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Abstract. In this paper we study shellable posets (partially ordered sets), that is,
finite posets such that the simplicial complex of chains is shellable. It is shown that
all admissible lattices (including all finite semimodular and supersolvable lattices)
and all bounded locally semimodular finite posets are shellable. A technique for
labeling the edges of the Hasse diagram of certain lattices, due to R. Stanley, is
generalized to posets and shown to imply shellability, while Stanley's main theorem
on the Jordan-Holder sequences of such labelings remains valid. Further, we show
a number of ways in which shellable posets can be constructed from other shellable
posets and complexes. These results give rise to several new examples of Cohen-
Macaulay posets. For instance, the lattice of subgroups of a finite group G is
Cohen-Macaulay (in fact shellable) if and only if G is supersolvable. Finally, it is
shown that all the higher order complexes of a finite planar distributive lattice are
shellable.

Introduction. A pure finite simplicial complex A is said to be shellable if its
maximal faces can be ordered F,, F2, . . ., Fn in such a way that Fk n ( U *j/ Fj) is
a nonempty union of maximal proper faces of Fk for k = 2, 3, . . ., n. It is known
that a shellable complex A must be Cohen-Macaulay, that is, a certain commuta-
tive ring associated with A is a Cohen-Macaulay ring (see the appendix for details).
The notion of shellability, which originated in polyhedral theory, is emerging as a
useful concept also in combinatorics with applications in matroid theory and order
theory.

In this paper we study shellable posets (partially ordered sets), that is, finite
posets for which the order complex consisting of all chains x, < x2 < • • • < xk is
shellable. The material is organized as follows.

After some preliminary remarks in §1, we discuss in §2 a certain type of labeling
of the edges of the Hasse diagram of finite posets. We call posets which admit such
labeling lexicographically shellable, and we prove that lexicographically shellable
posets are indeed shellable. In lexicographically shellable posets the Möbius func-
tion can be interpreted as counting certain distinctly labeled maximal chains. We
elaborate somewhat on this principle, point out its natural connection with shella-
bility, and exemplify its use.
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160 ANDERS BJORNER

In §3 we show that all admissible lattices (including all finite semimodular and
supersolvable lattices) are lexicographically shellable. That such lattices are
Cohen-Macaulay was conjectured by R. Stanley. In particular, the lattice of
subgroups of a finite group G is Cohen-Macaulay if and only if G is supersolvable.

In §4 we show that (lexicographic) shellability is preserved under several of the
common poset constructions. We consider rank-selected subposets, direct products,
ordinal sums, cardinal powers and interval posets.

The fifth section contains a proof that shellability is preserved under barycentric
subdivision of simplicial complexes. We also point out that face-lattices of convex
polytopes are shellable.

In §6 we prove that bounded locally semimodular finite posets are shellable.
Also, a certain inequality, known in polyhedral theory as the Hirsch conjecture, is
shown to hold for such posets.

The order complex of a finite poset F is the first member of a family of
associated simplicial complexes A^(F), k = 1, 2, .... In §7 we prove that all these
higher order complexes àk(P) are shellable when F is a finite planar distributive
lattice.

Finally, in an appendix we briefly review the definitions and basic properties of
shellable and Cohen-Macaulay complexes.

The author wants to thank R. Stanley, whose work inspired these investigations,
for many stimulating discussions. Thanks are due also to K. Baclawski, A. Garsia,
V. Klee and S. Provan for helpful comments.

1. Preliminaries. For poset terminology not otherwise explained we refer to [2]. A
poset is said to be bounded if it has a least element and a greatest element. These
will always be denoted by 0 and 1 respectively. For a bounded poset F we let F
denote the subposet P - {0,1}. For a poset Q we let Q denote the (essentially)
unique bounded poset F such that F = Q. A finite poset is said to be pure if all
maximal chains have the same length. A pure poset satisfies the Jordan-Dedekind
condition: all unrefinable chains between two comparable elements have the same
length. We shall call a poset graded if it is finite, bounded and pure. Any element x
of a graded poset F has a well-defined rank p(x) equal to the common length of all
unrefinable chains from 0 to x in F. The symbol "-< " denotes the covering
relation: x < y means that x <y and x <z <y for no z. The notation "c:
x0 < x, < • ■ • < x„" will be frequently used for denoting a chain c =
{x0, x,, . . . , x„} such that x0 < x, < • • • < x„.

The order complex A(F) of a finite poset F is the simplicial complex of all chains
of F. We shall say that a finite pure poset F is shellable if its order complex A(F) is
shellable. Similarly, F will be called Cohen-Macaulay if A(F) is a Cohen-Macaulay
complex. These properties of simplicial complexes are defined and commented on
in an appendix at the end of this paper. Note in particular that a shellable poset
must be Cohen-Macaulay, and that a Cohen-Macaulay poset must be pure. For
convenience, when we write simply "Cohen-Macaulay" (for instance, in Theorem
3.3) the intention is that any one of the slightly different concepts of "Cohen-
Macaulay-ness" defined in the appendix may be applied. Note that a finite poset F
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SHELLABLE AND COHEN-MACAULAY PARTIALLY ORDERED SETS 161

is shellable (Cohen-Macaulay) if and only if F is shellable (Cohen-Macaulay).
The cardinality of a finite set S will be written |S|. For a positive integer n we let

[n] denote the set {1, 2, ... , n).

2. Lexicographically shellable posets. For any finite poset P we let C(P) denote
its covering relation, C(P) = {(x,y) G F X F|x -< y). An edge-labeling of F is a
map A: C(P) -> A, where A is some poset. An edge-labeling therefore corresponds
to an assignment of elements of A to the edges of the Hasse diagram of P. An
unrefinable chain x0 -< x, < • ■ • -< xn in a poset with an edge-labeling A will be
called rising if A(x0, x,) < A(x„ x-j) < ■ • •  < A(x„_„ x„).

Definition 2.1. Let A: C(P) -» A be an edge-labeling of a graded poset F. A is
said to be an R-labeling if in every interval [x,y] of F there is a unique rising
unrefinable chain x = x0 -< x, -< • • • -< x„ = y. X is said to be an L-labeling in
case (i) A is an F-labeling and (ii) for every interval [x,_y] of F if x = x0 -< x,
-<--■< xn = y is the unique rising unrefinable chain and x < z < y, z =£ x„
then A(x, x,) < X(x, z).

Definition 2.2. A poset is lexicographically shellable (or L-shellable) if it is
graded and admits an L-labeling.

The following result is fundamental for this paper.

Theorem 2.3. Let P be a lexicographically shellable poset. Then P is shellable.

The proof will be given after some useful technical properties of L-labelings have
been derived.

(c)

Figure 1
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Example 2.4. To illustrate the above definitions we exhibit L-labelings (A = Z)
of the face-lattice of a square (Figure la) and of the poset of partitions of the
integer 6 ordered by refinement (Figure lb). The poset F of Figure lc has been
given an F-labeling which is not an L-labeling. In fact, by the above theorem there
cannot exist any L-labeling of F, since F is clearly not shellable.

With every unrefinable «-chain c: x0 -< x, < • • ■ < xn of a poset F having an
edge-labeling X: C(P) -* A we associate the «-tuple

w(c) = (M*o> *i)> Mxv x2)> • • • > M*n-i> *„)) G A".

Following Stanley [19] we call tt(c) the Jordan-Holder sequence of c. For any poset
A the cartesian product A" is partially ordered by the lexicographic order:
(ax, a2, . . ., an) G A" precedes (bx, b2, . . . , b„) G A" if and only if a¡ < b¡ in the
first coordinate where they differ.

When dealing with a poset F having an F-labeling we shall for the rest of this
paper let c(x, y) denote the unique rising unrefinable chain from x to y in P. The
Jordan-Holder sequences of L-labelings have the following important property.

Proposition 2.5. Let X: C(P) -> A be an R-labeling of a graded poset P. Then (i)
and (ii) below are equivalent conditions, and both are implied by (iii):

(i) A is an L-labeling,
(ii) for every interval [x, y] in P and every unrefinable chain d from x to y other

than c(x, y) it is true that tr(c(x,y)) < w(d) in the lexicographic order,
(iii) for every interval [x,y] in P, if x < x, is the first link ofc(x,y): x = x0 < x,

< - - - < xn = y then X(x, x,) < X(u, v)for all x < u < v < y.

Proof, (i) => (ii): Let á: x = y0< yx < ■ ■ ■ < yn = y be an unrefinable chain
different from c(x,_y): x = x0 -< x, < ■ ■ ■ < xn = y. If k is the least index such
that xk ¥=yk, we know that X(xk_x, xk) < X(xk_x,yk) = X(yk_x,yk), since A is an
L-labeling and xk_x < xk < ■ • ■ < x„ = y must be the unique rising chain of the
interval [xk_x,y]. Hence, tr(c(x,y)) < w(d).

