,  
+ Bz  A log Rc + B3 A log Y ~ O ,  

A log P,, = yl A log Mc 
+ Y,A logRc+ y3A logyso, 

A log L = 6, A log M, 
+ 4Alog  R c +  63Alogy50, 

where the coefficients B, . . . 8, are calculated from 
Eqs. (23) and (27). The results are given in Table 3 
with subscript "an". A comparison of the "numeri- 
cal" with the "analytical" values in Table 3 gives, 
in general, a surprisingly good agreement. The 
largest discrepancy is: in the f i s t  interval 4%, in the 
second interval 6%, and in the third interval 10%. 
In the laat interval (which extends very close to the 
He-flash!) we see that the approximations become 
worse; the changes in temperature and luminosity 
are still fairly well predicted by the analytical 
treatment (better than IS%), while the discrepancy 
for A log P,, is 44%. This much larger discrepancy 
is easy to understand since, according to Eq. (36), 
the value of A log P,, is a difference between larger 
quantities. Especially the radiation pressure causes 
some uncertainty because y is assumed to change 
from one model to another by a constant factor in 
all corresponding points. This is not any more a good 
approximation in the last models of the sequence. 
Much better agreement could be obtained if some 
average value over the whole region had been used 
in Eq. (36) rather than y,,. It should be noted that 
the influence of variable x (coming from a +O, b =i= 0) 
is only a correction term, especially for the L-values. 
It is clear that the agreement will be good for the 
changes of e, if those for P and T are satisfactory. 

One basic assumption is that the functions e, P ,  
T, and L, are only scaled up by constant factors in 
corresponding points (r/R, = rf/R;). This was already 
illustrated for P in Fig. 2. The scaling up of L,. means 
that the relative extension of the shell source Ar,/R, 
remains constant (see Section e)). In the range 
Mc/M = 0.1966 . . .0.3202 the numerical models 
show a change of Ar,/R, from 0.166 to 0.183, i.e. of 
about 10%. Most of this total change occurs in the 
Grst of the intervals in Table 1. For Mc/M = 0.2236 
to 0.3202, for example, Ar,/R, changes only by 3%. 

In the whole No-range in Table 1, the mass 
contained in the shell source changes by a factor 6.3. 
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log M, / M, log M,/M, 

Fig. 3. For the equilibrium sequences with M/M, = 0.26, 0.35, 0.44, 0.7 and 1.4, several functions are plotted over 
log MJM, (Ma = mass of the core). The subscript "50" indicates that the quantity is taken at the point in the shell source 
where L,/L = 0.5. The units are: r,, in cm, T,, in OK, P,, in dyne ~ m - ~ .  All curve8 for the same sequence (i.e. the same M) 

are plotted in the same way (for instance, all dotted curves correspond to M/M, = 0.44) 

This is in good agreement with an analytical pre- 
diction based on Eq. (34). 

Another important assumption for the analytic 
description is that properties of the shell source 
region do not depend on the bulk of matter in the 
outer envelope. This means, for given M, and Re, we 
should find the same values of P,,, T,, and L for 
very different total masses M of the star, i.e. in- 
dependent of Men, = M - M,. (Clearly, this assump- 
tion must break down for such small Me, that the 
surface comes near to, or even into the range over 
which the integrations, for instance, in Eq. (13) are 
extended.) Let us compare numerical models of the 
same core mass, log M,/M, = -0.5, however with 
total masses of M = 1.4 M ,  and M = 0.35 M,. The 
corresponding masses of the envelope, Me, = M- M,, 
are 1.05 M, and 0.034 M,. In  this large range of 
Men,, we find the following small differences : A log L 
= -0.05, A log T,, = -0.005, A log P,, = 0.02. Such 
small changes (for a decrease of Men, by a factor 32) 
can be obtained by decreasing, at  M = const., the 
mass of the core by only about 2% from logM,/M, 
= -0.50 to -0.51. The effect the total mass M has 
on the shell source region can be seen from Fig. 3. 
There the dependence of T,,, P,,, L and r,, are 

plotted over M ,  for very different values of M. 
Fig. 3 shows that the influence of M on these quan- 
tities decreases with increasing M,. This could be 
expected since AM? (the mass in the layer under 
consideration) decreases with increasing M,. For 
lower M the curves have a sharp turn-off from 
those of larger M. This turn-off occurs where 
nearly M, w M, i.e. where Me, is not any more 
large compared with AM?. Then, of course, our 
assumptions must break down and the shell source 
must be affected by the surface values. F'rom the 
numerical models one can learn that this does not 
happen before roughly Men, w 8 . AM, (mass in the 
shell source). Since AM, goes steeply down with 
increasing Me, it is also clear that the turn-off will 
occur the closer to the limit M ,  = M, the larger M is. 