(ii) => (i): Let x -< z < y, z i* x,, where c(x, y): x = x0 ■< x, < • • • ■< xn = y.
Also, let c(z,y): z = z0< z, -< • • • -< zn_, = y. Now, 7r(c(x,.y)) < 7r(d), where d:
x -< z0 < z, < ■ ■ ■ < z„_, = y. Hence, A(x, x,) < A(x, z0). If A(x, x,) = A(x, z0)
then A(x, z0) = A(x, x,) < A(x,, Xj) < A(z0, z,) < A(z,, Zj) < • • ■ < A(z„_2,>') so
that d is also rising from x to y, which contradicts the uniqueness of c(x, y).
Consequently, A(x, x,) < A(x, z).

(iii)=>(i): Preserve the meaning of x,y, z, c(x,_y), c(z,y) and d from the
preceding paragraph. By assumption, A(x, x,) < A(x, z) and A(x, x,) < A(z, z,).
Hence, if A(x, x,) = A(x, z) then d would be rising. So, A(x, x,) < A(x, z).

(i) does not imply (iii) as simple counterexamples show.    □
Let us say that a sequence w = (ax, a2, . . . , an) of elements from a poset A has a

descent at e, e G [n — 1], if ae ^ ae+x. The sequence it is said to have descent set
D(m)= {eG[n- l]\ae {  ae+x}.
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Lemma 2.6. Let X: C(P) —» A be an L-labeling of a graded poset P of length n, and
suppose that m: 0 = x0 < x, < ■ • • < xn = 1 is a maximal chain of P. Then Tr(m)
has a descent at e G [n — 1] if and only t/hnm = m— {xe} for some maximal
chain h such that 7r(h) < rr(m) in the lexicographic order on A".

Proof. Let c(xe_„ xe+1): xe_, < y < xe+x be the unique rising chain from xe_,
to xe+, and define d: 0 = x0 -< x, < • • ■ < xe_, -< y < xe+, < xe+2 < • • • <
x„ = 1. If 7r(m) has a descent at e, then y ¥= xe and h = d has the required
properties. Conversely, if m(m) does not have a descent at e, then m = d and since A
is an L-labeling it follows that w(m) < w(h) for all maximal chains h such that
h n m = m - {xe}.   □

Proof of Theorem 2.3. Let A: C(P) -» A be an L-labeling of the graded poset F.
We must prove that the set 911 of maximal chains of F has a shelling, that is, a
linear order fi such that

if k <" m for k, m G 911 then there is an h G 91t with h <a m
such that (k n m) Ç (h n m) and |h n m| = |m¡ - 1.

We shall show that, in fact, every linear order of the set 91t that is compatible
with the lexicographic order of the associated Jordan-Holder sequences is a
shelling.

Assign a linear order ß to the set 91t in such a way that if ir(m) < w(m') in the
lexicographic order on A" then m <a m'. This is clearly always possible. Now,
consider two maximal chains of P k: 0 = yQ < yx < ■ ■ • < yn = 1 and m: 0 = x0
< xx < ■ ■ ■ < xn = I, and suppose that k <n m. Let d be the greatest integer
such that x, = _y, for /' = 0, 1, . . ., d, and let g be the least integer greater than d
such that xg = yg. Then g — d > 2 and d < i < g implies that x, ¥=y¡. The chain
xd < xd+, < ■ ■ ■ < xg cannot be the unique rising chain in the interval [xd, xg],
because in that case w(m) would precede w(k) in the lexicographic order, which
contradicts k <a m. Therefore, Tr(m) must have a descent at some e such that
d < e < g. Consequently, by Lemma 2.6 there is a h G 91t with w(h) < ir(m), hence
h < a m, such that hnm = m— {xe}Dknm. This completes the proof.    □

Let F be a graded poset of length n. Then p(x) G [n — 1] for all x G P. For any
subset S G [n — 1] we define the rank-selected subposet Ps by

Ps= {xGF|p(x)GSu {0,«}}.

Thus, Ps is also graded and its length equals \S\ + 1. For the definition and
fundamental properties of the Möbius function pß of a finite poset Q we refer to
[17]. It will be convenient to write ¡i(Q) instead of pß(0, Î) for a finite bounded
poset Q.

Theorem 2.7 (R. Stanley). Let P be a graded poset of length n, and suppose that
an R-labeling of P is given. If S G[n - 1], then (-l)1*^'^^ is equal to the
number of maximal chains m in P with Jordan-Holder sequences ir(m) having descent
set D(tr(m)) = S.
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This theorem, formulated for admissible lattices, plays a fundamental role in [18]
and [19]. The proof below is modelled on Stanley's proof of Theorem 1.2 in [18, p.
206].

Proof. Let 91t denote the set of maximal chains of F, and similarly for
S G [n — 1] let 91ts be the set of maximal chains of Ps. The F-labeling of F
determines a map 9: 91ts -* 91t defined by "filling in the gaps with rising chains".
More precisely, if m G 91t5, m: 0 < x, < x, < • • • < x, < 1 where j = |S|,
p(xjk) = ik and ik G S for k = 1, 2, . . . , s, then 9(m) =
c(0, x, ) * c(x,, x, ) * • • • * c(x,, 1), where "*" denotes the operation of con-
catenating chains. We claim that 9 is a bijection between 91ts and the set
{m G 91t|F>(w(m)) G S}. By construction, D(tr(9(m))) G S for all m G 91ts. Since
m = 9(m) n Ps, 9 is injective. Since for every m' G (m G <UÏL\D(ir(m)) G S) it is
true that m' = 9(m' n Ps), 9 is surjective onto that set.

Now, let 8(S) be the number of maximal chains m G 9It such that D(ir(m)) =
S. We have just proved that |9lty| = "ZTQS 8(T). Therefore,

s(s)= 2 (-i)|s-r||9itr|=(-i)|5|+1 2 (-l)m+1|91tr| = (-l)|s|+,p(^X
TQS TÇS

where the first equality is obtained by Möbius inversion [17, p. 344] and the last is
provided by the well-known theorem of P. Hall's [17, Proposition 6, p. 346].   □

Let F be a graded poset of length n and suppose that there is an L-labeling A:
C(P) -» A of F. We know from Theorem 2.3 that F is shellable and from Theorem
2.7 that (— l)V(F) equals the number of maximal chains x0 -< x, -< • • • -< x„ of F
such that

A(x0, x,) { A(x„ x2) {   • • •  «j; A(x„_„ x„). (*)

Judging from the above proofs these results may appear totally unrelated. There is,
however, a close connection. As we shall informally indicate, this connection can
be seen as a special case of a more widely applicable principle.

Let A be a shellable simplicial complex and let F„ F2, . . . , F, be a shelling of A
(cf. the appendix). Each facet Fj then has a unique minimal face Fj that is not
contained in F, for / <j. It is easy to see that

(a) x G Fj if and only if Fj — {x} G F¡ for some i <j.
Also, using the elementary formula x(/l) + x(B) = x(^ U B) + xL4 n B), it be-
comes immediately clear that

(ß) the number of facets Fj such that FJ = Fj equals (- l)dimAx(A), where x
denotes the Euler characteristic in reduced simplicial homology.

After these general considerations, let us return to the graded poset F with its
L-labeling A. In the proof of Theorem 2.3 we showed how to derive from A a
shelling of the order complex A(F). If 0 and 1 are removed from the maximal
chains of F we obtain a shelling of A(F). For any maximal chain m of F, Lemma
2.6 tells us, in view of statement (a) above, precisely that m = m n Ps, where
S = D(tt(uí)) and m = m u {0, 1}. Therefore, the facets m of A(F) such that
m = m are those maximal chains m of F such that D(ir(m)) = [n - 1], or, in other
words, such that m: x0 -< x, -< • • • < xn satisfies (*). Since p(F) = x(A(F)) by P.
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Hall's theorem [17, Proposition 6, p. 346], we find that statement (ß) can be
rephrased, for our particular shelling, as saying that the number of maximal chains
of F which satisfy (*) equals (- 1)>(F).

The considerations of the preceding paragraph can be fully generalized to
rank-selected subposets Ps of F. It will later be proved (Theorem 4.1) that any
shelling of F induces shellings of all Ps, S G[n — 1]. Still assuming that we have
an L-labeling of F, it can be shown that the conclusion of Theorem 2.7 is just a
reformulation of statement (ß) above for the shelling which is induced on Ps by
the lexicographic shelling of P. We omit further details.

In Examples 2.9 and 3.8 below we present some interesting applications of the
following general principle.

Proposition 2.8. Let P be a graded poset and X: C(P) ->Aun L-labeling of P.
Suppose that Q is a subset of P such that

(i) Ô, î G Q, and
(ii) if x,y G Q and x <y in P then c(x, y) G Q, where c(x, y) is the unique rising

chain from x toy in P.
Then Q is a graded poset under the inherited order, C(Q) G C(P), and the

restriction ofX to C(Q) is an L-labeling of Q.

Proof. The verification is straightforward.   □
Example 2.9. Let n„ denote the lattice of partitions of the set [n] ordered by

refinement. A covering relation m < it' in n„ corresponds to a merging of two
distinct blocks Bx and B2 of -n into one block Bx u B2 of it'. Let X(ir ■< it') =
max (min Bx, min B2). It is not hard to see that this edge-labeling A of n„ is an
L-labeling. A was first suggested to the author by I. Gessel. A can also be obtained
as the induced edge-labeling of an admissible map by the standard construction for
supersolvable lattices (cf. the following section and [19, Proposition 2.4, p. 363]).
The Jordan-Holder sequences of maximal chains of n„ under the labeling A are
permutations of the set {2, 3, . . ., n}. It is an easy exercise to verify that there are
(n — 1)! maximal chains with strictly decreasing Jordan-Holder sequences. Hence,
by Theorem 2.7, p(n„) = (- \)"-\n - 1)!.

Following G. Kreweras [10] we shall call a partition it G n„ noncrossing if for
any blocks Bx and B2 of it the conditions x,, x3 G Bx, x2, x4 G B2 and x, < x2 <
x3 < x4 imply Bx = B2. It was observed jointly by P. Edelman and the author that
the set <ö„ of all noncrossing partitions of [n] satisfies condition 2.8(i) and (ii)
above. Hence, A restricts to an L-labeling of <5n, which in fact is a lattice under the
inherited refinement order [10, Théorèmes 2 et 3, p. 335]. Consequently, ?Fn is a
shellable lattice. Let us now count the number of maximal chains in <ön which have
strictly decreasing Jordan-Holder sequences.

Suppose that we select n elements x„ x2, . . ., x„ from a set in which a nonas-
sociative, noncommutative binary composition is defined. A correct bracketing of
the sequence x,x2 . . . xn is an assignment of left and right bracket symbols "(" and
")" to the sequence in such a way that the resulting expression is well-formed with
respect to the binary composition. Given a correct bracketing ß of the sequence
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x,x2 . . . x„ we define a maximal chain f(ß): ir0-< irx < • ■ ■ -< ir„_x in n„ by the
following rule:

(1) tt0 is the discrete partition with only singleton blocks,
(2) TTi+l is obtained from tt¡ by joining the block to which n — i belongs with the

block to which <p(« — /) belongs, where tp: ([n] — {1}) -» [n] is defined as follows:
(i) If there are no brackets or only left brackets between xk_x and xk then

<p(/t) = k - 1.
(ii) If there are right brackets between xk _, and xk, let )' be that right bracket

which stands closest to xk and let (' be the left "mate" of )' (in the obvious sense).
Then <p(k) is that integer for which x^ is the first element to the right of ('.
For example, if ß is the correct bracketing

ß: (x1x2)((x3(x4x5))x6),

then/(/?) is the maximal chain tt0 < mx < ■ ■ ■ -< tt5 in n6 given by
ir0: 1 - 2 - 3 - 4 - 5 - 6,

ttx: 1 -2- 36-4-5,
m2: 1 - 2 - 36 - 45,

7T3: 1 - 2 - 3456,
7T4: 13456 - 2,

775: 123456,

and the Jordan-Holder sequence of f(ß) under A is (6, 5, 4, 3, 2). It is not hard to
prove for the general case that the elements of f(ß) have to be noncrossing
partitions and that the Jordan-Holder sequence off(ß) must be strictly decreasing.
In fact, one can show that / defines a bijection between the set of correct
bracketings of the sequence x,x2. . . xn and the set of maximal chains of <ön with
strictly decreasing Jordan-Holder sequences. It is well known in combina-
torics that the number of correct bracketings of x,x2 . . . x„ is equal to the Catalan
number

r      Uln-2\
"      n\n-\r

Hence, we find using Theorem 2.7 that

Kw-t-n-'^2;-,2).
This formula was first obtained by Kreweras [10, Théorème 6, p. 348].

3. Admissible lattices. Let L be a finite lattice and to: I(L) -^Pa map from the
set I(L) of join-irreducibles of L to the set P of positive integers. Such a map a
induces an edge-labeling y: C(L) -» P of L by the rule

y(x < y) = min{to(z)|z G I(L), x <x\j z = y).

If y is an F-labeling then to is called an admissible map. A finite lattice L is said to
be admissible if it is graded and there exists an admissible map u: I(L) -» P. These
definitions are due to R. Stanley [19], who also showed that all upper-semimodular
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and all supersolvable finite lattices are admissible. The class of admissible lattices is
larger, but no other major subclass of interest seems to be known.

Theorem 3.1. An admissible lattice is lexicographically shellable.

Proof. Let a: I(L) -» P be an admissible map of a graded lattice L. To show
that the induced edge-labeling y is an L-labeling it will suffice to verify condition
(iii) of Proposition 2.5 for A = y. Assume that c(x, y): x = x0 -< x, -< • • • -< x„ =
y is the unique maximal chain in the interval [x,y] which is rising under the
F-labeling y. Let /' = {z G /(L)|x < x V z < y}, a = min{to(z)|z G /'} and w(z')
= a, z' G /'. Clearly, a < y(u, v) for all x < u -< v < y. Let / be the least integer
such that z' < x¡. Then a < y(x, x,) < y(x,_ „ x¡) = a. Hence, y(x, x,) = a <
y(u, v) for all x < u < v < y.    □

Corollary 3.2. An admissible lattice is Cohen-Macaulay.   □

Corollary 3.2 was conjectured by R. Stanley in [20, p. 60]. It was previously
known that finite upper-semimodular lattices are Cohen-Macaulay and that finite
distributive lattices are shellable. These results are due to J. Folkman [7] and S.
Provan [12] respectively.

Our results contain the remaining pieces of information needed to fully settle the
question: for which finite groups G is the lattice of subgroups L(G) Cohen-
Macaulay? The Cohen-Macaulay property has been studied for certain subposets
of L(G) by D. Quillen [14].

Theorem 3.3. Let G be a finite group and L(G) its lattice of subgroups. Then the
following conditions are equivalent:

(i) G is supersolvable,
(ii) L(G) is Cohen-Macaulay,
(iii) L(G) is lexicographically shellable.

Proof. We have the following loop of implications: G is supersolvable A =>
L(G) is admissible B => L(G) is lexicographically shellable c=> L(G) is shellable
D => L(G) is Cohen-Macaulay E => L(G) is pure F => G is supersolvable. A is due

to R. Stanley ([18, Example 2.5, p. 204] and [19, Proposition 2.4, p. 363]). B and C
are provided by Theorems 3.1 and 2.3 respectively. D and E are well known (cf. the
appendix). F was proved by K. Iwasawa in 1941 (see [22, Theorem 9, p. 9] or [2,
Theorem 21, p. 177]).   □

Some of the important examples of L-shellable posets admit L-labelings with the
following stronger property.

Definition 3.4. An SL-labeling A of a graded poset F is an L-labeling A:
C(P) -» A such that if x = x0 -< x, -< • • • -< x„ = y is the unique rising maximal
chain in the interval [x, y] then X(xn_x,y) > A(z,.y) for all z ¥=xn_x such that
x < z < y. A poset is said to be strongly lexicographically shellable (or S L-shell-
able) if it is graded and admits an SL-labeling.

Figure lb above (Example 2.4) shows an SL-labeling, while Figure la shows an
L-labeling which is not SL.
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Proposition 3.5. If P is an SL-shellable poset, then its order dual P* is also
SL-shellable.

Proof. If A: C(P) ^A is an SL-labeling of F, then A*(x < *y) = X(y < x)
defines an SL-labeling A*: C(P*) -h> A* of P*.   □

Proposition 3.6. Let L be a graded lattice with join-irreducibles I(L). Then
conditions (i) and (ii) below are equivalent and both imply (iii):

(i) there is an injective admissible map u: I(L) —> P,
(ii) there is an admissible map w: I(L) —» P such that under the induced edge-label-

ing y of L all rising chains x0 < x, -< • • ■ -< xn have strictly increasing Jordan-
Holder sequences y(x0, x,) < y(x,, x-¡) < • • •  < y(x„_„ x„).

(iii) L is SL-shellable.