Now the question remains whether the assump- 
tion of equilibrium models is very restrictive, i.e. 
whether also real evolutionary models can be well 
approximated by the above analy&. Such an 
evolutionary sequence was calculated for a star of 
M = 1.4 M, up to the He-flash. We now compare 
this star (subscript "real") with equilibrium models 
of M = 1.4 M, (subscript "eq."). For a given value 
of M,, Lreal is always smaller than Lea, as can be 
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Fig. 4. For a star of M = 1.4 M ,  the luminosity L and the radius R, (in cm) of the core are plotted over the mass M ,  of 
the core. Solid lines: equilibrium models; dashed lines: normal evolutionary calculations 

seen from Fig. 4. The main reason for this difference 
in L is that R,, re,1 > R,, ,, although some effect 
comes also from differences of the radiation pressure 
(see Fig. 4). For log M,/M, = -0.56 we find from 
the numerical calculations a difference A log R, 
= log ( R ,  eq/Rc,r,l) = -0.0127 and a corresponding 
difference A logy,, = -0.001. With these values the 
formulae of the above sections predict A log L 
= log (Le,/Lr,l) = 0.079, while the numerical 
models show that A log L = 0.074. For log M,/M, 
= -0.392, we have A log R, = -0.0463 and A logy,, 
= -0.0144, for which the formulae give AlogL 
= 0.167, while the numerical modela show AlogL 
= 0.155. Therefore, the differences in luminosity 
between equilibrium models and real evolutionary 
models are well predicted from the analytical 
treatment if we take into account, especially, that 
Rc, real > Rc, ep. 

One can understand, a t  least qualitatively, why 
Re,& > R ,  ,, for a given M,. The main reason is 
that, for equilibrium models, LC = 0 (luminosity of 
the core) while for real models LC > 0. This causes an 
increase of T from the bottom of the shell source 
towards the center. Therefore, the non-degenerate 
outer layers of the core have a higher temperature 
and, thus, a larger radial extension in a real model. 

It should be pointed out that the difference 
A log L between equilibrium and real models is not 
large compared to the increase of logL over the 
whole range of M,. For a change of logM, by only 

about 0.02 in the equilibrium sequences, one gets a 
change of log L which is equal to A log L. The main 
point is that, for a given Me, the slopes of the two 
curves in Fig. 4 are nearly equal. 

Summarizing, one can say that the predictions 
of the analytical treatment are in satisfactory 
agreement with the numerical results. This indicates 
that the assumptions on which the analytical 
treatment is based are reasonably chosen. 

g) Examples, Discussion 

In Table 4, some numerical examples can be 
found for the exponents describing the dependency 
of Q, T, P and L, (a,, @,, y3 and 8,) on the most 
important parameters M,, R,, and y (j  = 1 , 2  and 3). 
Different values of v and n were treated to show how 
the exponents vary with these quantities; for 
simplicity, a = b = 0 was taken in all cases. (The 
actual values of a and b would have added fairly 
small corrections.) The examples chosen can be 
representative for : CNO-cycle a t  high temperature 
(v = 13, n = 2) and a t  lower temperature (v = 16, 
n = 2) ; pp-reaction (v = 4, n = 2) ; triple a-reaction 
(v = 22, n = 3). Some of the exponents a j  . . . dj have 
quite different values for the different reactions. 
However, it is interesting to note that the @, are 
independent of v, n, a and b. The slopes of the 
curves in Fig. 3 depend, of course, on the exponents 
q . . .dl, although generally also the other exponents 
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Table 4. POT e m  vdw of v and n and far a = b = 0, numer- 
ical v a l w  of the exponenib are given acr c a & M  from 

Eqs. (23) and (27) 

(other j) can play a role. This is because also R, and y 
can change if we go from one value of M, to another 
in this diagram. However, the changes of y and R, 
(cf. Fig. 4) can often be neglected, and then the main 
changes of the model come from changes of Me. So 
let us discuss now for simplicity only the dependen- 
cies on M,. Typical average values for the whole 
range of M, in Table 2 are: v = 14, n = 2, a = 0.1, 
b = -0.8, which give from Eqs. (8)-(11) and (23) 

The most striking result is the steep increase of L, 
(and thus also of L) with M,. Increases of M, by 
more than a factor 2 can easily occur in the evolution 
of such stars; this explains, for instance, the increase 
of L by several powers of 10 on the ascending branch 
of globular cluster diagrams. Another example is 
offered by the steeply increasing L with growing mass 
of the C - 0  core of more massive stars after central 
helium burning (Kippenhahn et d., 1965). 