Proof, (i) implies (ii): The same map to will do.
(ii) implies (i): The map a: I(L) -> P induces a linearly ordered partition of I(L)

with blocks u~\n), n G range «. Let u': /(L)-»P be an injective map such that
w'('i) < "'('2) if w('i) < <"K*2)> 'i' '2 e I(L). Such a map «' clearly exists. If
x «< z -< y in L then, by assumption either y(x, z) < y(z,y) or y(x, z) > y(z,y). It
is easy to check that y(x, z) < y(z, y) if and only if y'(x, z) < y'(z, y), where y' is
the edge-labeling of L which w' induces. Since y is an F-labeling, we must conclude
that y' is also an F-labeling. Hence, to' is admissible.

(ii) implies (iii): It is already known that the induced edge-labeling y of L is an
L-labeling (Theorem 3.1), and we shall verify that under condition (ii) it is an
SL-labeling by induction on the length of intervals of L. If [x,y] is an interval of
length one there is nothing to prove. Assume that y is an SL-labeling of all
intervals of length < n - 1, n > 2, and let [x,y] be an interval of length n with
unique rising chain x = x0 -< x, < • ■ • < xn = y. Suppose that z ¥= xn_x and
x <, z < y. Also, let / G I(L) such that x < / V x = x, and y(x, x,) = o)(t). If
t < z, then xx = t \y x < z, and since [xx,y] is an interval of length n — 1 and
xx < x2 < • • • < xn = y must be its unique rising chain, the induction assump-
tion forces y(z,>>) < y(x„_x,y). If t ^ z, then y(z,_y) < to(f) since t < y. Hence,
y(z,y) < o)(t) = y(x, x,) < y(x„_x,y), where the final inequality is forced by con-
dition (ii).    □

The implication (ii) => (iii) of the preceding proposition can be made more
precise: Let L be a graded lattice, a: I(L)->P an admissible map and y the
induced edge-labeling of L. Then y is an SL-labeling if and only if whenever
x0 < x, < ■ ■ ■ < xn and y(x0, x,) = y(x„ x2) = • • • = y(x„_„ x„) then [x0, xj
is a chain. We omit the proof.

The induced edge-labeling of an admissible map does not have to be an
SL-\abe\mg as the ïoWowmg counterexample shows (Figure 2).

We do not know whether all admissible lattices are SL-shellable, but we can
show that the important examples are.
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Figure 2
Theorem 3.7. Finite upper-semimodular, lower-semimodular and supersolvable

lattices are SL-shellable.

Proof. R. Stanley has shown that for every finite supersolvable lattice L there is
an admissible map w which satisfies condition (ii) of Proposition 3.6 [19, Proposi-
tion 2.4, p. 363]. He has also proved that any injective order-preserving map u:
I(L) —* P is admissible when L is finite and upper-semimodular [19, Proposition
2.2, p. 362]. Hence, Propositions 3.5 and 3.6 imply the present result.    □

Remark. Extending Stanley's above-mentioned result I. Rival has shown [16,
Theorem 2, p. 102] that a finite lattice L is upper-semimodular if and only if every
injective order-preserving map u>: I(L) —» P is admissible. As the following example
of a modular lattice shows (Figure 3), an admissible map does not have to be
order-preserving. Hence, Proposition 2.1 in [19, p. 362] is false.

Figure 3

Example 3.8. Let G be a finite geometric lattice. K. Baclawski has observed [23,
Corollary 4.3] that G - {x} is a shellable poset for every x G G. We will show that
in fact all chains and certain antichains can be removed from G without losing
shellability. The case of chains has independently been considered and further
generalized by Baclawski [24].

Suppose that c: x, < x2 < ■ • • < xk is a chain in G. Let 1(G) be the set of
join-irreducibles (atoms) of G, and let u: 1(G) -»[«] be a bijection such that
p < x,< q V x¡ implies u(q) < u(p) for all p, q G 1(G) and x, G c. Since G is
upper-semimodular we know that the map u is admissible and hence induces an
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L-labeling y of G in the usual way. It is easy to verify that iî y < x¡ < z in G with
x, G c then y(y, x¡) > y(x¡, z). Hence, by Proposition 2.8 the subposet G — c is
L-shellable under the restriction of y. Now, a maximal chain of G with strictly
decreasing Jordan-Holder sequence either is contained in G — c or includes an
element of c. Counting the chains of the latter type by the principle of inclusion-ex-
clusion and using Theorem 2.7 we are led to the following formula:

p(G - c) = p(G) + 2 (- 0* 2 m(Ô, *,>(*,,, *,2)
e=l Ki,<i2< • • • <i,<k

• • • m(\_,. Vfa' *)•    (3-9>
Also certain antichains can be deleted from geometric lattices without losing

shellability. Apart from the case of full rank levels (cf. Theorem 4.1 below) we have
the following. Let G be a finite geometric lattice, S = {x,, x2,. . . , xj a subset of
G, and let A be the set of atoms under S, that is, A = {p G /(G)|p < x for some
x G S}. Assume that S has the property that if x -< z in G and x G S then a < z
for some atom a G 1(G) — A. In particular, S must be an antichain. Now, choose
a bijection u: 1(G) -» [n] such that u(I(G) — A) = [n — \A\]. As before, it is easy
to check that the induced L-labeling y of G has the property that y(y, x) > y(x, z)
when y < x < z in G and x G S. So again by Proposition 2.8 we find that the
subposet G - S is L-shellable. Counting maximal chains with strictly decreasing
Jordan-Holder sequences in G and G - S we obtain the formula:

p(G - S) = p(G) - 2 p(Ô, x,>(x„ Î). (3.10)

Examples of antichains S which satisfy the above requirement include the set of
maximal complements of a fixed element in G. In particular, if S is the set of all
complements of a modular element in G, then (3.10) in combination with H.
Crapo's complementation theorem shows that p(G — S) = 0, so G — S is acyclic.

4. Constructing shellable posets. This section is devoted to showing a number of
ways in which shellable posets can be constructed from other shellable or L-shell-
able posets.

Let F be a finite pure poset of length r — 1. Then F is graded with rank function
p, and p(x) G [r] for all x G F. For any subset S G [r] we define Ps = {x G
F|p(x) G S}. This definition is slightly more general than the definition of rank-
selected subposets given in §2, where only bounded posets were considered.

Theorem 4.1. If P is a shellable poset of length r — 1, then Ps is shellable for all
S G [r].

Proof. Fix a subset S G [r] and let 91t and 91ts denote the sets of maximal
chains of F and Ps respectively. Assume that a certain linear order ñ of the set 9It
is a shelling. For every c G 91t5 define 9(c) to be the least element under ß of the
set {m G 91t|c G m}. This determines an injective map 0: 91ty -> 91t, and we
derive a linear order ß' of the set 91ts  by the rule:  c <nd if and only if
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9(c) <a 9(d), c, d G 9lt5. Now, suppose that c <ad for c, d G 9lts. Since 9(c)
<a 9(d) and ß is a shelling, we know that there exists a maximal chain m G 91t
such that m < a 9(d) and

9(c) n 9(a) G m n 9(d) = 9(d) - {x}    for some x G 9(d). (*)

In case x G d, then d G 9(d) — {x} Cm, which contradicts the definition of 9(d)
since m < n 9(d). Hence x G d. Let b = m n Fs. Then b G 91ts and 9(b) < a m <
9(d) so b < B'd. Applying the operator Ps n • to the formula (*) we get c n d G b
nd = d— {x}. Hence, ß' is a shelling of the set 91ts.   □

Proposition 4.2. // F is an (L-) shellable poset then all intervals of P are (L-)
shellable.

Proof. Suppose that F is shellable and that [x,>>] is an interval of P. Let c:
x, -< x2 -< • • • < xg = x and d: y = yx<. y2< • • ■ < yh be two unrefinable
chains in F such that x, is a minimal and yh is a maximal element. Let
m,, m2, . . ., m, be the maximal chains in F which contain cud, and assume that
they are listed in the order in which they appear in the shelling of F. It is
straightforward to verify that ((m, - (c U d)) u {x,.y})i_, is a shelling of [x,>>].

In case F is L-shellable the conclusion is immediate from Definition 2.1. □
Let F and Q be two posets. The direct product P X Q is the poset defined on the

product set by (x,y) < (x',y') if and only if x < x' in F and y < y' in Q. The
ordinal sum P ® Q is the poset on the disjoint union of F and Q defined by the
rule: x < y in F © Q if and only if (i) x, y G F and x < y in F, or (ii) x, y G Q
and x < y in Q, or (iii) x G F and y G Q.

Theorem 4.3. P X Q is L-shellable if and only if both F and Q are L-shellable.

Proof. P X Q is clearly a graded poset if and only if both F and Q are. Let A:
C(P)->A and A': C(Q)^>A' be L-labelings of the graded posets F and Q. A
covering relation (x, y) < (x', y') occurs in F X Q if and only if x = x' and.y -< y'
or x -< x' and y = y'. Define an edge-labeling A": C(P X g)-»A©A' by
X"((x,y) < (x',y')) = A(x < x') if y = y' and X"((x,y) < (x',y')) = X'(y < y') if
x = x'. It is straightforward to verify that A" is an L-labeling of P X Q.

If F X Q is L-shellable then, by Proposition 4.2, so are F ^ [(Ô, Ô), (î, Ô)] and
Q at [(Ô, Ô), (Ô, î)].    D

Theorem 4.4. Let P and Q be two posets such that P and Q are L-shellable. Then
X is L-shellable, where X = P ® Q. Also, P ® Q is shellable if and only if both P
and Q are.

Proof. Suppose that A: C(F)-»A and A': C((5)->A' are L-labelings of the
graded posets F and Q. Define an edge-labeling A": C(X) -» (A © A') X (A © A')
by (i) X"(x < y) = (X(x < y), X(x < y)) if x < y and y ¥• î in F, (ii) X"(x < y) =
(A'(x < y), X'(x < y)) if x -< y and x =£ Ô in Q, and (iii) A"(x < y) = (A(x -<
î), A'(Ô < y))if x <\ in P and Ô < y in Q. X" is an L-labeling of X. We omit the
easy verification.
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Suppose that m,, m2, . . . , m, is a shelling of F and that m',, m2, . . . , m¡ is a
shelling of Q. Then {cjj}x<i<sX<j<l, where cy- = m, u mj, is the set of maximal
chains of F ffi Q, and it is easy to check that the lexicographic order of the indices
determines a shelling of F ffi Q. If on the other hand F ffi Q is shellable then so
are both F and Q by Theorem 4.1.    fj

The cardinal power Qp of two posets F and Q is the set of order-preserving maps
f:P—>Q partially ordered by / < g if and only if f(x) < g(x) for all x G P.

Theorem 4.5. Let P and Q be two finite posets. Then Qp is L-shellable if and only
if Q is L-shellable.

Proof. First note that Qp is bounded if and only if Q is bounded. Also, if Q is
bounded then Q at [/, g] in Qp, where/(x) = 0 for all x G F and g(x) = 0 for all
x G P with the exception of a maximal element m G F for which g(m) = 1. Hence,
by Proposition 4.2 the "only if" part is done.

Let A: C(Q) -> A be an L-labeling of the graded poset Q. It is easy to see that
f < g in Qp if and only if f(x) = g(x) for all x G F with one exception p G F for
which/(p) < g(p)- Hence, in particular, Qp is also graded. Now, let a: F-»Z be
an order-reversing injective map from F to the integers. Define an edge-labeling A':
C(QP)^Z®A by X'(f< g) = (o(p),X(f(p)< g(p))) where p is the ionique
element of F such that/(p) -< g(p). Here Z ® A denotes the ordinal product, which
is defined by the lexicographic order on the product set: (n, X) < (n', X') if and
only if n < n' or n = n' and A < A'. Again, we leave the verification that A' is an
L-labeling to the reader.    □

The preceding result reconfirms that finite distributive lattices are L-shellable,
since by a theorem of G Birkhoff [2, Theorem 3, p. 59] L ca: 2,(L\ where L is a
finite distributive lattice and I(L) its subposet of join-irreducibles.

The interval poset Int(F) of a poset F is the set of all intervals of F ordered by
containment. Thus [x,.y] < [u, v] in Int(F) if and only if u < x < y < v in F. By
convention we also adjoin the empty interval 0 to Int(F), so that Int(F) is
bounded if and only if F is bounded.

Theorem 4.6. Int(F) is L-shellable if and only if both P and its order dual P* are
L-shellable.

Proof. Suppose that F is a graded poset and that A: C(F)-»A and A':
C(P*) -> A' are L-labelings. Define an edge-labeling A": C(Int(F)) -» A' ffi Z ffi A
by (i) X"([x,y] < [u, v]) = X(y < t>) if x - u, (ii) X"([x,y] < [u, v]) = X'(x <*u) if
y = v, and (iii) X"(0 < [x, x]) = p(x), where p denotes the rank function in P. It is
not hard to verify that A" is an L-labeling of Int(F).

If F is a bounded poset then clearly F =s [[Ô, Ô], [Ô, Î]] and P* ix [[î, î], [Ô, Î]] in
Int(F). Hence, if Int(F) is L-shellable then by Proposition 4.2 so are F and P*.    □

The preceding Theorems 4.2-4.6 remain true if "L-shellable" is everywhere
replaced by "SL-shellable" (cf. Definition 3.4). In particular Int(F) is SL-shellable
if and only if F is SL-shellable.
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5. Face-lattices of complexes. If we order the faces of a simplicial or polyhedral
complex K by inclusion, we get a poset PK. Adjoining a greatest element 1 to PK we
obtain a lattice LK, the face-lattice of K. The order complex A(LK) is known in
topology as the barycentric subdivision sd K of K. We shall in this section discuss
some cases for which the shellability of K is inherited by PK (or, equivalently, LK or

Theorem 5.1. Let K be a shellable simplicial complex. Then the barycentric
subdivision sd K is shellable.

Proof. Suppose that /,,/2, . . .,/, are the facets of K arranged in a shelling
order. The poset PK of faces of A is a pure poset of length = n = dim K + 1, with
maximal elements/, f2, . . . ,ft and least element 0 = 0. Since sd K = A(F^ — {0})
the theorem will follow if we construct a shelling order ß of the set 9Tt of maximal
chains of PK.

Let 91t, be the set of all maximal chains of PK which contain f, so that
91t = U Í_i91t,. F°r every i, i = 1, 2, . . ., /, [Ô,f] is a finite Boolean algebra on n
atoms. Suppose that the elements which are covered by f¡ are labeled
c,,, c,2, . . ., cin in such a way that for j = 1, 2, ..., k¡ the element ctj is also
covered by/e for some e < i, but for./' = k¡ + l, k¡ + 2, . . . , n this is not the case.
Since K is shellable k¡ > 1 when / > 1. The map u: c» \-+j is an admissible map
from the join-irreducibles of the dual lattice [0, f]*, and therefore it induces an
L-labeling, which in turn lexicographically generates a shelling order of 91t, (cf.
Theorems 2.3 and 3.1). Let the elements of 91t, be called m,„ m,2, . . ., m,„„ where
the second index is compatible with the shelling order we have obtained. The
important feature of this order, except that it shells 91t,-, is that whenever cie G miy,
cie G m0 and e, < k¡ < e2, then /, <j2. Suppose the above process has been
carried out for each i, 1 < i < t, so that 9lt = {"»^}i<(«,i<y<wi' The lexicographic
order of the indices defines a linear order ß on 91t.

To verify that ß is a shelling, assume given mia/o G 91t. If m,j <a Mb, then
either (a) /, = /„ and./, <j0 or (b) /, < z'0. In case (a), m, • and m, • both belong to
91t,o and since the second index determines a shelling of 91t, we may conclude the
existence of a m, , G 9lt, with/', <jn and m, , n m, , C m, , n m, , = m, , —
{x} for some x G m,-^-. Case (b) must be further subdivided into two subcases as
follows. Suppose that m,^: 0 = x0 ■< x, -< • ■ • -< xH ■» f^ and that x„_, = ci(je. In
case e < kio then x„_, < fh for some i2 < i0, so m,^: x0 -< x, < ■ ■ ■ < x„_, -< fh,
which precedes m,.^ under Q, satisfies m,Vi n miJo G m^ n m,Wo = m,^ - {/o}.
Assume next that e > kio. Let g = max{/i|xA G m,- • n n>Ia/o}- Then 0 < g < n — 2.
Since/,,/2, ...,/, is a shelling of K we know that xg < c¡^¡ <. f¡(¡ for some d < kit).
Let xg = y0 < yx < ■ ■ • < y„_g_x = c¡t¿ be an arbitrary unrefinable chain from
xg to c^. Then m^: x0 < x, < ■ ■ ■ < xg = y0 < yx < ■ ■ ■ < y„_g_x = cM <
f¡ precedes m,- • in the shelling order of 9lt, . Hence, there exists a m,- G 91t, with
j\ <Ja such that m, , n m, , c m, , n n», , = m, , — (x\ for some x G m, ,.
Since m,7i n m/a/ G {x0, x„ . . . , xg) G m,- ̂  n n»,^» this concludes the proof.   □

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



174 ANDERS BJORNER

It has been proved by Bruggesser and Mani that the boundary complex of a
convex polytope is shellable [3, p. 202]. Their result together with the preceding
theorem shows that the face-lattice of a simplicial convex polytope is shellable.
However, more is true. As seems to have been first observed by Ewald and
Shephard [5, p. 10] the barycentric subdivision of the boundary complex of a
convex polytope is isomorphic to the boundary complex of some simplicial convex
polytope. This fact together with Bruggesser and Mani's result shows the following.