Such a phase is essentially a nuclear phase and 
can last for a long time, especially if L is not too large 
and if hydrogen is burning in the shell source. This 
explains the relatively large number of stars which 
are observed on the ascending giant branch of 
globular cluster diagrams. 

The increase of L is, of course, caused by the 
increase of T in the shell source by which the de- 
crease of Q is easily overcome ( E  - Tv, v > n). 
This increase of T with growing Me contributes 
considerably to the ignition of helium a t  the end of 

this phase: the degenerate core is, for a long time, 
nearly isothermal and kept at  the temperature T, of 
the shell source. The increase of T, - M, rises the 
temperature of the core by A log T w 0.3 - 0.4 up to 
more than log T = 7.7. The additional increase to 
logT F* 8 (ignition temperature of helium) is due to 
the T-gradient which is built up in the transition 
layer of the core due to LC,, $. 0. 

In the phase under consideration the central part 
of the core behaves like a white dwarf of increasing 
mass Me, i.e. the central density increases. According 
to Eq. (38), however, Q decreases with increasing M, 
inside and above the shell source so that the layers 
above the core expand. Thus, we have a special case 
of the so-cded "mirror-principle" which was often 
encountered in calculations on stellar evolution: the 
core contracts while the layers above the shell source 
expand. 

In general, one cannot conclude from this an- 
alysis of the shell source region how the total radius 
R of the star changes. In most parts of the phase 
under consideration, however, we are in a fortunate 
situation since the star is near the Hayashi-line in 
the H-R diagram. Then, one can roughly take 
d In Teff w 0 and derive the R-change from the 
changes of L (L - R8 T&) 

[where the exponent 8, = 8 is taken from Eq. (38)l. 
This increase of R, however, will not continue 

when the shell source comes close to the surface. 
According to Eq. (38), Q - M r S  above the core. It 
seems reasonable to assume that the average density, 
Q, of the whole envelope also decreases with a certain 
power of M,, i.e. Q - M,", a > 0. Now we have 
Q - Me,/R8, since R> R,. With d In M, = (1 - MIM,) 
x d In Me,, one can easily write down the changes 

of R: 

For a given a and for d In M, > 0, d In R changes 
sign and becomes negative when M,/M comes close 
enough to 1. (The corresponding decrease of R after 
a maximum can be seen for the equilibrium se- 
quences in Pig. 5 where they bend over to the left 
in the H-R diagram.) 

It is known from many evolutionary calculations 
that the mass AM8 contained in a shell source is 
steeply decreasing with progressive evolution. Prom 
Eq. (34), we obtain for the above example (v = 14, 

O European Southern Observatory Provided by the NASA Astrophysics Data System 



436 S. Refsdal and A. Weigert Aatron. & dstrophys. 

n = 2, a =  0.1, b = -0.8, R, = const., y = const.) 
AM, N Mrs. We would like to point out once more 
that the relative radial extension of the shell source 
remains constant (compare the beginning of Sec- 
tion e). Therefore, we cannot expect the shell source 
of such an evolving model to become thermally 
unstable due to a small radial extension (Schwarz- 
schild and HLrm, 1965), unless additional basic 
changes occur in the shell source region. (For example, 
the shell source was found to get this type of insta- 
bility when it approached another shell source or 
the star's surface; Weigert, 1966; Kippenhahn et d., 
1968). 

A8 shown in Eq. (35), the same proportionalities 
hold for A M, (mass in the whole region under con- 
sideration) as for AM,: with increasing M,, AM, 
decreases as for constant R, and y. If the 
assumption (2) is approximately fulfilled for one 
model, it will become a gradually better approxi- 
mation when the model evolves and M, increases. 
AM, was dehed  as the mass in the region over 
which the integration in Eq. (13) is extended, i.e. the 
region in which P drops by a certain, large enough 
factor. If A M, decreases according to Eq. (35), then 
the same decrease must be found in the "pressure 
scale mass" - d M,/d In P. In  fact, from the equation 
of hydrostatic equilibrium (d P/d M, - M,/r4) and 
with Eqs. (10) and (12), one gets 