Proposition 5.2. The face-lattice of a convex polytope is shellable.

It is possible to modify our proof above of Theorem 5.1, by introducing
induction on length, so that in combination with Bruggesser and Mani's argument
[3, pp. 202-3] it yields Proposition 5.2. We leave the details aside. A similar proof
has independently been found by S. Provan [13].

In this connection we would like to raise the question: whether the face-lattices
of convex polytopes are L-shellable? The face-lattice of any simplex is of course
SL-shellable, since such a lattice is Boolean. An SL-labeling of the face-lattice of a
2-dimensional polytope is shown in Figure 4.

Figure 4

Let L(P) denote the face-lattice of a convex polytope P. B. Lindström has asked
[11] whether it is true for every convex polytope F that there exists a convex
polytope Q such that the interval lattice Int(L(F)) is isomorphic to L(Q). Lind-
ström observed that if F is the «-dimensional simplex, then Q is the (« + 1)-
dimensional cube. It is easy to see also that if F is 2-dimensional then Q is the dual
of a 3-dimensional antiprism. Hence, by Theorem 4.6, the face-lattices of cubes of
all dimensions and their duals and also of 3-dimensional antiprisms and their duals
are SL-shellable.

6. Locally semimodular posets. A finite poset F is said to be semimodular if
whenever two distinct elements u, v G F both cover t G F there is a z G F which
covers each of u and v. P is said to be locally semimodular when all intervals [x, y]
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of F are semimodular. As was apparently first noticed by O. Ore, bounded
semimodular finite posets are pure. However, such posets need not be Cohen-
Macaulay. It was shown independently by K. Baclawski [1] and F. Farmer [6] that
bounded locally semimodular finite posets are Cohen-Macaulay over Z. Notice
that a lattice is locally semimodular as a poset if and only if it is upper-semimodu-
lar in the usual sense.

Theorem 6.1. Suppose that a finite poset P is bounded and locally semimodular.
Then P is shellable.

Proof. Let us say that a linear order ß of the set of maximal chains 91t of a
graded poset Q has property ty if whenever m, m' G 91t, m': Ö = y0 < yx -< ■ ■ • <
yn = Î, m: 0 = x0 < x, -< • • • -< xn — 1, x,, = y¡ for /' = 0, 1, . . . , e and xe+x ¥=
ye+x,then

(a) if {y0,yx, . . . ,>'e+,} Ç m" G 91t and m' <Q m then m" <a m, and
(ß) if m' - {ye} G m" for some m" G 9It such that m" <° m but m - {xe} 2

m"' for all m" G 91t such that m"' <n m then m' <a m.
We shall prove for every graded poset that the set of maximal chains can be

given a linear order having property ¥. Since for posets of length 2 every linear
order trivially posesses property ¥, we may proceed by induction on length.

Suppose that Q is a graded poset of length n, n > 3, and let Q' denote the
rank-selected subposet ô[„-2] = {x G ô|p(x) ¥= n — 1}. Q' is graded and of length
n — 1, so by the induction assumption there is a linear order ß' with property ^ of
the set 91t' of maximal chains of Q'. Label the elements of 91t', m',, m2, . . . , m^, in
such a way that the natural order of the indices expresses the order ß'. For
m; G 91t', m'j-. 0= x0<xx< ■ ■ ■ < xn_2 < Î, let A¡ = {z G ß|x„_2 <z<ï),
B¡ = {z G A¡\ there is a.y G Q such that x„_3 < y < z and (m'¡ — {x„_2}) (J {y}
<a' m,'}, and C, = A¡ — B¡. Label the elements of A¡, z,„ z,-2,.. . , z^, a¡ = \A¡\, in
such a way that if ztj G B¡ and zik G C, then j < k. Let m,-, = m¡ u {z0], for
/' = 1, 2, . . ., s and j = 1, 2, . . . , a,. Then the lexicographic order of the indices
determines a linear order ß of the set 91t = {m¡j\l < / < s, 1 < J < a,} of maximal
chains of Q. We claim that ß has property ^.

To validate this claim, let us suppose that m, m' G 91t, m': 0 = y0 < yx
< ' ' ' < y„ = î, m: Ô = x0 < xx < • ■ ■ < xn = Î, x¡, = y¡ for /' = 0, 1, . . . , e
and xe+x ¥=ye+x. Then 0 < e < « — 2. First consider the case e = « — 2. Then
m' = m,^ and m = mik for some i,j, k, 1 < / < s, 1 < j, k < a¡. Condition (a)
above is trivially satisfied since m" must equal m'. The hypothesis of condition (ß)
is equivalent to >»,,_, G B¡ and xn_, G C,. By construction therefore y < k, that is,
m' <ß m. Next, consider the case 0 < e < « — 3. Then m' <a m if and only if
(•»' - {^-i}) <n'(m - {*„-.})• « {>-<)> ^i> • • • .^e+i) Ç m" G 9H, then
{y0,yx, . . . ,ye+x) ç (m" - {z}) G 91t' where z G m" has rank p(z) = « - 1.
Hence, since the order ß' satisfies condition (a), so does ß. In a similar manner one
can verify that property (ß) is passed along from ß' to fi. Consequently, the order
ß has property ^, and the induction proof is complete.

Now, suppose that F is a finite poset which is bounded and locally semimodular.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



176 ANDERS BJORNER

Then F is pure [2, Theorem 14, p. 40], and hence graded. As we have shown, it is
possible to assign a linear order ß having property ^ to the set 91t of maximal
chains of F. It remains to be shown that such an order ß is a shelling. Let m,
m' G 9lt, m: Ô = x0 -< x, < ■ ■ ■ < x„ = î, m': Ô = y0 <yi<* •'• < yn = Î,
and suppose that m' <n m. Let d be the greatest integer such that x, = y¡ for
i = 0, \, . . ., d, and let g be the least integer for whichyd+, < xg. Since F is locally
semimodular, there is an element zd+2 which covers both yd+x and xd+x in the
interval [xd, xg]. Again, if g > d + 2 there is an element zd+3 which covers zd+2 and
xd+2 in [xd, xg]; and so on until the process ends with zg = xg (see Figure 5). Also,
let^+i -jvh-

"ci+3

d + 2

zci+1=yd + 1

xd=yd

Figure 5

Note that, by choice of g, d+\<e<g— I implies ye &> xe and ze =£ xe. For
/ = d + \, d + 2, . . . , g — 1 define m, by m,: 0 = x0 -< x, -< • • • -< x,_, < Z¡ <
Zu •< <*t-i<xs<xs*i* < x„ = 1.   We  have  assumed   that  m'
<a m. Hence, using property (a) above we find that md+x <a m. If m - {x¿+1} g
m'" for all m'" G 91t such that m'" <° m, then property (ß) tells us that md+2
<a m. In that case, if m — {xd+2} is not included in any maximal chain which
precedes m, then md+3 <a m. Continuing this argument based on property (ß) we
find that either m — {xe} is contained in an earlier maximal chain for some e,
d + 1 < e < g — 2, or mg_, <n m. But in the latter case m — {xg_,} is contained
in an earlier maximal chain, namely mg_,. Hence, there is a maximal chain
m" G 91t and an e, d + 1 .< e < g - I, such that m" <a m and m' n m G m" n
m = m — {xe}. The proof is now complete.   □

Example 6.2. Let n„ denote the poset of partitions of the integer n ordered by
refinement (see [2, Example 10, p. 16], n6 is depicted in Figure lb above). These
posets n„ as well as their order duals n* are bounded and semimodular. For n < 7
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they are even locally semimodular. This is not true for « > 8. For instance, the
intervals [(3, 2, 1, 1, 1), (5, 3)] in n8 and [(6, 2), (2, 2, 2, 1, 1)] in II* are not
semimodular. Nevertheless, ng is shellable. For n > 9 it seems to be unknown even
if n„ is Cohen-Macaulay.   □

With any pure simplicial complex A is associated the graph <Í>A defined on the set
of all facets of A by letting two facets be adjacent if their intersection is a maximal
proper face of each. Let us call A facet-connected if $A is a connected graph. All
Cohen-Macaulay complexes are facet-connected. Following Provan [12, p. 25] we
shall say that a facet-connected 5-dimensional simplicial complex A with v vertices
satisfies the Hirsch conjecture if

diam *A < v - ê - I, (6.3)
where by diam 4>A we understand the diameter, that is, the maximal distance
between two vertices of <I>A in the usual graph-theoretic sense. This notion, which
stems from polyhedral theory, can be applied to posets by tacitly referring to order
complexes. This was also done by Provan, who showed that all finite distributive
lattices satisfy the Hirsch conjecture [12, p. 62]; a result which we shall now extend.