The large gravitational field produced by the core 
makes this "scale mass" rather small and provides 
thus the independency of the shell source region 
from the bulk of matter in the envelope. For the 
assumption (2) to be valid, one should rather have a 
small relative increase of M, in the whole region. So 
it is better to look at  the quantity 

d l n M ,  1.L ---- P 
dln P  M: 

P - - , a:-2. Rynt4, - 
2 0 

where g, = UM,/R:. It can easily be seen that the 
corresponding expressions which give the relative 
MT-increase for a drop of T or e by a factor e vary 
asdlnM,/dIn P: 

dln M,  d l n M r  dln M,  
-A,-,.,- 

d l n P  d l n T  d l n g '  

These quantities are interesting for the question as 
to whether the region under consideration will 

remain radiative when M, is growing. From Eq. (43), 

dln T  dln M,  v = v  =-.-- a h  Mr a h  p  - const., (44) 

i.e. V, does not change with changing M, and R,. 
However, Vad is a function of the radiation pressure : 

where 1 - y - T4/P, as in the foregoing sections. 
Using Eqs. (9), (10) and (23), we can write 

For the example v = 14, n = 2, a = 0.1, b = -0.8, 

Thus, 1 - y - P,/P is steeply increasing with 
increasing M,. Hence Vad is decreasing and the region 
comes closer to convective instability since V,= const. 
In fact, the numerical models show that, with 
increasing M,, the lower border of the convection 
zone approaches the shell source. 

The total mass M of the star does not enter-into 
the present description of the shell source region. 
Nevertheless, one can derive predictions for some 
surface values of the star: for L and, under the above 
mentioned conditions, also for R. This means that 
L and R are nearly independent of M. By this one 
can easily explain numerical results which were 
obtained for the evolution in close binary stars of 
low mass (Refsdal and Weigert, 1969; Giannone 
et al., 1970). Even if a star in such a phase loses an 
appreciable amount of mass to its more massive 
companion, the star seems to be very little affected; 
it continues to increase L and R slowly (just as it 
would have done without mass loss). Thus more 
mass is shifted over the critical Roche lobe, although 
this Roche lobe expands. The mass loss does not 
stop until practically the whole envelope is stripped 
off. This behaviour can now easily be explained: the 
values and increases of L and R are only regulated 
by the core, the mass of which increases on a nuclear 
time scale; and L and R must continue to increase 
as long as our basic assumptions are valid. They can 
be expected to break down only if the shell source 
comes very close (in a mass scale) to the surface, or 
if the helium flash starts. (It may be noted that the 
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present analysis allows even quantitative predictions 
about the results of such type of binary evolution 
as will be shown in a forthcoming paper.) 

Instead of having a M-L relation as for main- 
sequence stars, we have here rather a M,-L relation. 
This can, in principle, give rise to other peculiar 
properties of such models: by increasing M for M, 
= const. (for instance, by a rapid mass gain from a 
close companion), the star can drop below the M-L 
relation for main-sequence stars since its L-value 
will remain about constant. For example, such an 
"under-luminosity" occurs, according to rough 
estimates, for M,/M, = 0.27 and HIM, 2 3.3. 

For discussing changes of p, we will again use the 
values v = 14, n = 2, a = 0.1, b = -0.8. Then, 
according to Eqs. (29) and (27), 

Thus, the luminosity increases steeply with p, as is 
also well known for much simpler models. For a 
change of A log p = 0.03 (compare section d), one 
obtains A log L = 0.24. 

As described in Section (d), a change of p will 
come from changes of X which normally imply 
simultaneous changes of so and x,. For example, a 
hydrogen burning in the CNO-cycle means so - X. 
In this case, v is relatively large and L is very sensitive 
to changes of p (8, = 8.06 in Eq. (48)) ; compared to 
this, the effects of changing x, and so are small 
corrections. With n = 2, a = 0.1, we get from 
Eqs. (30) and (31) : L - x;0.'345.s$855. Thus,increasing 
X results in decreasing L, since the effect from the 
decrease of p is dominating. Such a drop of L is 
known from several evolutionary calculations in 
which the shell source moved over a chemical 
discontinuity so that X was increased in the shell 
source region (cf. Thomas, 1967). In calculations on 
binary evolution, such a decrease of L can result in 
an interruption of the mass exchange since also R 
decreases (Kippenhahn et d., 1967; Refsdal and 
Weigert , 1969). 

The situation can be more complicated in the 
case of p-p reactions where the values of v and 8, are 
much smaller, while so - Xa. 

In the present description, the quantities M,, R,, 
y, p, xo and so are treated as free parameters, such 
that any one of them can be changed without 
changing the others. In reality, this is not true (as 
was already mentioned for M, and R,) since there 
will exist relations between the parameters. This 
gives rise to certain feed-back effects which normally 
result in small corrections only. Let us discuss the 

situation for changes of p, so and x, and their 
effects on L. 

Consider a 8 p  > 0 which directly gives 8 L > 0 
from Eqs. (29) and (27) (8, > 0). But then also 
8 T > O  and 8 P < O  (since p,>O, y,cO). An 
increase of T and a decrease of P just above the core 
mill obviously affect the parameters R, and y such 
that 8 R, > 0, 8 y < 0. Both these changes give 
8L < 0 [Eqs. (24), (27), (ll), (23)], which reduces 
somewhat the direct increase of L obtained from 
Eqs. (29) and (27). 

A similar situation is found for aso > 0 and for 
dx, > 0, which also induce SR, > 0, 8 y  < 0. This 
again results in 8L < 0, which means that the direct 
effect is increased for the case of 8x0 > 0 (since then 
8L < 0 already from Eqs. (30), (31)). 

m. Sequences of Equilibrium Models 
For 6 values of the stellar mass M, sequences were 

calculated of shell source burning models with highly 
condensed He-cores. The values of M are: M/M, 
= 0.2, 0.26, 0.35, 0.44, 0.7 and 1.4. Each model 
consists of a He-core of mass M,, and of a hydrogen 
rich envelope of mass Me, (M = M, + Me,). 

In any of the sequences, M is kept constant, 
while M, is varying. The lowest Me-values are about 
0.17 M,. M, is allowed to increase very near to 
M, = M for the sequences with M/M, = 0.2, 0.26, 
0.35 and 0.44. The sequences for M/M, = 0.7 and 1.4 
are stopped when M, = 0.45 M,. (At about this 
value of M ,  the He-flash will start in a real star of the 
same chemical composition.) 

The chemical composition of the outer envelope 
is X = 0.602, Y = 0.354, Z = 0.044; in the core, 
X = 0, Y = 0.956, Z = 0.044. In the lowest part 
of the envelope, X varies from 0 to X, = 0.602. This 
X-profile is arranged such that X/X, = LT/L. (A pro- 
file very near to the assumed one is found to be 
produced by the shell source burning in similar stars 
which are evolving towards the He-flash. The exact 
form of the profile has anyway no large effect on 
such integral quantities as the luminosity.) 

In  this region just above the core a hydrogen 
burning shell source produces the star's luminosity. 
The models are assumed to be in thermal equilibrium, 
i. e. P = 5!" = 0 is taken in the equation of energy. 
Since there is no nuclear burning in the core, one haa 
then LC = 0, and the core is isothermal with T = T, 
= temperature at  the bottom of the shell source. The 
density in the core is rather high and the electron 
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Big. 6. HR-diegram for the equilibrium sequences of M/M,= 0.26, 0.35, 0.44, 0.7 and 1.4. In the right part of the 
diagram, some miditionel lines connect the points of M ,  = const. on the different sequences 

gas is degenerate in most parts. This provides the 
pressure for supporting the weight of the envelope. 

Such an equilibrium model can easily be obtained 
by starting from normal evolutionary calculations: 
for a certain moment of the evolution (i.e. for a 
certain M,) one only has to cut off artificially in the 
computer program any change of the chemical com- 
position and to take el = - T . aS/a T = 0. (Even 
without the latter condition, the model soon settles 
down to the equilibrium state, once the core mass 
does not increase any more.) It is then easy to obtain, 
for instance, other equilibrium models for the same M 
but different M,. Except for the indicated changes, 
the computer program used here is that described by 
Hofmeister et a1. (1967). 

The position of the sequences in the H-R diagram 
is shown in Fig. 5. Numerical values for selected 
models can be taken from Table 5. As long as M, is 
considerably smaller than M, the sequences are near 
the Hayashi-line, and L is increasing with M,. When 
M, comes close to M (i.e. when Me, becomes small), 
the sequences go far to the left in the H-R diagram 
before they ha l ly  bend downwards. 

When the sequences of smaller M turn to the left 
in the H-R diagram, R is sharply reduced with 
increasing M,. An appreciable drop of L does not 
occur before R is already down to roughly 10 R,. 
This shows that the shell source (where L is produced) 

is practically not affected by layers which are farther 
outwards than about 10 R,. 