Theorem 6.4. Let P be a bounded, locally semimodular finite poset. Then P
satisfies the Hirsch conjecture.

Proof. The inequality (6.3) is trivially satisfied if F has length equal to one. We
continue by induction on the length of F, which of course equals the dimension of
the order complex A(F). Assume that length(F) = 8 > 2 and let m: 0 = x0 -< x,
< • • • < xs = 1 and m': 0 = y0< yx< • • • < ys = 1 be two distinct maximal
chains in F. Also, let d be the greatest integer such that x, = 7, for / = 0, 1, . . . , d,
and let g be the least integer for which yd+x < xg. Using local semimodularity,
select elements zd+2, zd+3, . . . , zg_x in F as illustrated in Figure 5 above. The
interval [yd+x, 1] in F is locally semimodular and of length 8 — d — 1 < 8. By the
induction assumption, therefore, there is a path in ^f^y ij¡ of length at most
v' — (8 — d - 1) - 1, v' = |[7d+„ 1]|, consisting of maximal chains of [yd+x, 1],
which connects yd+x < yd+2 <•••■< yt - î to yd+x < zd+2 < zd+3 <•-■<,
zg_x< xg< xg+x< ■ • • < xs = 1. If these chains are concatenated with 0 = y0
< yx < ■ ■ ■ < yd we get a path in $¿/m of length < v' + d — 8 connecting m' to
m":   Ô = y0 < yx < ■ ■ ■ < yd+x < zd+2 < zd+3 < ■ ■ ■  < zg_x < xg -< xg+,
< • • * •< Xq — 1. It is clear upon inspection of Figure 5 that there is a path in
®u,p) °f length g - d — 1 connecting m" to m. Hence, there is a path in Í*a(/>) °f
length < (v' + d — 8) + (g — d - 1) = v' + g — 8-1 connecting m' to m.
Since x, G [yd+,, Î] for i = 0, 1, . . . , g - 1 we must conclude that v' + g < v =
|F|. Consequently, diam $A(j>) < v' + g — ô — 1 < v — 8 — 1 as required.    □

A bounded semimodular poset need not satisfy the Hirsch conjecture, as the
poset F of Figure 6a shows. F is semimodular but not Cohen-Macaulay and the
distance between the two maximal chains through the point x is 6. However, it is a
simple exercise to show that any bounded semimodular poset F of finite length 8
satisfies diam ^A(/.) < 8(8 — l)/2. Hence, we can improve Theorem 6.4 by assert-
ing that for any bounded, locally semimodular finite poset
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diam $A(iP) < mini ». -8-1,    v ' \. (6.5)

This upper bound is, in fact, sharp. For any 8 > 1 and v > d + 1 it is possible, as
suggested in Figure 6b, to construct an upper-semimodular lattice of length 8 and
cardinality v which achieves equality in (6.5).

(a) (b)
Figure 6

7. Higher order complexes. For a finite poset F let Afc(F), k > \, denote the
simplicial complex of all subsets of F which contain no (k + l)-element antichain
(totally unordered subset). Thus, for k — 1, this definition gives us the usual order
complex A(F). The higher order complexes àk(P) were suggested to the author by
R. Stanley in private correspondence. Guided by analogy with results in the
Schubert calculus, Stanley was led to conjecture that the complexes àk(L) are
Cohen-Macaulay for all k > 1 when L is a finite planar distributive lattice. In this
section we prove a slightly stronger result.

Theorem 7.1. Let L be a finite planar distributive lattice. Then Ak(L) is shellable
for all k > 1.

Proof. Let F denote the poset of join-irreducibles of such a lattice L and for
xGL let F* = (p G F|p <x}. According to Birkhoffs representation theorem
for finite distributive lattices [2, Theorem 3, p. 59] the map x i-> I* is an isomor-
phism between L and the poset of order ideals of F ordered by inclusion. Since L is
planar, F cannot contain a 3-element antichain. Hence, by Dilworth's well-known
decomposition theorem F can be partitioned into two chains. Now, let Q and R be
two chains in F such that P=Q\jR, QnR = 0, and for every order ideal / in
P write Iq = / n Q and IR = I c\ R. We can then define a map d: L —> R2 by
d(x) = (|IR\ - \Iq\, \Ix\). Connect points d(x) and d(y) such that x covers .y by
straight line segments. It is easy to verify that the graph 9) thus drawn in the
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Euclidean plane R2 is a planar embedding of the Hasse diagram of L (we think of
the x-axis as being "horizontal" and the .y-axis as pointing "upward"). Two
elements x and y of L satisfy x < y if and only if I£ G IZ and 1% G /¿. Let us
define another partial order " J. " on L by x < ± y if and only if I¿ D /£ and
I£ G PR. It is useful to observe that any pair of elements of L is comparable either
under "< " or under "<-L". Thus, an antichain under "< " is a chain under
"< x". Further, it is evident that the L-order is represented by the diagram ÓDX
which we get by rotating 9) 90 degrees counterclockwise in R2. Hence, it makes
sense to say that x is "to the left oF' y or y is "to the right of' x if and only if
x <■*- y.

Denote the rank-levels of L by Ljy j = 0, I, . . ., n = \P\. Thus, L, = {x G
L|p(x) = j) = {x G L| \IX\ = j) and so the elements of L> lie on the line y = j in
the diagram 9j g R2. Let us say that a sequence (m,, m2, . . . , mk) of maximal
chains of L is an almost disjoint k-sequence of maximal chains (a.d. ^-sequence, for
short) if for every j = 0, 1, . . . , «,

(i) m, n Lj is strictly to the left of m,+, n L¡ for /' = 1, 2, . . ., |L.| — 1, and
(ii) m, n Lj = m/+1 n Lj for i = |L,|, |L,| + 1,. . », k - 1.

Note that the definitions of the diagram 9), the order "L" and, hence, of an a.d.
A>sequence depend on the chosen decomposition of F into chains Q and R.
However, for any such choice we can now identify the facets of àk(L).

Lemma. Let L be a finite planar distributive lattice and decompose the join-irreduci-
bles P into chains Q and R.

(a) If F G L does not contain a (k + \)-element antichain then F is contained in
the union of an almost disjoint k-sequence of maximal chains of L.<p       ,

(b) The map (m,, m2, . . . , mk) h>  U*_, m, is a bijection between the set of a.d.
k-sequences of maximal chains of L and the set of facets of Ak(L).

Proof. The lemma holds trivially for k = 1. We shall prove part (a) for A: > 2 by
induction on the order |L|. The argument is based on an idea of J. Backelin's.
Statement (a) is trivially true for all k > 1 when |L| =2. Assume that (a) has been
proven for all k > 1 and for all lattices of order less than that of a given lattice L.
If there is a singleton rank-level L. = {x} with 0 <j < « = |F|, then the induction
hypothesis can be applied separately in the two intervals [0, x] and [x, 1], and
respective members of the two a.d. A>sequences can be glued together at x to form
an a.d. /c-sequence in L. We may therefore assume that |L-| > 2 forj = 1, 2, ... ,
n - 1. Denote by A the set of elements in L which are join-irreducible and
meet-irreducible and lie on the left boundary of the diagram 9). It is easy to see
that A is not empty, in fact A coincides with the set of minimal elements of the
diagram 6D±. Now, consider a subset F of L which does not contain a (k + 1)-
antichain, k > 2. In case A g F then F G L — {a} for some a G A. Since a is
doubly irreducible, L — {a} is a sublattice of L, hence distributive, and the graph
9) - d(a) is a planar embedding of the Hasse diagram of L - {a} in the pre-
scribed sense. So by the induction assumption F G U ?_i m,, where
(m,, m2, . . . , mk) is an a.d. A>sequence of maximal chains of L — {a}. Since the
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rank-levels L,_,, L, and Lj+X, where a G L,, are related as illustrated in Figure 7, it
is obvious how to derive from (m,, m2, . . . , mk) an a.d. Ac-sequence of maximal
chains of L which covers F.