Appendix 
On the M, - R, Relation 

We will here indicate how one can, in principle, 
obtain the relation between R, and M, for equili- 
brium models. For this, one has to consider the 
structure of the condensed core. A di.fl?culty is that 
the degeneracy of the electron gas varies conti- 
nuously from the center to the surface. Therefore, 
very similar to the usual theory of white dwarfs, we 
divide the core into an interior part of high degener- 
acy ("white dwarf") and a "transition layer" of 
negligible degeneracy. This latter region may extend 
from r = rd to r = R,. For simplicity, let us assume 
that this region contains e negligible part of the 
mass M,, i.e. Md = No. For the equilibrium models 
which will be considered one has T = const. = T, 
throughout the whole core. (This is, by the way, also 
a fairly good approximation for many evolutionary 
models since A logT between center and shell 
source becomes appreciable only near the onset of the 
helium flash.) 

Now we consider an integration inwards through 
the transition layer, starting from r = Re. As outer 
boundary conditions, one has the values a t  the 
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Table 5. Some models of th equilibrium sequences According to Eqs. (9) and (23), T, R,/M, = K ig a 
constant for all models. Integration of Eq. (A 1) from 

M e /  JfoIMo '08 log Teff = R, to r = r, gives 

bottom of the shell source Q = Q,, T = T,, P = Po. 
For these, the relations must hold which were derived 
in Chapter 11, i.e. we have Q, = Q, (M,, R,), T, = T, 
(M,, R,) and PC = PC (M,, R,) from Eqs. (8)-(10) 
with r/R, = 1. In the transition layer the chemical 
composition is homogeneous, radiation pressure can 
be neglected and T = constant. Then, from Eq. ( l ) ,  
d In P = d In Q and Eq. (2) becomes 

For Q,, we use the value a t  which the formulae for a 
perfect gas and for non-relativistic degeneracy give 
the same value of the electron pressure (Schwarz- 
schild, 1968, p. 60): 

Q, = D .  (A 3, 

(D = pg 2.4 . 10-9 g cm-3 degree-912). This gives 

Accordingly, for differential changes of M, and R,, 
one has 

d In Q, and d ln T, can be expressed in terms of 
d In M, and d In R, according to Eqs. (8) and (9); for 
d In r,, we use the M-R relation of white dwarfs 

( y  > 0). Then, Eq. (A 5) becomes 

Thus, d In R,/d In M, depends on R,/r,, or,, a, and p,. 
For a given model, R,/r, can be estimated from 

Eq. (A 4). I3 we take, for example, a numerical model 
with intermediate core mass from the equilibrium 
sequence for M = 1.4 M,, we h d  : 

M, = 0.366 M,, R, = 1.83. log om, 

This gives K= T, . R,/M, = 1 .I05 . 10-16 "K cm/g 
and, with ,u = 413, Bp/WK = 9.7. Then, Eq. (A4) 
yields R,/r, = 1.623 and r, = 1.2 . 109 cm. At this 
point of the numerical model, M, = 0.346 M, and 
the degeneracy parameter is $1.8. Thus, we really 
have Ma = Mc (within 3%) and the transition from 
medium to strong degeneracy a t  r = r,. (The degener- 
acy parameter is -10 a t  r = R, and $27 a t  r = 0.) 
For other model, one obtains even larger values of 
R,/r,. The rather large extension of the transition 
layer is, of course, due to the high temperature 
throughout this region. 
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I n  Eq. (A 6), pl varies only little in the M,-range 
under consideration, and we take pl = 0.5. Using 
again the  example v = 14, n = 2, a = 0.1, b = -0.8, 
one has cc, = -3 and a, = 2.35. Then, from Eq. (A 7), 
we get d ln R,/d ln M, = -0.16. This estimation 
shows already tha t  Rc decreases with increasing M, 
and tha t  the relative change of R, is much smaller 
than tha t  of M,. Even the estimated numerical value 
of d In R,/d In M, is not too bad; from Table 2, one 
gets for the first two M,-intervals d In R,/d In M, 
= -0.14 and -0.25, respectively. For large core 
masses, the radiation pressure should have been 
taken into account, and this would have resulted in 
larger absolute values of d In R,/d In M,. It is also 
obvious tha t  R,/r, must be larger in a real star (with 
non-negligible T-gradient inside the core) than in a n  
equilibrium model of the same M ,  since the transition 
layer is hotter in the real star. This difference will 
increase with increasing M,, and Id ln R,/d ln M,I 
must be smaller in the real star (cf. Fig. 4). 
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