Figure 7

Next we must consider the case when A G F. Let n^ denote the maximal chain
of L which lies on the left boundary of 9). If B = m,, - {Ô, Î}, then AGB, and
L — B is a sublattice of L. Arguing as above, it is clear that the induction
assumption applies to L — B. Suppose that F' — B contains a A>element antichain
C. As observed earlier, C is then a chain under the _L -order of L. Let x be the
± -least element of C, and let y be the ± -least (or furthest left) element of L,,
where x G L-. Then y G F and since x G F — B we have .y < x x. Let z be a
L-minimal element of L with z < -1 >>. Then z G A, and C U {z} is a (A; + 1)-
element antichain which is contained in C u A G F. This contradiction shows that
F — B cannot contain a Ac-element antichain. By the induction assumption there is
therefore an a.d. (A: — l)-sequence (m,, m2, . . . , m^_,) of maximal chains of L —
B such that F-ÎÇU í-i'm,- But then (n^, m„...,mt_1) is an a.d. A>sequence
of maximal chains of L such that F G U ?Jomí- Thus, part (a) is proved.

Consider the map (m,, m2, . . . , m^)i-» U f_, m, of part (b). A subset of L of the
form Uf», m, obviously cannot contain a (A: + l)-element antichain. Also, it is
maximal with this property, because if x G L — S where S = U *_i m, and
(m,, m2, . . ., mk) is an a.d. Az-sequence, then x G L, for ay such that |L-| > k, and
(S n Lj) u {x} is a (A; + l)-element antichain contained in S U {*}■ The map tp
is clearly injective, and surjectivity was established in part (a) above.    □

Having thus characterized the facets of AA(L), we are now in a position to
conclude the proof of Theorem 7.1 by assigning a shelling order. For a given finite
planar distributive lattice L, decompose its poset of join-irreducibles F into chains
Q and R and draw the corresponding diagram 9) in R2 as explained above. Let to:
F -» [«], « = |F|, be the unique order-preserving bijection which for all q G Q and
r G R satisfies u(q) > u(r) only if q > r. Then w is an admissible map and induces
an L-labeling y of L (cf. §3). The L-labeling y has the distinguishing feature that
the unique rising unrefinable chain in any interval [x, y] follows the left boundary
of [x, y] as drawn in 9). If F is a facet of &k(L) and (m„ m2, . . ., mk) is the unique
a.d. A>sequence of maximal chains such that F = U ?.. i m,, then associate with F
the «A>tuple a(F) = (w(m,), w(m2), . . ., 7r(mk)) G P"\ where ir(m¡) is the usual
Jordan-Holder sequence of the maximal chain m, under the edge-labeling y (cf. §1).
F =£ F' implies that o(F) =£ o(F'), and the lexicographic order of the nA;-tuples
a(F) in P"* determines a linear order ß of the facets of A¿(L). It remains to verify
that ß is a shelling.
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Let (m,, m2, . . . , m^) and (m',, m2, . . . , m'k) be two a.d. A;-sequences of maximal
chains of L and let F = U *_, m, and F' = U *_, m'¡. Suppose that F' <a F. We
may then assume that m, = m,' for i = 1, 2, . . . , e — 1, and me ^m^. Let me:
0 = x0 -< x, ■< • • • -< xn = 1, m'e: 0 = y0 < yx < ■ ■ ■ -<>>„= 1 and suppose
that x, = y¡ for / = 0, 1, . . . , g, x, +yt for i = g + 1, g -t- 2, ...,«— 1, and xh =
yh. Then, since F' <a F, by constructionyg+x lies to the left of xg+, in 9), and the
planarity of 9) forces y¡ to be to the left of x, for / = g + 1, g + 2, . . . , h — 1. The
relevant parts of 9) are illustrated in Figure 8.

Figure 8
The chain xg -< xg + ,-<•••-< xh cannot be rising, since then it would by con-
struction trace the left boundary of the interval [xg, xh]. Say there is a descent
y(xp_x, xp) > y(xp, xp+x) at p, g <p < h. Then there exists a unique z G L such
that xp_x < z < xp+x is rising. By our construction z lies immediately to the left of
xp in the rank-level Lp, hence to the right (not necessarily strictly) of y . Let mz be
the maximal chain which we get by replacing xp by z in me. It is clear from the
geometric situation (with z in between yp and xp in L ) that
(m,, m2, . . . , me_,, mz, me+1, me+2, . . . , m¿) is an a.d. A;-sequence of maximal
chains. Let F" be the corresponding facet of A*(L). Then F" <a F and F' n F G
F" n F = F - {xp}. Hence, ß is a shelling.   D

There seems to be no immediate generalization to the above theorem. For
instance, consider the planar modular lattice M and the 3-dimensional distributive
lattice D of Figure 9.

M

Figure 9

D
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The complexes A2(Af) and A2(/)) are not Cohen-Macaulay, in fact, they are not
even pure (e.g. (0, a, b, c, d, 1} and {0, b, d, e, 1} are facets of A2(M) and
(0, a, b, c, d, g, «, 1} and {0, b, d, e,f, g, 1} are facets of A2(F>)).

Appendix. We shall briefly review the definitions of shellable and Cohen-
Macaulay complexes and also comment on the logical relationship of these and
related concepts.

A finite simplicial complex A is by definition a nonvoid family of subsets, called
simplices or faces, of a finite set V, called the vertex-set, such that v G V implies
(iiJeA and F Ç G G A implies F G A. In particular, 0 G A. The dimension of a
face F, dim F, is |F| — 1, and the dimension of A, dim A, is max{dim F|F G A}.
The faces which are maximal under inclusion are called facets. A complex is pure if
all its facets are equicardinal.

Let A be a finite simplicial complex. We say that A is shellable if A is pure and
the facets of A can be given a linear order Fx, F2, . . . , F, in such a way that:

if 1 < / < k < t then there is aj, 1 < j < k, and an x G Fk such
that F,, n Fk G Fj n Fk = Fk - {x}.

In other words, the facet Fk is required to intersect the complex U*»/ F¡ in a
nonempty union of maximal proper faces of Fk. A linear order of the facets which
satisfies this requirement is called a shelling. Shellability has been most intensively
investigated for complexes which triangulate spheres and balls (see the survey [4]).

For a simplex F in a complex A the link of F is the subcomplex Ik F = (G G
A|G u F G A, G n F = 0}. Let R denote the ring of rational integers Z or a field
A;, and let //„(A, R) denote reduced simplicial homology of A with coefficients in
R. A simplicial complex A is said to be Cohen-Macaulay over R if //,(lk F, R) = 0
for all F G A and / < dim(lk F). The motivation for this terminology is to be
found in a theorem of G Reisner [15]. Let V = (x,, x2, . . . , xn] be the vertex-set
of A and define /A to be the ideal in the polynomial ring F[x„ x2, . . . , xj
generated by all square-free monomials x, x, • • • x, such that {x,, x,, . . . , x,} G
A. Reisner's theorem states that the complex A is Cohen-Macaulay over R if and
only if R[xx, x2, . . . , x„]//A is a Cohen-Macaulay ring. Using the Universal
Coefficient Theorem one can verify that A is Cohen-Macaulay over Z if and only if
A is Cohen-Macaulay over all fields, and if A is Cohen-Macaulay over some field
then A is Cohen-Macaulay over the rationals Q. Also, it is easily shown that a
Cohen-Macaulay complex (over any R) must be pure. For more information about
Cohen-Macaulay complexes see the surveys [9] and [20], and also [21].

The following variation of the Cohen-Macaulay concept was introduced by D.
Quillen in [14]: a pure complex A is said to be homotopy Cohen-Macaulay if the
homotopy groups 7r,(lk F) are trivial for all F G A and / < dim(lk F). In view of
the Hurewicz isomorphism theorem it is clear that A is homotopy Cohen-Macaulay
if and only if A is Cohen-Macaulay over Z and in addition the links Ik F are
simply-connected for all faces F G A such that dim F < dim A — 3.

Following Höchster [8] and Stanley [20] we call a complex constructible if it
belongs to the class of complexes defined recursively by: (1) a simplex is construct-
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ible, and (2) if A,, A2 and A, n A2 are constructible and dim A, = dim A2 = dim(A,
n A2) + 1, then A, u A2 is constructible. Clearly, a shellable complex is construct-
ible. Also, using the Mayer-Vietoris exact sequence for homology and the van
Kampen theorem for fundamental groups one can verify that a constructible
complex must be homotopy Cohen-Macaulay (cf. [8, Remark 8]).

Summarizing, we have seen that among the properties "shellable", "construct-
ible", "homotopy Cohen-Macaulay" and "Cohen-Macaulay over Z" of a simplicial
complex, each implies its successor. Counterexamples are known to two of the
three converse implications. R. D. Edwards' 5-sphere, which is the double suspen-
sion of a non-simply-connected homology 3-sphere (see [4, p. 41]), is Cohen-
Macaulay over Z but not homotopy Cohen-Macaulay. Also, M. E. Rudin's
unshellable 3-ball (see [4, p. 40]) has been proved constructible by S. Provan [13].
We do not know of any complex which is homotopy Cohen-Macaulay but not
constructible, although it seems likely that such examples should exist.
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